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ABSTRACT: Calculating free energies of binding (ΔGbind)
between ligands and their target protein is of major interest to
drug discovery and safety, yet it is still associated with several
challenges and difficulties. Linear interaction energy (LIE) is an
efficient in silico method for ΔGbind computation. LIE models can
be trained and used to directly calculate binding affinities from
interaction energies involving ligands in the bound and unbound
states only, and LIE can be combined with statistical weighting to
calculate ΔGbind for flexible proteins that may bind their ligands in
multiple orientations. Here, we investigate if LIE predictions can be
effectively improved by explicitly including the entropy of
(de)solvation into our free-energy calculations. For that purpose,
we combine LIE calculations for the protein−ligand-bound state with explicit free-energy perturbation to rigorously compute the
unbound ligand’s solvation free energy. We show that for 28 Cytochrome P450 2A6 (CYP2A6) ligands, coupling LIE with
alchemical solvation free-energy calculation helps to improve obtained correlation between computed and reference (experimental)
binding data.

■ INTRODUCTION
Protein−ligand binding can lead to (enhanced) activity or
inhibition of a protein,1−4 and the binding affinity of a ligand
to its target or off-target can be quantitatively expressed in
terms of the corresponding binding free energy (ΔGbind).

5

Therefore, free-energy calculations have played a prominent
role from the hit-identification to lead-optimization stages of
drug design and discovery6,7 and in the screening of inhibitory
potentials of molecules that can interact specifically with
pharmacologically or toxicologically relevant proteins.8−10 Due
to the increased availability of biomolecular off-targets and
computational resources, protein-structure-based computa-
tional techniques increasingly become attractive for the
pharmaceutical industry for the prediction of ΔGbind
values.11−14

In silico approaches to calculate protein−ligand ΔGbind
values range from combined docking and scoring15 to
molecular-simulation-based end-point16,17 and alchemical
free-energy methods.18,19 Selection of the most suitable
method depends on the number of compounds involved, the
studied system, and the preferred levels of accuracy and
efficiency.20,21 Docking and scoring functions usually treat
protein structure rigidly and are typically used for binding pose
prediction and to (qualitatively) distinguish binders from
nonbinders within large databases, thus filtering them into
smaller sets of compounds for further processing and/or
experimental validation.22 On the other hand, rigorous
alchemical methods such as free-energy perturbation (FEP)18

and thermodynamic integration (TI)19 can lead to accurate
free-energy estimates when sufficient sampling of the relevant
conformational states is obtained. This is typically compute-
intensive as it requires extensive molecular dynamics (MD)
simulations of the system including MD runs of nonphysical
states,23 making these methods less suitable for use in
(semi)high-throughput settings. Alternatively, end-point meth-
ods such as linear interaction energy (LIE)17 and molecular
mechanics combined with Poisson−Boltzmann or generalized
Born and surface area continuum solvation (MM/PBSA or
MM/GBSA)16 lie between alchemical and docking/scoring-
based approaches and offer a trade-off between computational
efficiency and accuracy, by including protein and ligand
conformational sampling but only performing MD simulation
of the end states for protein−ligand (un)binding.24 A plausible
application of end-point methods is to reduce compounds in a
large set of potential binders to a subset of promising
molecules.20

An advantage of LIE is that it allows for a straightforward
incorporation of the contribution of multiple and/or different
binding modes of ligands in its computation of (direct or
“absolute”) binding free energies to the protein of interest.25
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This is especially relevant when quantifying affinities of binding
to target receptors or off-target enzymes with large active-site
conformational flexibility, including, e.g., pharmaceutically
relevant proteins such as the families of Cytochrome P450s
(CYPs) and kinases. In such cases, it can be especially difficult
to compute binding free energies from docking/scoring or
alchemical calculations, because different protein and/or ligand
binding conformations may contribute to the binding free
energy. As an attractive alternative, we have in recent years
extended and automated a statistical-weighting-based approach
to efficiently compute ΔGbind by combining results from
(short) MD simulations starting from different relevant parts
of protein−ligand conformations. For that purpose, MD
simulations are run per training or query compound free in
solvent (free) and bound to the protein of interest in N starting
configurations comprising different binding orientations and/
or protein conformations (bound). From every individual MD
simulation, average van der Waals (vdw) and electrostatic (ele)
interaction energies of the ligand (lig) with its surrounding
(surr) are used to obtain the calculated binding free energy
ΔGbind,calc, by weighting results from the N individual
simulations of the protein−ligand complex in a Boltzmann-
like manner25,26
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The weights Wi of the individual simulations i in eq 1 are
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in which kB is Boltzmann’s constant and T is the temperature
of the simulated system. Both α and β are parameterized based
on experimentally curated values of ΔGbind, and this needs to
be done in an iterative fashion when N > 1.25 Note that the use
of the offset parameter (γ) in eq 1 is optional, which would
need to be trained along with α and β as well (albeit in an
iterative fashion). In the LIE models presented in this work, γ
was set to zero unless noted otherwise.
While the above-described (iterative) weighting approach

