SUPPLEMENTARY DATA

Molecular profiling of EBV associated diffuse large B-cell lymphoma

Fabian Frontzek¹, Annette M. Staiger^{2,3}, Ramona Wullenkord¹, Michael Grau¹, Myroslav Zapukhlyak¹, Katrin S. Kurz², Heike Horn^{2,3}, Tabea Erdmann¹, Falko Fend⁴, Julia Richter⁵, Wolfram Klapper⁵, Peter Lenz⁶, Stephan Hailfinger¹, Anna Tasidou^{7†}, Marcel Trautmann⁸, Wolfgang Hartmann⁸, Andreas Rosenwald⁹, Leticia Quintanilla-Martinez⁴, German Ott^{2,3}, Ioannis Anagnostopoulos⁹, Georg Lenz^{*1}

¹Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany

²Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany

³Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany ⁴Institute of Pathology and Neuropathology, Reference Center for Haematopathology University Hospital, Tübingen Eberhard-Karls-University, Tübingen, Germany

⁵Division of Hematophathology, Christian-Albrechts-University, Kiel, Germany

⁶Department of Physics, University of Marburg, Marburg, Germany

⁷Department of Hematopathology, Evangelismos General Hospital, Athens, Greece; †deceased in 2019

⁸Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany

⁹Institute of Pathology, University of Würzburg, Würzburg, Germany

Supplementary Methods

Targeted Sequencing and analysis of somatic DNA mutations Library generation

We extracted 200 ng DNA per sample for targeted sequencing. DNA was sheared and ligated to specific adapters during automated library preparation using the Beckman FX^p liquid handling robot (SPRIworks, Beckman-Coulter, Pasadena, California, USA). Enrichment and capturing were performed applying the XT Fast Agilent SureSelect hybrid capture kit following manufacturer's instructions (Agilent Technologies, Santa Clara, California, USA).

Sequencing and preprocessing

Targeted deep sequencing was performed for 74 genes that were previously identified to be recurrently mutated in DLBCL. Sequencing was performed on a HiSeq platform (Illumina) with 250 bp paired-end reads. To align measured reads against the current human reference genome (GRCh38 version), we first extracted raw FASTQ reads from BAM formats with hg19 alignment utilizing the SamToFastq command of Picard tools version 2.25.0 (S1). Measured sequence reads were preprocessed and quality-controlled using cutadapt 3.2 (S2), Trim Galore! 0.6.6 (S3), and FastQC 0.11.9 (S4).

Sequence alignment

Trimmed reads were aligned against the current human reference genome from the Genome Reference Consortium (GRCh38) using HISAT2 v2.2.1 (S5), deduplicated using the MarkDuplicates command of Picard tools 2.25.0 (S6), and recalibrated by base score applying the Genome Analysis Toolkit v4.1.2.0 (GATK) (S7).

Variant discovery

We computed Mutect2 from the GATK to discover DNA variants (S8). Only reads aligned by HISAT2 that also passed GATK and Mutect quality control filters were further analyzed.

Basic variant filtering

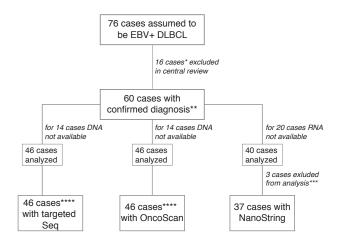
To build a panel of normal variants (PON), we performed variant discovery with the same experimental and analytical pipeline for all normal controls (S9). Overall, we

sequenced extracted DNA of 22 unmatched normal tissues originating from healthy donors. A variant was included in the PON if determined to be significant in at least two independent subjects by Mutect. This PON was subsequently used to filter germline variants and potential systematic pipeline-specific artefacts (unpaired analysis mode). Additionally, we used the gnomAD database based on the Exome Aggregation Consortium ExAC (S10) as large population resource for filtering germline variants.

