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Abstract
Decision-making is in the service of action regardless of whether the decision concerns perceptual information, goods or 
memories. Compared to recent advances in the neurobiology of perceptual or value-based decisions, however, the neural 
bases supporting the sampling of evidence in long-term memory, and the transformation of memory-based decisions into 
appropriate actions, are still poorly understood. In the present fMRI study, we used multivariate pattern analysis to investigate 
the temporal dynamics of choice- and action-predictive signals during an item recognition task that manipulated the asso-
ciation between memory choices (old/new) and motor responses (eye/hand) across subjects. Choice-predictive activity was 
mainly observed in striatal, lateral prefrontal and lateral parietal regions, was sensitive to the amount of decision evidence 
and showed a rapid increase after stimulus onset, followed by a fast decay. Action-predictive signals were found in primary 
sensory motor, premotor and occipito–parietal regions, were generally observed at the end of the decision phase and were 
not modulated by decision evidence. These findings suggest that a memory decision variable, potentially represented in a 
fronto–striato–parietal network, is not directly transformed into an action plan as often observed in perceptual decisions. 
Regions exhibiting choice predictive activity, and especially the striatum, however, also showed a second peak of decision-
related activity that, unlike pure choice- or action-predictive signals, depended on the particular choice–response association. 
This second peak of activity in the striatum might represent the neural signature of the transformation of a memory decision 
into an appropriate motor response based on the specific choice–response association.
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Introduction

Decision-making involves the evaluation of evidence for a 
particular choice and the selection of an appropriate action 
(Kable and Glimcher 2009; Shadlen and Shohamy 2016). 
While perceptual and value-based decisions are emblematic 
of this strong sensori-motor chain, the association between 
decisions and actions can be less evident in other contexts. 
However, also decisions based on information stored in 
long-term memory can directly inform actions, such as 

when we orient our gaze toward someone that speaks with 
a familiar voice. In general, it is often argued that a main 
evolutionary advantage of a neural system dedicated to 
remember past episodes is to mentally represent possible 
scenarios and guide future behaviors (Suddendorf and Cor-
ballis 2007). While extensive research has been conducted to 
uncover the neural mechanisms underlying perceptual (Gold 
and Shadlen 2007; Heekeren et al. 2008) and value-based 
decisions (Rangel et al. 2008; Sugrue et al. 2005) the neu-
ral bases supporting the sampling of evidence in long-term 
memory and the transformation of memory-based decisions 
into appropriate actions are still underspecified.

The first clue about the neural mechanisms involved in 
memory-based decisions in humans has been the obser-
vation that BOLD activity in parietal (Kahn et al. 2004; 
Wheeler and Buckner 2003), but also striatal (Abe et al. 
2008), regions during old/new recognition judgments bet-
ter tracks the subjective feeling of oldness, rather than the 
objective memory status. Based on these early findings and 
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other empirical observations (e.g. Sestieri et al. 2011), it has 
been proposed that some regions of the posterior parietal 
cortex (PPC) might serve as a mnemonic accumulator of 
evidence for recognition decisions (Sestieri et al. 2017; Wag-
ner et al. 2005), in analogy with the accumulation of sensory 
information during perceptual decisions (Gold and Shadlen 
2007). This hypothesis is grounded on the seminal theoreti-
cal work by Ratcliff and McKoon, who proposed that also 
the simple act of judging whether an item is old or new can 
be conceptualized in a decision-making framework (Ratcliff 
1978). From this perspective, item recognition judgments 
are performed on the basis of a decision-to-bound, or evi-
dence accumulation, process determined by the relatedness 
between the probe and the items present in the memory set. 
While the resonance between features of the probe and items 
within the set represents evidence for old decisions, new 
decisions are made when the search for relatedness termi-
nates in a non-match (Ratcliff 1978). Consistent with this 
model, we have subsequently identified BOLD signals com-
patible with the representation of a decision variable during 
item recognition (Sestieri et al. 2014) and source memory 
(Guidotti et al. 2019) decisions in regions located within 
or adjacent to the intraparietal sulcus (IPS). Again, these 
signals appear to reflect the outcome of a decision process 
as they were significantly modulated by decision evidence 
and were predictive of the subject’s choices even when task 
performance was almost at chance.

Based on its traditional role in action preparation and exe-
cution across different response effectors (Andersen and Cui 
2009), the PPC also appears ideally suited for transforming 
mnemonic evidence into appropriate actions. In our previous 
study (Sestieri et al. 2014), we have tested the hypothesis 
that a memory decision variable is directly encoded in pari-
etal regions involved in movement planning, in analogy to 
what has been shown in several electrophysiological (Gold 
and Shadlen 2007; Shadlen and Newsome 2001) and neu-
roimaging (Donner et al. 2009; Gould et al. 2012; Tosoni 
et al. 2008, 2014) studies on perceptual decisions. Surpris-
ingly, we found that signals for memory-based decisions and 
motor intentions were largely independent: effector-prefer-
ring regions of the PPC were not modulated by decisions 
evidence, while regions that tracked evidence for oldness did 
so regardless of the motor effector that was associated with 
the choice. While this finding suggests a substantial segrega-
tion between the neural systems involved in perceptual and 
memory-based decisions (Sestieri et al. 2017), the question 
of how memory decisions are transformed into appropriate 
motor plans remains unaddressed.