can improve LIE predictions by enhancing protein−ligand
sampling, we investigate here if we can further improve LIE by
calculating the free energy of ligand desolvation alchemically
and by including this contribution to ΔGbind explicitly into our
LIE approach. In this way, we can rigorously evaluate both the
energetic and entropic contributions of desolvation to ΔGbind,
and we only have to calibrate α and β parameters associated
with ligand−environment interaction energies in the simu-
lation of the protein-bound system. We evaluate if replacing
the contributions from the unbound state in LIE by
alchemically computed (de)solvation free energies will
improve ΔGbind calculations when compared to experiment,
by merely performing short free-energy perturbations of the
ligands free in solvent. Thus, we introduce here a modified
framework of LIE computation by including ligand solvation

by means of FEP instead of using the second terms on the
right-hand sides of eqs 2 and 3.
In particular, we present combined LIE/FEP models to

compute binding to human Cytochrome P450 2A6 (CYP2A6;
EC 1.14.13.−) and compare it to traditional LIE models.
Cytochrome P450s (CYPs) are malleable and promiscuous
heme-containing redox proteins comprising a ubiquitous
superfamily of mono-oxygenases, and they act as the major
drug-metabolizing enzyme in phase I of xenobiotics metabo-
lism, converting ca. 75% of available marketed drugs.27,28 A
variety of CYPs are known to be able to accommodate
substrates in different binding poses. CYP2A6 is a hepatic
enzyme comprising 1−10% of total CYPs in human body29 but
responsible for 70−80% of nicotine metabolism,30 and
inhibiting nicotine metabolism may diminish the desire for
smoking; hence, CYP2A6 inhibitors may help smoking
cessation. Here, we calibrate LIE models for CYP2A6 based
on experimental data for 28 inhibitors and take advantage of
the weighted LIE scheme of eqs 1−4 to enable the inclusion of
multiple binding poses in the model. We present several
adapted LIE models in which (de)solvation thermodynamics is
included as described above, and we show that combining LIE
with FEP for that purpose can improve correlations between
calculated and experimental CYP2A6−inhibitor binding
affinities. In addition, we study if this conclusion can be
extended toward another CYP (CYP2E1).

■ METHODS

Protein and Ligand Structure Preparation. The crystal
structure of CYP2A6 was downloaded from the Protein Data
Bank (PDB)31 with ID 2FDV.32 After retaining the protein and
heme-group atomic positions of chain A, MolProbity33 was
used to add missing hydrogen atoms, optimize hydrogen bond
networks, and check for flipped Asn, Gln, and His residues. No
residue was flipped. Chimera version 1.10.234 was used to
define AMBER ff14SB35 force field parameters for the protein
and AM1-BCC charges36 for the heme group and to energy-
minimize the structure by 100 steps steepest descent and 10
steps conjugate gradient, and correct protonation states of His
residues.
We collected a data set of experimental CYP2A6 (as well as

CYP2E1) IC50 or Ki values for 28 pyridine analogues of
nicotine from the literature32,37 via ChEMBL,38 which was
used to derive either the Cheng−Prusoff estimates of Ki and/or
the observed binding free energies ΔGbind,exp (ranging from
−40.9 to −28.0 kJ mol−1; Table 1) using39

Δ =G RT Kln( )ibind,exp (5)

LIE Model Parameterization. We used our eTOX
ALLIES40 pipeline to automatically perform docking and
MD simulations and to employ the Boltzmann-weighted LIE
method (Figure 1). Open Babel 2.3.941 was used to prepare
ligand structures (i.e., generation of three-dimensional (3D)
coordinates if necessary and protonation based on pH 7.4 or
neutralization, depending on model settings). Ligand top-
ologies were created using AmberTools1542 based on the
general Amber force field (GAFF)43 and the AM1-BCC
approach,36 and this topology generation was automatically
executed and converted to GROMACS format using
ACPYPE44 (Rev: 7828). Ligands were docked into the
CYP2A6 active site by ParaDockS 1.0.145 with a sphere radius
of 1.0 nm from the center, which was automatically determined
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on the basis of the heme domain atom coordinates. Docking
solutions were subsequently subjected to principal component
analysis (PCA) and k-means clustering to generate medoids as
representative docking conformations for MD inputs, as
described in our previous works.40,46