Variant annotation and advanced filtering

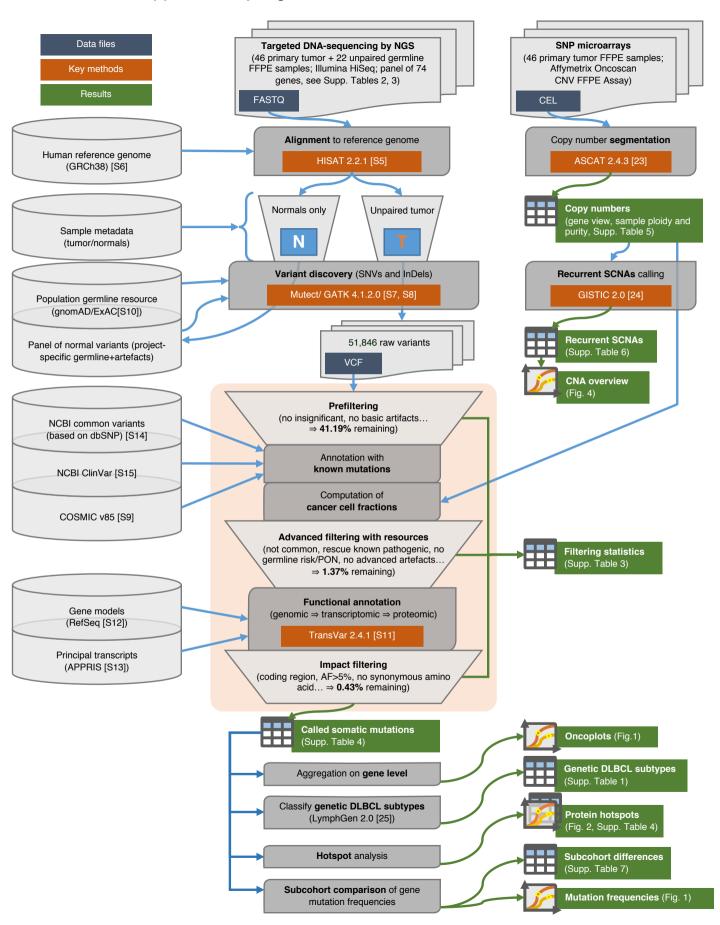
Next, we applied an optimized multistage filter hierarchy to reach maximal specificity of somatic mutation calls. All filter steps in the applied order are listed in Supplementary Table 3. For this hierarchy, we first annotated discovered variants with their transcript and protein level consequences using TransVar 2.4.1 (S11) and the NCBI RefSeq gene models (S12). In case of multiple RefSeq transcripts per gene, we annotated each variant with the one leading to the strongest possible biological consequence on protein level according to TransVar. For mutation overview plots, we selected the first principal transcript of the respective gene according to the APPRIS database (S13). Additionally, we annotated variants with confirmed somatic mutations according to the Catalogue Of Somatic Mutations In Cancer (COSMIC v85) (S9), the NCBI database of common human variants (≥5%) in any of the five large populations from dbSNP build 151 (S14), and NCBI ClinVar (version 2018-04) (S15) using vcfanno v0.3.0 (S16).

Somatic variants

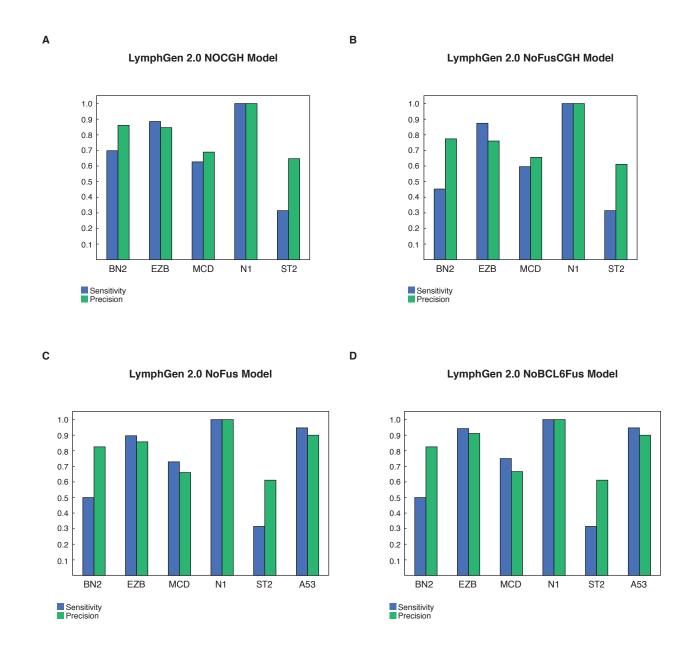

Based on variant statistics from Mutect, GATK, and all annotations, our filter hierarchy called 0.43% of all variants in this targeted panel as somatic mutations, i.e. 4.83 variants on average per sample. See Supplementary Table 3 for detailed mutation counts and percentages remaining after each filtering step. All somatic mutations are provided in Supplementary Table 4.