An additional candidate region for implementing the 
transformation of memory decisions into motor actions is 
the striatum. The basal ganglia have been traditionally asso-
ciated with the expression of non-declarative memory, but 
increasing evidence from human studies have indicated an 

additional role in different aspects of declarative memory 
performance [reviewed in Scimeca and Badre (2012)]. 
Importantly, the striatum is not conceived as the source of 
mnemonic signals, but likely encodes a set of modulatory 
signals representing the value of the retrieved information 
in the service of the current goals (Bunzeck et al. 2010; Han 
et al. 2010). Beyond a direct role in the evaluation process, 
moreover, classical theories of striatal functions highlight 
its crucial involvement in the creation of the optimal stimu-
lus–response associations (e.g. Sugrue et al. 2005) and in 
the selection of appropriate responses (e.g. see Redgrave 
et al. 2010; Redgrave et al. 2011). Therefore, through its dif-
fuse pattern of connections with the neocortex, the striatum 
appears perfectly suited to implement and monitor the cor-
rect association between memory decisions and the expres-
sion of specific actions.

In the present work, we leverage the strong sensitivity of 
multivariate pattern analysis (MVPA) (King and Dehaene 
2014; Kriegeskorte et al. 2006; Rissman and Wagner 2012; 
Tong and Pratte 2012) to investigate the dynamics of choice- 
and action-predictive signals in the human brain and shed 
light on the potential mechanisms mediating the sensori-
motor transformation during memory-based decisions. We 
reanalyzed the data from our previous study on item rec-
ognition decisions (Sestieri et al. 2014), in which a choice 
(old vs. new decision)/response (hand vs. eye movement) 
association was manipulated across subjects to dissociate 
the representation of a decision variable from the prepara-
tion of the motor response. We first identified brain regions 
where the locally distributed pattern of activity encoded 
memory choices and motor intentions across subjects. Next, 
we examined whether choice- and action-predictive activ-
ity were modulated by the amount of decisions evidence. 
While we expect choice-predictive activity to positively 
scale with decision certainty (see Guidotti et al. 2019), a 
similar effect on action-predictive activity would indicate 
that regions involved in action planning can directly encode 
a decision variable. We further tracked the temporal profile 
of choice- and action-predictive activity to test whether the 
two decoding signals increased simultaneously or showed a 
distinct temporal profile. Finally, we compared the temporal 
profile of decoding accuracy of a within- and a between-
subject analysis to investigate potential neural mechanisms 
underlying the transformation of a memory decision into an 
appropriate response based on the specific choice–response 
association.

Methods

This article is based on a new analysis of a previously pub-
lished experiment (Sestieri et al. 2014; Tosoni et al. 2016). 
Because stimuli, tasks and procedures have been extensively 
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described in these publications; here, we present a summary 
description.

Participants

A group of 24 right-handed subjects (11 males, mean age 
25 ± 3 years) participated in the experiment after giving 
informed consent in accordance with guidelines set by the 
Human Studies Committee of G. D’Annunzio Chieti Uni-
versity. The memory experiment involved two sessions: a 
behavioral encoding session performed in a testing room 
followed by a retrieval session inside the MRI scanner. The 
interval between the encoding and the retrieval sessions was 
approximately 24 h.

Stimuli

Stimuli consisted of 256 by 256 pixel color photographs 
depicting indoor and outdoor scenes, selected from a large 
database [(Konkle et al. 2010), https​://www.cvcl.mit.edu/
MM]. A total of 484 images (64 for practice, 420 for the 
experiment) were used. Visual stimuli were presented using 
E-Prime 1.1 software (Psychology Software Tools).

Apparatus

The encoding session was performed inside a mock scan-
ner. In both sessions, stimuli were projected onto a screen 
positioned at the back of the scanner via a LCD projector 
and visible to subjects through a mirror attached over the 
subject’s head. Subjects responded using a Cedrus RB-830 
USB Response Pad and Cedrus Lumina LU400 fiber 
optic Response Pad in the encoding and retrieval session, 
respectively.

Procedure

Rationale of evidence manipulation

A main variable that affects decision-making is the amount 
of information favoring one of the possible choice options, 
defined as decision evidence. In the present study, the 
amount of evidence favoring old decisions was manipulated 
by varying the “encoding strength”, defined as the number 
of item repetition during the encoding session. The ration-
ale was that items repeated more times should be associ-
ated with more evidence favoring “old” decisions and thus, 
higher accuracy and faster decision times. The amount of 
evidence favoring new decisions was instead manipulated 
by varying the similarity between old and new item images 
under the rationale that highly distinctive (i.e. less similar) 
retrieval lures should be associated with greater evidence 
for a “new” decision.