The medoids (2−3 per ligand) were afterward used in
combination with the protein structure as input for steepest-
descent energy minimization in GROMACS 4.5.5. The
minimized complex structures were in a next step solvated in
approximately 16180 TIP3P water molecules,47 and the
systems were neutralized by the addition of 6 Cl− counterions.
All subsequent MD stages, including the 1 ns production runs
starting from the 2−3 selected binding poses of the relatively
rigid ligands, were carried out using GROMACS 4.5.548 and
the Amber14SB force field,35 in which energy and coordinate
trajectories were written out to disk every 10 ps. Thermal pre-
equilibration, temperature and pressure coupling (with time
constants of 0.1 and 0.5 ps, respectively), grid-based pair-list
update frequency, and long-range treatment of nonbonded
interactions during MD were performed as described
previously.49 For the heme cofactor and coordinating cysteine
residue in CYP2A6, special force field parameters were used.40

Every ligand pose was run in duplicated simulations50 and
weighted based on Boltzmann-like statistics (eqs 1−4).25
Separate duplicated 1 ns production runs for ligands free in
solvent using identical MD settings as for protein−ligand
complexes were conducted to obtain average interaction
energies for unbound ligands for use in eq 1. Time-averaged
energetic terms between the ligand and environment as
obtained from MD were subsequently subjected to ordinary
least-squares (OLS) fitting to train LIE models based on
curated experimental ΔGbind values, which was performed
using the Python scikit-learn 0.17 package.51 Fitted LIE
parameters (i.e., α and β (and γ if required)) from model
creation (see Results and Discussion) were obtained in an
iterative way.25 All of the works from ligand preparation until
LIE model generation were performed within the eTOX
ALLIES pipeline.40

Adapted Model 1: Including (De)Solvation Free-
Energy Calculations. In adapted LIE model 1 (ALIE1), we
separately consider the solvation free energy ΔGsolv (using
rigorous alchemical computation) and the free energy of
transferring a ligand from the gas phase into the bound state
(ΔGprot, Figure 2). In this way, we only need LIE parameters to

Table 1. Molecular Structures and Experimental Estimates
for the CYP2A6 Binding Free Energy (ΔGbind,exp in kJ
mol−1) of the 28 Compounds Considered in the Current
Work

Table 1. continued
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scale ligand−environment interaction energies in the protein-
bound state, in which ligand sampling is already enhanced
compared to traditional LIE by weighting results from MD
simulations starting from different ligand binding poses using
eq 4. Thus, the calculation of “binding free energies” reduces in
this ALIE1 model to

∑

∑

α

β γ

Δ = ⟨ ⟩

+ ⟨ ⟩ +

−

−

G W V

W V

i

N

i i

i

N

i i

prot,calc lig surr
vdw

bound,

lig surr
ele

bound,
(6)

As reference data ΔGprot,ref for the calibration of scaling
parameters α and β (and optionally, offset parameter γ), we
use the sum of ΔGbind,exp and ΔGsolv, cf. Figure 2

Δ = Δ + ΔG G Gprot,ref solv bind,exp (7)

To rigorously evaluate ΔGsolv from free-energy perturbation,
21 independent MD simulations were performed of the
individual ligands in water. Solute−solvent (Coulomb and van
der Waals) interactions were gradually activated in these
simulations using equispaced λ points (ranging from 0 to 1)
with λ as perturbation parameter for the Hamiltonian.19,52,53 At
every λ point, MD simulations were performed under
minimum image periodic boundary conditions based on
cubic computational boxes. The equations of motion were
integrated using the leap-frog scheme54 with a time step of 2 fs.
All simulations were performed at a temperature of 300 K and
a pressure of 1 bar; water was simulated as the TIP3P model.
MD simulations were performed using the software
GROMACS version 5.55 All of the systems were previously
equilibrated by performing a first minimization step (50 000
steps steepest descent algorithm) followed by 30 ns of
equilibration in NPT ensemble at 300 K and at 1 bar of
pressure using the v-rescale algorithm and Parrinello−Rahman
algorithm for temperature and pressure coupling, respec-
tively.56,57 Electrostatic interactions were calculated using the
fast smooth particle-mesh Ewald (SPME) algorithm.58 For
each λ point, the system was minimized (10 000 steps, steepest
descent) and equilibrated for 200 ps (100 ps in NVT ensemble
followed by 100 ps in NPT ensemble) before the production
of MD simulation (15 ns). The final solvation free energies
relied on multistate Bennett acceptance ratio (MBAR).59 For
every free energy calculated, statistical error estimation is
provided as indicated by Klimovich et al.52 Values for and
errors in the calculated free energy were obtained using an
automatic analysis workflow (http://github.com/choderalab/
pymbar) that systematically evaluates free-energy differences
for each pair of adjacent states, as a function of simulation time
in both the forward and reverse directions and from
overlapping distributions.52,59