Additional tools and software utilized for sequencing analysis

For various analytical tasks in the sequencing pipeline, we used bedtools 2.26.0 (S17), the Integrated Genomics Viewer 2.10.2 (S18), the Picard toolkit 2.25.0 (S1), and SAMtools 1.9 (S19). For analysis pipeline orchestration, including parallel remote analysis jobs on high performance clusters as well as for most visualizations including


oncoplots, we applied MATLAB® (version R2021a, The MathWorks® Inc., Natick, Massachusetts, USA), R (version 3.6.3-4.1.0, R Foundation for Statistical Computing, Vienna, Austria), Python (version 2.7-3.X, Python Software Foundation, Wilmington, Delaware, USA), and GNU Parallel (S20). Needle plots of mutation profiles were created using ProteinPaint (S21). All tools used, their versions, and their availabilities are summarized in Supplementary Table 8.

Frontzek et al. Supplementary Figure 1


Supplementary Figure 1: All cases with assumed histology of EBV associated DLBCL NOS were centrally re-evaluated by three expert hematopathologists. *Overall, 16 cases had to be exluded due to the following reasons: EBER < 10% (n=2), diagnosis of angioimmunoblastic T-cell lymphoma (n=1), plasmablastic lymphoma (n=2), post-transplant lymphoproliferative disorder (n=1), plasmacytic differentiation (n=2), Hodgkin lymphoma (n=2), marginal zone lymphoma (n=1), other prior lymphoma diagnosis (n=3), and lacking expression of CD20 (n=2). **51 reviewed cases fulfilled all diagnostic criteria with more than 50% of lymphoma cells being positive in EBER. Nine further cases fulfilling all morphological criteria with EBER values <50% but >10% were added to our study cohort. ***Three cases showed borderline results in NanoString analysis and were subsequently excluded. ****The 46 out of 60 cases available for targeted DNA-sequencing and for OncoScan analysis were not identical (overlap of 40/60).

Frontzek et al. Supplementary Figure 2

Supplementary Figure 2: Overview of the analytical work flow. Resource databases and metadata are depicted as grey discs, primary source data are shown in dark blue, key methods in orange, and resulting figures and tables in green color.

Frontzek et al. Supplementary Figure 3

Supplementary Figure 3: Bar graph showing the sensitivity (blue) and precision (green) for prediction of molecular DLBCL subtypes in our cohort of EBV+ DLBCLs applying the **A** NOCGH Model, **B** NoFusCGH Model, **C** NoFus Model, and **D** the NoBCL6Fus Model according to the LymphGen classifier 2.0 (25).

Supplementary Table 2: Overview of target genes.

ADID1A	MTOR	
ARID1A	MTOR	
ATM	MYC	
B2M	MYD88	
BCL2	NFKBIA	
BCL6	NOTCH1	
BCL10	NOTCH2	
BIRC2	PCLO	
BIRC3	PIK3CD	
BRAF	PIK3R1	
BTG1	PLCG2	
BTG2	PRDM1	
втк	PRKCB	
CARD11	PTEN	
CCND3	REL	
CD58	SGK1	
CD79A	SMARCA4	
CD79B	SOCS1	
CREBBP	STAT3	
CSNK1A1	STAT6	
CYLD	SYK	
EP300	TAB2	
ERBB2	TAB3	
EZH2	TC7L1	
FOXO1	TLR2	
GNA13	TNF	
ID3	TNFAIP3	
IRF8	TNFRSF11A	
ITK	TNFRSF13B	
JAK2	TNFRSF13C	
KLHL6	TNFRSF14	
KMT2D	TNFSF13B	
LCK	TP53	
LYN	TANK	
MAP3K7	TRAF3	
MAP3K14	TRAF5	
MEF2B	UBR5	
KMT2C	NSD2	

Supplementary Table 8: Methods, tools, resources and software used in this study.