Encoding session

At encoding, subjects made indoor/outdoor decisions on 
visually presented images depicting scenes from differ-
ent categories. Images from 60 categories (30 indoor and 
30 outdoor) were presented, each comprising 4 different 
stimuli, resulting in a total of 240 images. The four stimuli 
in each category were presented with different frequen-
cies: two images were presented once [“1 ×” and encod-
ing only (“EO”) images], one was presented three times 
(“3 ×”) and one was presented five times (“5 ×”). A total 
of 15 blocks, each including 4 1 ×, 4 EO, 12 3 ×, and 
20 5 × stimuli, were presented. Each trial started with a 
500 ms warning red fixation cross on a gray background, 
followed by image presentation for 1 s. The image was 
followed by a 2 s blue fixation cross. Subjects had a total 
of 3 s from the image onset to provide a response on the 
indoor/outdoor discrimination task by pressing one of two 
keys of a response pad located under their right hand. A 
white fixation cross preceded the next trial.

Retrieval session

Approximately 24 h later, subjects were involved in an 
item recognition decision task. Old items (N = 180) 
included the whole set of 1 ×, 3 ×, and 5 × images pre-
sented at encoding, while EO images were only used to 
manipulate the perceptual similarity between old and new 
items and thus were not presented at retrieval. Three types 
of new items (N = 180) were presented, characterized by 
a decreasing evidence level toward new decisions: images 
belonging to 60 new categories [unrelated (“U”) to old 
images], images belonging to the same 60 encoding cat-
egories (semantically related, “SR”), and images that were 
both semantically and perceptually similar to EO images 
(“SPR”). A total of 12 blocks, each including 30 trials, 5 
for each of the 6 retrieval stimulus types, were presented. 
Each trial started with the presentation of an image for 
1.5 s along with a left or right peripheral target (white 
circle). An 8 s delay preceded the go-signal for the execu-
tion of either a saccade or a pointing movement toward the 
remembered peripheral target. The association between 
the memory choice (old/new) and the motor response 
(hand/eye movement) was provided at the beginning of 
the experiment and was counterbalanced across groups 
(N = 12 each). The across-subjects manipulation of the 
choice–response association was conducted to dissociate 
the neural signals associated with the memory decision 
from those associated with the motor intention/prepara-
tion. A variable inter-stimulus interval (2–4 MR frames) 
preceded the next trial. Participants performed a total of 
360 trials divided in 12 runs.

https://www.cvcl.mit.edu/MM
https://www.cvcl.mit.edu/MM
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Behavioral data analysis

A three-way ANOVA with memory status (old, new) and 
evidence (low, middle, high) as the within-subject factors 
and choice–response association (A1, A2) as the between-
subject factor was conducted to test whether item recogni-
tion performance significantly increased as a function of 
decision evidence. Duncan tests were used for post hoc 
analyses. While the present fMRI paradigm made use of 
a fixed delay between the onset of the stimulus and the 
motor response, the analysis of the behavioral data from a 
reaction time version of the experiment demonstrated that 
the current manipulation specifically affects the process 
of evidence accumulation in a diffusion model framework 
(see Sestieri et al. 2014 for details about the analysis and 
results of this supplemental experiment).

fMRI scanning parameters

Functional T2*-weighted images were collected on 
a Philips Achieva 3T scanner, using a gradient-echo 
EPI sequence to measure the BOLD contrast over the 
whole brain (TR = 1914  ms, TE = 25  ms, 39 slices 
acquired in ascending interleaved order, voxel size 
3.59 × 3.59 × 3.59 mm, 64 × 64 matrix, flip angle = 80°). 
Structural images were collected using a sagittal FFE 
T1-weighted sequence (TR = 8.14 ms, TE = 3.7 ms, flip 
angle = 8°, voxel size = 1 × 1 × 1 mm) and a T2-weighted 
sequence (TR = 3 s, TE = 80 ms, flip angle = 90°, voxel 
size = 0.98 × 1 × 1 mm, 39 slices).

fMRI preliminary data analysis

Preprocessing and data analysis were performed using an in-
house software (fIDL) developed at Washington University 
in St. Louis. BOLD images were motion-corrected within 
and between runs, corrected for across-slice timing differ-
ences, resampled into 3 mm isotropic voxels, and warped 
into 711-2C space, a standardized atlas space (Van Essen 
2005). Preprocessing included a whole-brain normalization 
correcting for changes in overall image intensity between 
BOLD runs.

Multivariate pattern analyses

We used MVPA (Haynes 2015; Haynes and Rees 2006) to 
understand whether the locally and temporally distributed 
pattern of activity carried information about different task-
related information (memory choices, motor response, tar-
get side and image type). Analyses were performed using 

nilearn (Abraham et al. 2014), pymvpa (Hanke et al. 2009), 
MNE (Gramfort et al. 2013) and scipy (Oliphant 2007).