Adapted Model 2: Extension to the Linear Response
Approximation (LRA) Approach. Equation 6 does not

Figure 1. Schematic overview of LIE and ALIE workflows used in this
study. The pipeline starts from the ligand and protein structure
preparation, followed by docking, clustering, and MD simulations.
The LIE model is obtained using eTOX ALLIES,40 while the ALIE
models are generated using in-house scripts.

Figure 2. Thermodynamic cycle illustrating the calculated and
reference free-energy differences considered in this study. The
solvation free energy ΔGsolv is associated with the transfer of the
ligand in the gas phase (top) into the water solvent (bottom left).
Binding of the solvated ligand to the target protein is associated with
the free energy of binding ΔGbind. The sum of these two free energies
is equal to the free-energy difference ΔGprot for transferring the ligand
from the gas phase directly to its protein-bound state in solution
(bottom right).
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account for possible inherent ligand interaction energies with
the protein in its unbound conformation, but depending on the
system of interest, such preorganization energy may be
significant.60 In that case, the assumption of the linear
response in the electrostatic interactions as taken in eq 6 can
break down. Here, we examined the size of the preorganization
energy and if our calculations could be further improved by
replacing the second term on the right-hand side of eq 6 with
the original linear response approximation (LRA) of Warshel
and co-workers61 to retrieve adapted model 2 (ALIE2), where

αΔ = ⟨ ⟩ + Δ−G V Gprot,calc lig surr
vdw

bound LRA (8)

and

Δ = {⟨ ⟩ + ⟨ ⟩ }− −G V V
1
2LRA lig surr

ele
bound lig surr

ele
off (9)

⟨Vlig−surr
ele ⟩off is the preorganization energy, which can be directly

calculated as average ligand−surrounding interaction energy
from MD simulations of the noninteracting protein−ligand
complex. Thus, we only need to calibrate α (and optionally γ)
in the ALIE2 models, for which values of the difference
ΔGprot,ref − ΔGLRA for the set of compounds in Table 1 serve as
reference calibration data, while the first term on the right-
hand side of eq 8 was the actually calculated value during
calibration. To generate the ALIE2 model, we only performed
MD simulations starting from a single binding pose per ligand.
This was per ligand taken to be the (thermally equilibrated)
MD starting pose of the simulation used in the ALIE1 model
with highest weight Wi (see Table S1 of the Supporting
Information for the separate Wi values), from which
⟨Vlig−surr

ele ⟩bound was directly obtained. Figure S1 compares
selected ligand binding poses used as MD starting poses in
the ALIE1 model to illustrate observed differences in these
poses both among ligands for which a single simulation
showed a contribution (Wi) of more than 80% in the
calculated binding free energy and among poses with
significant contribution to the calculated affinity of a single
compound. ⟨Vlig−surr

ele ⟩off was calculated by averaging ligand−
protein electrostatic interaction energies over configurations
from additional duplicated 1 ns simulations in which protein−
ligand interactions were turned off while otherwise utilizing
identical MD settings (and starting poses) used to obtain the
⟨Vlig−surr

ele ⟩bound values.
Adapted Model 3: Using Free-Energy Perturbation

To Estimate Protein−Ligand Electrostatic Interactions.
Previously, de Ruiter and Oostenbrink showed for different
cases that LRA or LIE approaches for binding free-energy
computation can be improved by allowing nonlinear fits to the
change in electrostatic energy upon (un)binding.60 Here, we
investigate in a last step if explicitly running free-energy
perturbations using a coupling λ parameter for the electrostatic
ligand−protein interactions can lead to improved LRA or LIE
predictions. For this purpose, 20 ps equilibration and 10 ns
production MD runs were performed in one replicate, starting
from the same protein−ligand complex structure as used in the
additional ALIE2 simulations, at five λ points in which
electrostatic interactions between the ligand and surrounding
were gradually decoupled. Other MD settings were identical as
those in the simulations of the bound state used for the other
(A)LIE models. From these simulations, the electrostatic
contribution to ΔGprot (denoted by the subscript ele in eq 10)
was obtained using the Bennett acceptance ratio (BAR)

method.52 Similarly as in the ALIE2 model, only α had to be
fitted, which was in this case done based on the difference
ΔGprot,ref − ΔGprot,ele, as follows