Method/Tool/Software	Version	Available at		
HISAT2	2.2.1	http://daehwankimlab.github.io/hisat2/download		
Genome Analysis Toolkit (GATK) / Mutect	4.1.2.0	1.2.0 https://github.com/broadinstitute/gatk/releases		
TransVar	2.4.1	https://github.com/zwdzwd/transvar		
LymphGen	2.0	https://llmpp.nih.gov/lymphgen/lymphgendataportal.php		
dNdScv	0.1.0	https://github.com/im3sanger/dndscv		
Chromosome Analysis Suite (ChAS)	4.3	https://www.thermofisher.com/chas		
ASCAT	2.4.3	https://github.com/Crick-CancerGenomics/ascat		
GISTIC	2.0	https://broadinstitute.github.io/gistic2/		
Integrated Genomics Viewer	2.10.2	http://software.broadinstitute.org/software/igv/download		
Protein Paint	n.a. (web app)	https://pecan.stjude.cloud/proteinpaint		
GNU parallel	20161222	https://www.gnu.org/software/parallel/		
samtools	1.9	http://www.htslib.org		
bedtools	2.26.0	https://bedtools.readthedocs.io		
Picard tools	2.25.0	https://broadinstitute.github.io/picard/		
vcfanno	0.3.0	https://github.com/brentp/vcfanno/releases		
Trim Galore!	0.6.6	https://github.com/FelixKrueger/TrimGalore		
cutadapt	3.2	https://cutadapt.readthedocs.io/en/stable/		
FastQC	0.11.9	http://www.bioinformatics.babraham.ac.uk/projects/fastqc		
Resources/Databases	Version	Available at		
COSMIC	85	https://cancer.sanger.ac.uk/cosmic		
NCBI ClinVar	20180429	https://www.ncbi.nlm.nih.gov/clinvar/		
gnomAD/ExAC	based on v2	Provided via GATK resource pack (af-only-gnomad.hg38.ensemble.vcf.gz); created from gnomAD by https://github.com/broadinstitute/gatk/blob/master/scripts/mutect2 wdl/mutect resources.wdl		
NCBI Common Human Variants	"common_all.vcf.gz" from 20180418	https://www.ncbi.nlm.nih.gov/variation/docs/hum an variation vcf		
NCBI RefSeq gene models	20190227	Provided via TransVar download; file name hg38.refseq.gff.gz.transvardb; downloaded 20190227		
APPRIS	20200122	https://appris.bioinfo.cnio.es/#/downloads		
Human Reference Genome	GRCh38	http://daehwankimlab.github.io/hisat2/download/ #h-sapiens		
IDEs and runtimes	Version	Available at		
MATLAB	R2021a	https://www.mathworks.com/pricing- licensing.html?prodcode=ML&intendeduse=edu		
Python	2.7 and 3.6	https://www.python.org/		
	3.6.3 and 4.1.0	https://www.r-project.org/		
R	1 3.0.3 and 4.1.0	TILLDS.//WWW.I-DIOIECL.OIG/		

Supplementary Table 9: Overview of genetic analyses of EBV+ DLBCLs.