General linear models and datasets construction

We first modeled and removed the BOLD activity associated 
with movement execution time-locked to the onset of the 
go-signal. Hemodynamic responses associated with the deci-
sion and the motor execution phases were estimated using 
a standard GLM approach with assumption of the hemody-
namic response function. The model included 12 regressors 
starting at the onset of the image [memory status (old, new); 
evidence (high, middle, low); accuracy (correct, incorrect)] 
and 4 regressor starting at the onset of the go-signal [motor 
response (eye, hand), accuracy (correct, incorrect)]. The 
assumed response for each process was generated by con-
volving a rectangle function representing the duration of the 
process (1.5 s for the decision phase corresponding to image 
duration, 1 s for execution phase corresponding to go-signal 
duration) with a standard hemodynamic response function 
[HRF, (Boynton et al. 1996)].

Next, we obtained a residual dataset which retained the 
BOLD activity associated with the decision phase, while 
removing the activity associated with the execution phase. 
The resulting dataset was directly used for regional multi-
variate analyses that treated BOLD activity at the level of 
individual MR frames (temporal MVPA). To increase the 
sensitivity of the MVPA searchlight analyses looking for 
choice-predictive and action-predictive signals, we created 
an additional linear model that included a regressor for each 
individual trial starting at image onset. Single-trial betas 
were extracted by assuming a shape of the HRF (Mumford 
et al. 2012).

Between‑subject searchlight MVPA

We performed searchlight analyses (Kriegeskorte and 
Bandettini 2007) to identify brain regions in which locally 
distributed activity predicted memory choices and motor 
responses. Since the association between the memory 
choice and the motor response was fixed for each subject, 
the patterns associated with these two processes are per-
fectly collinear and cannot be distinguished using a stand-
ard within-subject classification analysis. However, since 
the choice–response association was counterbalanced across 
subjects, we employed a between-subject design to disen-
tangle choice- from action-predictive signals. As shown in 
our previous work on classification of source memory deci-
sion signals (Guidotti et al. 2019), this approach exploits the 
reversal of the choice/response association across subjects to 
identify signals that uniquely predict the memory decision or 
the motor response. Therefore, the between-subject search-
light approach identifies voxels in which choice-predictive 
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(or action-predictive) locally distributed activity is shared 
across subjects, regardless of the particular association. This 
approach is, therefore, insensitive to signals that are specific 
for a particular subject (i.e. choice–response association).

Two searchlight MVPA analyses investigated the spa-
tial distribution of signals related to additional task-related 
processes during the decision phase of the task: the sub-
category of the scene image (image type: outdoor, indoor) 
and the target location for the upcoming movement (target 
side: left, right). The first control analysis was conducted to 
test the ability of the between-subject decoding approach to 
identify brain regions associated with scene perception [e.g. 
parahippocampal place area, retrosplenial cortex (Epstein 
2008)] independently of the memory decision. The second 
analysis aimed to identify locally distributed activity that 
distinguished between left and right peripheral targets. In 
this case, successful decoding of target side would reflect a 
combination of two different signals: a transient perceptual/
attentional signal associated with the lateralized presenta-
tion of the target stimulus and a more sustained sensorimo-
tor signal associated with the lateralized component of the 
motor intention.

The searchlight analyses were carried out using the 
single-trial beta dataset as input for the four classifica-
tion analyses. We normalized input maps using z score to 
remove the overall level of the BOLD activity. This pro-
cedure ensured that the classification did not rely on aver-
age signal differences across conditions, but on the spatial 
distribution of activity (Davis et al. 2014; Hebart and Baker 
2017). Finally, we detrended and normalized using z score 
voxel activity across trials. We scrolled a sphere of 3 voxel 
radius (up to 123 voxels/sphere) across the brain maps. For 
each sphere, a linear support vector machine (SVM) with 
regularization parameter C = 1 was trained and tested in a 
leave-one-subject-out cross-validation approach, assigning 
the testing accuracy to each sphere center (Etzel et al. 2013). 
Since the leave-one-subject-out searchlight is computation-
ally demanding, we randomly removed, in each subject, 50% 
of the trials, keeping the dataset balanced between condi-
tions. A voxelwise paired t test versus chance level (accu-
racy = 50%) was used to evaluate statistical significance of 
the accuracy maps, then we applied a FDR (α = 0.01) and a 
cluster-level thresholding (cluster size = 50 voxel) to isolate 
clusters of significant voxels.