αΔ = ⟨ ⟩ + Δ−G V Gprot,calc lig surr
vdw

bound prot,ele (10)

■ RESULTS AND DISCUSSION
LIE Model. The parameterization and performance of the

calibrated LIE model are summarized in Table 2. The quality

of the model was evaluated by two kinds of metrics, i.e.,
correlation coefficients r2, Pearson’s r, and Spearman’s ρ, and
deviations from experimental values estimated as root-mean-
square error (RMSE). The obtained correlation between
observed experimental and calculated ΔGbind values is also
illustrated by the regression and kernel density plots in Figure
3A, in which the 95% confidence interval is indicated by the
shaded area. From Table 2 and Figure 3A, it can be seen that
ΔGbind values as calculated with our LIE model show
deviations from ΔGbind,exp that are close to 1 kcal mol−1

(RMSE = 4.3 kJ mol−1), but the obtained correlation plots
and coefficients indicate poor predictions of trends in binding
for the considered set of compounds (r = 0.18, ρ = 0.16). This
may be a result of the small spread within the experimental
reference values for the employed data set, cf. Table 1 and
Figure 3A.62

Adapted LIE Models. The solvation free energies of the
set of 28 CYP2A6 binders were calculated from MD
simulations and free-energy perturbation. The results of
these calculations, as well as their error estimates, are presented
in Table S2 of the Supporting Information. The model
performance and parameters of the ALIE models are
summarized in Table 2 and plotted in Figure 3B−3D.
Interestingly, explicitly evaluating the solvation free energy
via alchemical perturbation and only parameterizing α and β
parameters to compute ΔGprot greatly improve predictions in
trends in binding affinity. This is illustrated by the relatively
high correlation coefficients for the ALIE1 model, especially
when compared to those for the traditional LIE model (Table
2). As recently argued by one of us,63 computing ΔGprot can
aid in predicting intrinsic preferences in protein−ligand
interactions, regardless of the desolvation contribution as
included in the experimental binding free energy. This can be
of help in studying, e.g., possible effects on these intrinsic
protein−ligand affinities due to protein mutations (which may,
in turn, be relevant to bioengineering63 or studying poly-
morphisms), but it should be noted that in our ALIE1 model,
relatively large errors in calculated ΔGprot values were obtained

Table 2. Model Parameters for the LIE and ALIE Models of
CYP2A6, Together with Respective Root-Mean-Square
Errors (RMSEs, with Respect to Experiment) and
Correlation Metrics for the Set of Compounds Considered
in This Work

LIE ALIE1 ALIE2 ALIE3

α 0.67 0.34 0.38 0.29
β 0.13 0.66 0.50
RMSE (kJ mol−1) 4.34 8.39 8.93 8.64
r2 0.03 0.59 0.53 0.59
Pearson’s r 0.18 0.77 0.73 0.77
Spearman’s ρ 0.16 0.76 0.76 0.74
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(RMSE = 8.4 kJ mol−1). Probably, an important contribution
to the approximate doubling of the RMSE when going from
the LIE to the ALIE1 model is the accompanying 2- to 3-fold
increase in the absolute reference values to be predicted, cf.
Figure S2. In addition, the increase in RMSE in going from the
LIE to the ALIE1 model may be due to a contribution from
possible errors in the computed ΔGsolv value to the calculated
complexation free energies in the ALIE1 model.
Besides the larger spread in ΔGprot,ref values than for

ΔGbind,exp, the higher ALIE1 correlation coefficients (when
compared to LIE) can be understood in terms of the different
α and β values that we obtained when fitting separate LIE-like
models for the prediction of ΔGsolv and ΔGprot (which together
constitute ΔGbind; Figure 2). To obtain an LIE model for

ΔGsolv computation, we used our FEP/MBAR values as
reference data to fit parameters that directly relate the ligand−
solvent van der Waals and electrostatic interaction energies in
the unbound state to the solvation free energy64

α βΔ = ⟨ ⟩ + ⟨ ⟩− −G V Vsolv,LIE lig surr
vdw

free lig surr
ele

free (11)