	Gebauer et al. Blood Cancer J. 2021 (11)	Sarkozy et al. Blood 2021 (10)	Kataoka et al. Leukemia 2019 (44)	Frontzek et al. 2022
Numbers of analyzed cases	WGS/ CNA n=8 Target. seq n=47 (43 genes)	WES n=7 Target. seq n=13 (217 genes)	Target. seq/ CNA n=27 (140 genes, 1999 SNP probes)	Target. seq n=46 (74 genes) OncoScan n=46
EBER cut-off	>50%	>90%	NA	>50% (n=51) 10-40% (n=9)
Pathological central review	Yes	Yes	NA	Yes
Monomorphic vs. polymorphic subtype	Both	Polymorphic only	NA	Both
JAK-STAT	STAT3: NA STAT6: 9% SOCS1: 2%	STAT3: 15% STAT6: 15% SOCS1: 15%	STAT3: NA STAT6: NA SOCS1: NA	STAT3: 4% STAT6: 2% SOCS1: 24%
NOTCH	NOTCH1: NA NOTCH2: 32% SPEN: NA	NOTCH1: 5% NOTCH2: 10% SPEN: 15%	NOTCH1: NA NOTCH2: NA SPEN: NA	NOTCH1: 7% NOTCH2: 15% SPEN: NA
Immune evasion	B2M: 13% CD58: 4% CIITA: NA HLA-B: NA	B2M: 5% CD58: 15% CIITA: 0% HLA-B: 5%	B2M: 26% CD58: 11% CIITA: NA HLA-B: 26%	B2M: 11% CD58: 11% CIITA: NA HLA-B: NA
NF-ĸB	CD79B: 11% CARD11: 9% MYD88: 4% TNFAIP3: NA	CD79B: 0% CARD11: 0% MYD88: 0% TNFAIP3: 5%	CD79B: 0% CARD11: 11% MYD88: 4% TNFAIP3: 4%	CD79B: 0% CARD11: 2% MYD88: 2% TNFAIP3: 7%
Epigenetic regulators	ARID1A: 45% CREBBP: 4% EZH2: 9% KMT2A: 32% KMT2C: NA KMT2D: 30% TET2: NA	ARID1A: 5% CREBBP: 0% EZH2: 0% KMT2A: 5% KMT2C: 10% KMT2D: 10% TET2: 10%	ARID1A: NA CREBBP: 11% EZH2: 4% KMT2A: NA KMT2C: NA KMT2D: 26% TET2: 33%	ARID1A: 15% CREBBP: 7% EZH2: 4% KMT2A: NA KMT2C: 17% KMT2D: 22% TET2: NA
Apoptosis/ Cell cycle/ DNA repair	ATM: NA EP300: NA FOXO1: 2% TP53: 9%	ATM: 5% EP300: 10% FOXO1: 5% TP53: 5%	ATM: NA EP300: 11% FOXO1: NA TP53: 26%	ATM: 7% EP300: 13% FOXO1: 13% TP53: 7%

Abbreviations: WGS=whole genome sequencing, CNA=copy number analysis, target.=targeted, seq=sequencing, EBER= EBV-encoded small RNAs

References for Supplement

- S1. Institute B. Picard Toolkit: a set of command line tools (in Java) for manipulating high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF. . 2019.
- S2. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. . EMBnetjournal. 2011(17(1), pp. 10-12).
- S3. F. K. Trim Galore! is a wrapper script to automate quality and adapter trimming. 2012 [Available from: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
- S4. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010 [Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
- S5. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature methods. 2015;12(4):357-60.
- S6. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome research. 2017;27(5):849-64.
- S7. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research. 2010;20(9):1297-303.
- S8. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature biotechnology. 2013;31(3):213-9.
- S9. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic acids research. 2019;47(D1):D941-D7.
- S10. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-91.
- S11. Zhou W, Chen T, Chong Z, Rohrdanz MA, Melott JM, Wakefield C, et al. TransVar: a multilevel variant annotator for precision genomics. Nature methods. 2015;12(11):1002-3.
- S12. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic acids research. 2016;44(D1):D733-45.
- S13. Rodriguez JM, Maietta P, Ezkurdia I, Pietrelli A, Wesselink JJ, Lopez G, et al. APPRIS: annotation of principal and alternative splice isoforms. Nucleic acids research. 2013;41(Database issue):D110-7.
- S14. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic acids research. 2001;29(1):308-11.
- S15. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic acids research. 2018;46(D1):D1062-D7.
- S16. Pedersen BS, Layer RM, Quinlan AR. Vcfanno: fast, flexible annotation of genetic variants. Genome biology. 2016;17(1):118.
- S17. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-2.
- S18. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in bioinformatics. 2013;14(2):178-92.
- S19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9.
- S20. Tange O. GNU Parallel The Command-Line Power Tool. The USENIX Magazine. 2011;42-47.
- S21. Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet. 2016;48(1):4-6.