Effect of decision evidence on regional decoding

Regions of interest (ROIs) identified through the searchlight 
analysis were used in subsequent regional analyses to exam-
ine whether classification accuracy was modulated by deci-
sion evidence (i.e. evidence favoring a particular memory 
choice). We ran a different classification analysis for each 
task-related information and amount of decision evidence 

(low, middle, high) with the same analysis pipeline of the 
searchlight approach. To increase sensitivity, we used an 
ANOVA-based feature selection (Pereira et al., 2009) by 
selecting the first k = 50 highest f score rank features for 
each cluster. Feature selection was only applied on the train-
ing set to avoid biasing of the classification error (Pereira 
et al. 2009). Importantly, feature selection also ensured that 
classification accuracy was not biased by cluster size. We 
used a linear mixed effect model (Chen et al. 2013) to test 
for the linear effect of a covariate represented by the amount 
of decision evidence. An additional analysis focused on the 
low-evidence condition in which the subjective choice and 
the objective memory status were maximally divergent and 
performance was near chance. First, a one-sample t test 
versus chance level (accuracy = 50%) was used to test the 
presence of significant classification accuracy. Further-
more, a paired t test (two-tailed) was used to assess whether 
choice-classification was greater than classification of the 
memory status). In the latter case, old and new labels refer 
to the objective, rather than perceived, oldness and newness 
of the item. Statistical values were Bonferroni corrected by 
the number of ROIs identified in each searchlight analysis.

Regional temporal decoding

We also characterized the temporal profile of choice- and 
action-predictive signals by extracting the time-course of 
activity associated with the first seven MR frames (i.e. time-
points) following image presentation for each trial and ROI 
defined in the searchlight analysis, using the residual dataset 
(see paragraph general linear models and datasets construc-
tion). The epoch corresponds to the entire delay period plus 
an additional MR frame belonging to the execution phase. 
For each time point, we trained a linear SVM with C = 1 and 
an ANOVA-based feature selection with k = 50 and we tested 
the presence of significant classification accuracy, obtaining 
a time course of classification accuracy. Statistical values 
were Bonferroni corrected by the number of time points 
times the number of ROIs identified in the corresponding 
searchlight analysis. We note that this analysis is expected 
to have less power than the analysis conducted on single 
trial betas for several reasons: higher sensitivity of models 
that assume a shape of the HRF, potential inter-individual 
differences in the time course of classification accuracy, 
higher number of comparisons that impact on Bonferroni 
correction.

Temporal within‑subject decoding and temporal 
generalization analyses

The regional temporal decoding analyses were also per-
formed using a within-subject approach. Our rationale was 
that the comparison of the between- and the within-subject 
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approach can help identifying brain regions in which deci-
sion-related activity (either choice- or action-predictive) is 
dependent on the particular choice/response association. 
Thus, while the within-subject decoding cannot distin-
guish between choice- and action-predictive activity, as 
they are perfectly collinear in each subject, it can addi-
tionally identify idiosyncratic decision-related activity that 
reflects the specific choice–response association.

The within-subject temporal decoding followed the 
same pipeline of the previous analysis but employed 
a classifier that was trained separately for each subject 
using a k-fold leave-onefold-out cross-validation (k = 7) 
approach. Moreover, we used the temporal generaliza-
tion method developed by King and Dehaene (2014) to 
test whether a classifier trained at a specific time point 
performed above-chance also at other time-points. We 
obtained an accuracy matrix indicating how the pattern 
generalizes across-time or, in other words, whether the 
distributed pattern of activity was stable or changed sig-
nificantly during the trial. Significant across-time point 
decoding was tested by means of a one-sample t test versus 
chance level (accuracy = 50%) and a Bonferroni correction 
by the number of elements in each matrix (N = 49) multi-
plied by the number of ROIs.

Results

Behavioral results

As expected, the manipulation of memory evidence had 
a robust effect on recognition accuracy. The three-way 
ANOVA with memory status (old, new), evidence (low, 
middle, high) and choice–response association (A1, A2) 
as factors revealed a robust main effect of evidence [F(2, 
44) = 275.0, p < 0.0001]. Post hoc tests indicated the pres-
ence of a significant difference across the three levels (low: 
0.57 ± 0.01, middle: 0.75 ± 0.01, high: 0.87 ± 0.01; all tests 
significant at p < 0.0001], confirming that performance 
increased gradually as a function of decision evidence. The 
ANOVA further revealed a significant main effect of mem-
ory status [F(1, 22) = 6.7, p < 0.05)], indicating better perfor-
mance for new (0.76 ± 0.02) vs. old (0.70 ± 0.01) items, and 
a significant evidence by memory status interaction [F(2, 
44) = 20.0, p < 0.0001]. Post hoc tests showed that the inter-
action was explained by a better performance for new versus 
old items at the lowest level of evidence [0.65 ± 0.02 vs. 
0.50 ± 0.02, p < 0.0001]. No other effect of the ANOVA was 
significant. Importantly, the lack of a significant main effect 
of choice–response association, and of any interaction effect 
involving this factor, indicates a comparable performance 
across the two groups.

Spatial distribution of choice‑predictive 
and action‑predictive activity

As a first step, we used a searchlight analysis to identify 
brain regions whose locally distributed activity predicted 
different task-related processes, i.e. memory choices, motor 
response, target side and image type. The identified clusters 
that were used as ROIs in subsequent analysis are presented 
in Supplemental Table 1).