In this way, a model was obtained with α and β close to 0 and
0.5, respectively (Table 3). Thus, to compute ΔGsolv values, we
can use a linear response model in terms of electrostatic
interactions only, Figure 4. In contrast, our fitted ALIE1 model
for ΔGprot calculation has values of α = 0.34 and β = 0.66,
which is also significantly closer to the theoretical value of 0.5
than obtained for our LIE model for ΔGbind calculation, Table
2. In conclusion, by splitting up the calculation of ΔGbind into

Figure 3. Scatter and kernel density plots of the LIE (A), ALIE1 (B), ALIE2 (C), and ALIE3 (D) models for CYP2A6 binding, illustrating
obtained correlations between calculated free energies ΔGbind,calc or ΔGprot,calc and their respective reference values. Dashed lines indicate an ideal
correlation between the calculated and reference data, solid lines indicate the actually obtained correlations, and shaded areas indicate 95%
confidence intervals.
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the upper steps in the thermodynamic cycle depicted in Figure
2, an improved and significant correlation could be obtained
between the computed and reference data, as illustrated by the
values of Pearson’s r and Spearman’s ρ that are close to 0.8 for
the ALIE1 model.
Subsequently, we investigated if we could further improve

our model by including the protein−ligand preorganization
energy via the linear response approximation in the ALIE2
model. Table 2 shows that this did not lead to a further
improvement in model performance when compared to the
ALIE1 results, indicating that the preorganization term does
not contribute significantly to trends in CYP2A6 binding for
the considered compounds. This is confirmed by the relatively

low values obtained for ⟨Vlig−surr
ele ⟩off (Table S3). Accounting for

a possible nonlinear contribution of the electrostatic protein−
ligand interaction energy to ΔGprot (by evaluating ΔGprot,ele via
alchemical free-energy calculation in the ALIE3 model) did not
lead to improved model performance compared to that of the
ALIE1 model either, Table 2. We also assessed the effect of
including more λ points into the calculation of ΔGprot,ele (i.e.,
by going from 5 to 9 λ points with regular intervals) for three
randomly chosen ligands in the data set (compounds 16, 20,
and 23). By introducing more λ points in this way, we
observed changes in ΔGprot,calc ranging between 0.04 and 1.74
kJ mol−1 only. In conclusion, the possible nonlinear change in
electrostatic energy upon (de)coupling protein−ligand inter-
actions (as we observed for several compounds, data not
shown) could, in this case, still effectively be accounted by
using β as a free parameter in the ALIE1 model. This is also
illustrated by comparing the standard deviation error in the
prediction (SDEP) of 9.3 kJ mol−1 as obtained from leave-one-
out cross-validation (LOO-CV) for ALIE1, with the
corresponding SDEP values for the ALIE2 and ALIE3 models,
which were with values of 9.2 and 9.0 kJ mol−1 only 0.1 and 0.3
kJ mol−1 lower, respectively. For these reasons, we focus below
on the ALIE1 model, for which we included the SDEP and the
associated LOO-CV correlation coefficient q2 in Table S4 of
the Supporting Information.

A Closer Look at the ALIE1 Model. To exclude a possible
large effect on model performance of the data points that are
outliers in the ALIE1 model in terms of their reference
(compound 16) or calculated value (compound 22, Figure
3B), we generated ALIE1-like models, in which either of these
two compounds was excluded from the training set (Table S4
and Figure S3). Our finding that compound 22 is an outlier in
terms of ΔGprot prediction (Figure 3B) may be due to the fact
that this is the only hydroxyl-containing compound in our
ligand set, and previously Åqvist and co-workers argued to
calibrate different values for β for compounds with a different
number of −OH groups.65 We found that the quality of the
ALIE1 model only moderately improves when excluding
compound 22 from our data set: the RMSE decreases by 0.7
kJ mol−1, whereas Pearson’s r and especially Spearman’s ρ do
not change significantly (Table S4). On the other hand, LOO-
CV shows a more substantial decrease of the SDEP and an
increase in q2 upon excluding compound 22 from the data set,
Table S4. Encouragingly, when compound 16 (instead of 22)
is excluded, the quality of the ALIE1 model only changes
slightly. The RMSE and SDEP increase by 0.1 and 0.2 kJ
mol−1, respectively, and Pearson’s r and Spearman’s ρ are still
above 0.7, while compound 16 is responsible for approximately
20% of the spread in reference data for ALIE1 model

Table 3. LIE Parameters for and Performance of a Model
That Linearly Relates Average Ligand−Solvent van der
Waals (via α) and Electrostatic Interaction Energies (via β)
As Obtained from Independent Simulations of the 28
Unbound Ligands in Water Solvent, Fitted Based on ΔGsolv
Values Computed from Alchemical Perturbationa

value

α −0.04
β 0.52
RMSE (kJ mol−1) 3.40
r2 0.92
Pearson’s r 0.96
Spearman’s ρ 0.97

aDeviations and correlation between the LIE and alchemical
calculations are expressed in terms of the root-mean-square error
(RMSE), and the r2, Pearson’s r, and Spearman’s ρ, respectively.

Figure 4. Scatter and kernel density plots of an LIE model to predict
ligand solvation free energies ΔGsolv, which are linearly related to
average ligand−solvent van der Waals (via LIE parameter α) and
electrostatic interaction energies (via LIE parameter β) as obtained
from independent simulations of the 28 unbound ligands in water
solvent. Values for α and β are fitted based on ΔGsolv values computed
from alchemical perturbation. The dashed line indicates an ideal
correlation between the calculated and reference data, the solid line
indicates the actually obtained correlations, and the shaded area
indicates the 95% confidence interval.

Table 4. Model Parameters for the LIE and ALIE1 Models
of CYP2E1, Together with Respective Root-Mean-Square
Errors (RMSEs, with Respect to Experiment) and
Correlation Metrics for the Set of Compounds Considered
in This Work

LIE ALIE1

α 0.70 0.40
β 0.20 0.57
RMSE (kJ mol−1) 5.14 8.81
r2 0.13 0.56
Pearson’s r 0.36 0.75
Spearman’s ρ 0.23 0.73
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calibration (cf. Figure 3B). This implies that the model does
not necessarily rely on compound 16 to show a significant
correlation.
In a next step, we investigated if we could improve the

ALIE1 model by including the γ offset parameter in eq 6 or by
including effective corrections for the loss in ligand-configura-
tional freedom and possible release of water molecules from
the active site upon binding. We found that including γ as an
additional free parameter in eq 6 does not significantly improve
the model quality, which is especially apparent when

comparing the obtained correlation with the ALIE1 perform-
ance, Table S4.
To account for possible differences among the considered

compounds in their loss in configurational entropy upon
protein binding, we added a correction term ΔGrot to our
binding free-energy calculations defined as

Δ =G Nk Trot B (12)

with N the number of rotatable bonds, kB Boltzmann’s
constant, and T the temperature.66 In this way, we add a
penalty per rotatable bond to the ligand binding free energies
that is comparable to the corresponding estimates as reported
in the literature, which range between 1.5 and 4 kJ mol−1. In an
attempt to also account for possible differences in the
replacement of water molecules by the different ligands, we
computed a free-energy correction ΔGSASA for this based on
the ratio of the ligand’s SASA (SASAligand) and the SASA of a
water molecule (SASAwater), multiplied by a factor TΔS
representing the entropy of a water molecule and set to 20
kJ mol−1, as given by

Δ = × Δ
G

T S
SASA

SASASASA ligand
water (13)

To include ΔGrot and ΔGSASA into our ALIE1 model, we
calibrated α and β in eq 6 based on the sum (ΔGbind,exp +
ΔGsolv + ΔGrot + ΔGSASA). The resulting model is presented in
Table S4 and Figure S3D. Table S4 and Figure S3 also present
the results for a similar model in which a value of TΔS = 6 kJ
mol−1 is used. From a comparison with Table 2 and Figure 3B,
we find that incorporating the SASA term and number of
rotatable bonds in this adapted model does not significantly
change model performance compared to ALIE1, with (for
different choices of TΔS in eq 13) maximal changes in
correlation coefficients and RMSE (or SDEP) of only 0.07 and
0.25 kJ mol−1, respectively.

LIE and ALIE1 Models for Cytochrome P450 2E1. As
another test case, we calibrated and compared an LIE and
ALIE1 model for a different CYP, i.e., Cytochrome P450 2E1
(CYP2E1), a hepatic enzyme responsible for alcohol
metabolism.67 We chose this protein because for the
compounds of our CYP2A6 data set, we also have
experimentally estimated ΔGbind values available for CYP2E1
(ranging from −42.6 to −21.5 kJ mol−1; Table S5). As for
CYP2A6, these values were obtained using eq 539 and using
inhibition data from Cashman and co-workers.32,37 Obviously,
for these compounds, we already have the rigorously calculated
set of ΔGsolv values available from our alchemical free-energy
calculations described above. The initial protein structure
(with ID 3E6I68) was obtained from the PDB database.
Missing loops were modeled with ModLoop.69 Subsequent
steps for structure preparation, docking, MD, and model
calibration were identical as for our CYP2A6 modeling.
The performance and parameters of our LIE and ALIE1