The largest clusters of voxels exhibiting choice-predictive 
activity (Fig. 1a) were centered on the right caudate nucleus, 
the left lateral PPC, the left lateral prefrontal cortex (PFC) 
and the cerebellum (Fig. 1, first row). The location of these 
clusters closely matches the location of regions that were 
associated with memory decision-making in our previ-
ous work (Sestieri et al. 2014), despite the two approaches 
focused on different indices of BOLD activity during the 
decision phase (spatially distributed versus averaged activity, 
choice-predictive versus parametric modulation of memory 
evidence, etc.).

As expected, the searchlight map of action-predictive 
activity (i.e. motor response) included a large cluster located 
in the sensori-motor and premotor cortex along the central 
sulcus, including parts of the precentral/postcentral gyri 
(Fig. 1b). These clusters were located exclusively on the 
left hemisphere, with the exception of the supplementary 
motor cortex. These results, obtained through a data-driven 
approach during the decision phase (i.e. before movement 
execution), corroborate the findings obtained in our original 
work using univariate analyses on individually defined ROIs 
(Sestieri et al. 2014). Bilateral clusters were also found in 
portions of cortex located along the parieto-occipital sul-
cus and the adjacent dorsal occipital cortex. These regions 
are more ventral than the individually defined parietal ROIs 
that were employed in our previous study and appear to par-
tially correspond to regions V6 and V6A ventral (Pitzalis 
et al. 2015; Tosoni et al. 2015). The discrepancy potentially 
reflects the present focus on activity that generalized across 
subjects rather than on individuals. Another large cluster 
was identified in the right ventral visual cortex. The pres-
ence of action-predictive activity in the ventral visual cortex 
is consistent with the observation of effector-specificity in 
similar regions during the response phase of the task (Tosoni 
et al. 2016).

Locally distributed activity associated with target side 
was mainly identified in a large bilateral cluster spanning 
the medial and lateral visual cortex and the medial parietal 
cortex (Fig. 1c). However, the current design does not allow 
to distinguish whether these patterns were more associated 
with the perception of the peripheral target stimulus or with 
a lateralized component of action intention/planning. The 
identified cluster likely represents a variable mixture of the 
two signals. Finally, as expected, large clusters of voxels that 
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differentiated between indoor and outdoor scenes were found 
in bilateral posterior regions corresponding to the parahip-
pocampal place area and the retrosplenial cortex (Fig. 1d), 
supporting the representation of sub-categories of real-world 
scenes in these regions (Epstein and Higgins 2007).

Selective effect of decision evidence 
on choice‑predictive activity

We further tested whether the identified clusters of locally 
distributed activity associated with memory choice, motor 
response, target side and image type were modulated by the 
amount of evidence for the memory choice, which had a 
robust, parametric effect on behavioral performance. We 
expected choice-predictive activity to scale with the amount 
of decision evidence, reflecting the increasing difference in 
the local spatial distribution of activity for the two outcomes 
(Guidotti et al. 2019). In contrast, as information about the 
subcategory of the presented images (indoor, outdoor) was 
likely only relevant for the encoding session, we expected no 
effect of this variable on classification accuracy associated 

with image type. As far as the modulation of decision evi-
dence on action-predictive (i.e. motor response) activity, 
a significant effect could be expected if decision evidence 
were directly translated in action-related signals, in accord-
ance with an intentional framework (Shadlen et al. 2008; 
Tosoni et al. 2008, 2014). However, a marginal or null effect 
of this variable is expected based on our previous univari-
ate findings of no significant BOLD modulation of memory 
evidence in sensorimotor regions associated with the plan-
ning of the motor response (Sestieri et al. 2014). Thus, this 
analysis tested whether a link between decision evidence 
and motor intentions can be found using a more sensitive 
multivariate approach.

Figure 2 shows the predictive accuracy for each task-
related process in the corresponding sets of ROIs as a func-
tion of decision evidence. Statistical analyses (see Suppl. 
Table 1) demonstrated the presence of a significant linear 
increase in choice classification accuracy as function of 
decision evidence, analogous to the pattern observed in the 
behavioral results, in two clusters that showed choice-predic-
tive activity: the right caudate (p < 0.01, corrected) and the 

Fig. 1   Searchlight maps of task-related processes. The figure shows the significant clusters of locally distributed activity associated with mem-
ory choice (first row; green), motor response (second row, red), target side (third row, purple) and image type (fourth row, yellow)
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left superior frontal gyrus (SFG, p < 0.05, corrected). Other 
clusters in bilateral PPC and in the right PFC showed a sig-
nificant modulation (p < 0.05) but the effect did not survive 
correction for multiple comparisons. Consistent with a role 
in the memory decision, the right caudate exhibited a sig-
nificant choice-predictive activity at the lowest (1 ×) level of 
evidence (p < 0.05, corrected), when the objective memory 
status and subjective decisions were considerably divergent 
and task performance was near chance level (see behavio-
ral results). The same result was observed in the left PPC 
(p < 0.05, corrected) and in the left inferior frontal gyrus 
(IFG, p < 0.05, corrected), but not in the left SFG (p = n.s.). 
Importantly, decoding of the memory choice in the right 
caudate performed significantly better than decoding of the 
memory status (paired t test, p < 0.05, corrected). A similar 
result was only observed for the left PPC (p < 0.05) albeit 
it did not survive the correction for multiple comparisons.