models for CYP2E1 binding are summarized in Table 4 and
Figure 5. As observed for CYP2A6, the ALIE1 approach led to
a clearly enhanced correlation between the calculated and
reference data. For our ALIE1 model for CYP2E1, Pearson’s r
= 0.75 and Spearman’s ρ = 0.73, which are to be compared to
LIE values of 0.36 and 0.23, respectively. Table 4 additionally
shows that β is in the ALIE1 model again closer to its
theoretical value of 0.5 than when using traditional LIE (0.57
vs 0.20), and we find the same ligand (compound 22) as a

Figure 5. Scatter and kernel density plots of the LIE (A) and ALIE1
(B) models for CYP2E1 binding free-energy calculation, illustrating
the obtained correlations between calculated free energies ΔGbind,calc
or ΔGprot,calc and their respective reference values. Dashed lines
indicate an ideal correlation between the calculated and reference
data, solid lines indicate the actually obtained correlations, and shaded
areas indicate 95% confidence intervals.
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predicted outlier. We also find a higher RMSE value for the
ALIE1 model of CYP2E1 than for its LIE model, which is, as in
the case of CYP2A6, in line with the accompanying increase in
the spread of absolute values for the reference calibration data,
Figure S4. We note that different α and β values are obtained
for the ALIE1 (and for the LIE) models for CYP2A6 and
CYP2E1, cf. Tables 2 and 4. This prevented us from using a
single model for CYP2E1 vs CYP2A6 binding selectivity
prediction for the compounds of interest.

■ CONCLUSIONS

We showcase here several adapted LIE models based on
modifications of a Boltzmann-like weighted LIE approach for
calculating protein−ligand binding free energies. By separately
computing ligand solvation free energies (using alchemical
perturbation) and evaluating protein−ligand interactions from
MD of the bound state, we were able to obtain an adapted LIE
model with a high correlation between reference binding data
and the calculated results. For that purpose, we solely needed
to run short (1 ns production) MD simulations of the protein-
bound state in combination with alchemical free-energy
calculations of the unbound state only. Pearson’s r and
Spearman’s ρ values increased from 0.18 and 0.16 for the
traditional LIE model to 0.77 and 0.76, respectively. By
including alchemical ligand solvation free-energy calculations
into an LIE model for the same set of compounds binding to a
different Cytochrome P450 (CYP2E1), a similar increase in
correlation was obtained.
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E.; et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45,
D945−D954.
(39) Cheng, Y.-C.; Prusoff, W. H. Relationship Between the
Inhibition Constant (KI) and the Concentration of Inhibitor Which
Causes 50 Per Cent Inhibition (I50) of an Enzymatic Reaction.
Biochem. Pharmacol. 1973, 22, 3099−3108.
(40) Capoferri, L.; van Dijk, M.; Rustenburg, A. S.; Wassenaar, T. A.;
Kooi, D. P.; Rifai, E. A.; Vermeulen, N. P. E.; Geerke, D. P. eTOX
ALLIES: an Automated PipeLine for Linear Interaction Energy-Based
Simulations. J. Cheminf. 2017, 9, No. 58.
(41) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.;
Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open
Chemical Toolbox. J. Cheminf. 2011, 3, No. 33.
(42) Case, D. A.; Cheatham, T. E., III; Darden, T.; Gohlke, H.; Luo,
R.; Merz, K. M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods,
R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem.
2005, 26, 1668−1688.
(43) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and Testing of a General Amber Force Field. J.
Comput. Chem. 2004, 25, 1157−1174.
(44) da Silva, A. W. S.; Vranken, W. F. ACPYPE-Antechamber
Python Parser Interface. BMC Res. Notes 2012, 5, No. 367.
(45) Meier, R.; Pippel, M.; Brandt, F.; Sippl, W.; Baldauf, C.
ParaDockS: a Framework for Molecular Docking with Population-
Based Metaheuristics. J. Chem. Inf. Model. 2010, 50, 879−889.
(46) Rifai, E. A.; van Dijk, M.; Vermeulen, N. P. E.; Geerke, D. P.
Binding Free Energy Predictions of Farnesoid X Receptor (FXR)
Agonists Using a Linear Interaction Energy (LIE) Approach with
Reliability Estimation: Application to the D3R Grand Challenge 2. J.
Comput.-Aided Mol. Des. 2018, 32, 239−249.
(47) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. Comparison of Simple Potential Functions for
Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926−935.
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