In addition, consistent with our prediction, increas-
ing decision evidence did not produce a parallel increase 

of classification accuracy in any of the clusters associ-
ated with decoding of the image type (Fig. 2b, all ROIs 
p = n.s.). Crucially, also the clusters associated with 
action-predictive activity were insensitive to the manipu-
lation of decision evidence (Fig. 2c, all ROIs p = n.s.). 
Similar results were observed for the clusters associated 
with decoding of the target side (Fig. 2d, all ROIs p = n.s.). 
The only exception is represented by a cluster in the left 
IFG, which exhibited a significant modulation, although 
it was in the opposite direction and did not survive the 
correction for multiple comparisons. Overall, the present 
analysis demonstrated that the manipulation of decision 
evidence selectively modulated choice-predictive activ-
ity in striatal, left prefrontal and, to a lesser extent, in 
left parietal and right prefrontal regions, paralleling the 
parametric effect on behavioral performance. Instead, the 
manipulation had no effect on action-predictive activity, 
supporting the independence between brain signals related 
to memory decisions and motor intentions.

Fig. 2   Modulation of memory 
evidence in task-related ROIs. 
The figure shows the decoding 
accuracy (y-axis) as a function 
of memory evidence (x-axis) in 
the four sets of ROIs defined by 
the between-subject search-
light analysis: memory choice 
(green), motor response (red), 
image type (yellow), target side 
(violet). Each line represents 
a ROI. Darker color indicates 
larger clusters/ROIs
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Temporal decoding of choice‑predictive 
and action‑predictive activity

We further examined the time-course of classification 
accuracy using a between-subject temporal decoding anal-
ysis. Of interest was to determine the temporal profile of 
decoding activity in choice- and action-predictive clusters 
to evaluate their similarity. We automatically identified 
peaks in the average temporal decoding signal using an 
approach that finds all local maxima in the signal by com-
parisons with neighboring values. The analysis of choice-
predictive activity indicated an early peak of modulation 
at frame 3 (Fig. 3a), with significant decoding (p < 0.05, 
corrected) obtained in the middle of the decision phase, 
ranging from 4 s from the image onset in the left supe-
rior frontal to 6 s from image onset in the right caudate 
and left PPC, respectively. Notably, classification accu-
racy of choice-predictive activity (Fig. 3b) showed a tran-
sient profile, decaying right after reaching the statistical 

significance (see Suppl. Fig. 1 for results in the whole set 
of ROIs). The modulation of action-predictive activity, 
instead, showed a much more gradual increase, reaching a 
statistical significance (p < 0.05, corrected) only at the end 
of the decision phase in the left precentral gyrus (approx. 
10 s from image onset) and in the right cuneus (approx. 
8 s from image onset) and remained sustained until the 
go signal for movement execution. In addition, the peak 
identification algorithm found only a local maximum at 
frame 6. An exception to this delayed pattern of modula-
tion was represented by the profile of the left cuneus, in 
which significant classification was also observed in an 
early phase of the decision phase (around 6 s from image 
onset). Overall, this analysis indicates that choice- and 
action-predictive activity across subjects showed distinct 
temporal profiles during the delay period, with generally 
early transient choice-predictive signals preceding late, 
sustained action-predictive signals, as also demonstrated 
by the different frame of peak occurrence.

Fig. 3   Temporal decoding of choice- and action-predictive activ-
ity. The figure shows the temporal profile of decoding accuracy for 
choice-predictive (green) and action-predictive (red) activity. The 

ROIs with the largest classification accuracy in the searchlight anal-
ysis are shown. Time-points reaching significant decoding accuracy 
are highlighted as white dots in the time-course of activity
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Temporal decoding of subject‑specific signals 
associated with the choice–response association

The previous analyses focused on the identification of 
choice- and action-predictive signals that were consist-
ently observed across subjects, regardless of the particular 
choice–response association, demonstrating that the two sig-
nals strongly differ both in terms of temporal profile and sen-
sitivity to decision evidence. As stated in the introduction, 
however, a central question of the present work was to inves-
tigate potential mechanisms mediating the transformation of 
decision-related signals into appropriate actions. To this aim, 
we exploited the collinearity between choice- and action-
predictive signals to identify decision-related activity that 
was distinctive of the specific choice–response association 
provided to subjects at the beginning of the experiment. Said 
differently, since the association between memory choices 
and motor responses was fixed within, but not between, sub-
jects, the specific pattern mediating the memory-response 
transformation could emerge by examining within- and 
between-subject differences.

We, therefore, tested whether regions exhibiting signifi-
cant early, transient choice-predictive activity and modula-
tion by decision evidence (i.e. caudate nucleus, left prefron-
tal and left parietal) also exhibited some features of such 
putative transitional signals. Consistent with the results of 
the between-subject design, in the cluster corresponding to 
the caudate nucleus (Fig. 4a, left panel) the peak detection 
algorithm found a first peak of within-subject classification 
accuracy (dark green line) at frame 3, which corresponds to 
the peak of across-subject choice-predictive activity (light 
green line). However, the algorithm also identified a second 
peak of within-subject classification accuracy at frame 6, 
which corresponds to the end of the decision period. Impor-
tantly, the between-subject analysis of action-predictive 
activity in the same regions indicated the absence of sig-
nificant classification accuracy (light red) up to the end of 
the decision period. Therefore, the second peak of within-
subject classification accuracy could not be explained by 
a corresponding peak of action-predictive activity across-
subjects and likely reflects a signal that is highly depend-
ent on the particular choice–response association. A similar 
second peak of decision-related activity was identified when 
conducting within-subject analyses in the parietal and pre-
frontal clusters (Fig. 4a, middle and right panel), although 
the divergence between the two analytic approaches was 
less striking compared with the striatal cluster (see Suppl. 
Fig. 2A for results in the whole set of ROIs).

We further investigated the nature of this second bump 
of decision-related activity using the temporal generaliza-
tion method. In particular, to test whether the distributed 
pattern of choice-predictive activity is stable or changes 
during the decision period, we evaluated the ability of a 

decoder, trained on a specific time point, to accurately clas-
sify activity on different time points. To this aim, we tested 
whether the classifier trained on patterns at first peak (frame 
3) could accurately decode the activity in the second peak 
(frame 6), a result that would indicate a temporally stable 
neural code. We found that the pattern of activity observed 
in the first peak (frame 3) is very similar to those of adjacent 
frames (frame 2 and 4; p < 0.05; corrected) but decreased in 
frame 5 and 6, suggesting the presence of a different neural 
code. The results indicated a scarce temporal generalization 
for both the striatal and the prefrontal clusters, suggesting 
that the two processes are mediated by distinct neural codes 
(Fig. 4b). A similar, albeit less clear, temporal distinction 
was observed in the left PPC cluster (see Suppl. Fig. 2B for 
results in the whole set of ROIs). To summarize, the second 
peak of decision-related activity observed in the within-sub-
ject analysis does not reflect pure choice-predictive activity 
nor pure action-predictive signals, but rather an intermedi-
ate decision signal that is strongly dependent on the actual 
choice–response association.

Discussion

In the present work, we examined the relationship between 
signals associated with memory decisions and motor 
intentions in the human brain. Using a MVPA approach 
and a paradigm that manipulated the association between 
a memory decision (i.e. old, new) and a specific motor 
response (i.e. hand, eye movement) across subjects, we 
identified locally distributed activity that predicts memory 
choices and motor intentions independently from the deci-
sion–response association. Choice-predictive activity was 
mainly observed in striatal, lateral prefrontal and lateral 
parietal regions and showed a rapid increase after stimulus 
onset, followed by a fast decay. Notably, in the striatum, 
and to a lesser extent in lateral frontoparietal clusters, 
choice-predictive activity was significantly modulated by 
the amount of decision evidence. Thus, the multivariate 
pattern of brain activity fits closely with the parametric 
effect of the manipulation on behavioral performance. 
Moreover, choice-predictive activity remained significant 
also when the subject’s performance almost approached 
chance level, as indicated by the behavioral analysis. 
Action-predictive signals, examined before movement 
execution, were found in primary sensory-motor, premo-
tor and occipito–parietal regions that overlap with known 
effector-specific regions of the human cortex. Classifica-
tion of motor intentions was generally observed at the 
end of the decision phase and was not modulated by the 
amount of decision evidence. These findings are consistent 
with the involvement of a fronto–striato–parietal network 
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in the early representation of the decision variable, which, 
however, is not directly transformed into an action plan. 
Finally, we addressed the question of the putative con-
version mechanism of memory decisions into actions. 
Specifically, we investigated whether such transformation 
can be indirectly implemented in choice-predictive regions 
through the expression of an intermediate decision signal 
that, unlike pure choice- and action-predictive signals, 
depends on the particular choice–response association. 
Consistent with the hypothesis, we observed a second, 
delayed peak of decision-classification accuracy, most 

evident in the striatum that might represent a neural code 
of such transitional signal.

Fronto–parietal regions involved in memory 
decisions

The seminal observation that BOLD activity in the left 
parietal cortex tracks perceived oldness regardless of the 
accuracy of item recognition (Wheeler and Buckner 2003; 
Kahn et al. 2004) has led to the hypothesis that this portion 
of the cortex, and especially areas located in the proxim-
ity of the intraparietal sulcus, are involved in accumulating 

Fig. 4   Temporal decoding and generalization of within-subject anal-
ysis. The upper row shows the temporal profile of within-subject 
decoding of decision-related activity (gray line), and of the between-
subject choice-related (green line) and action-related (red line) activ-
ity. Only the ROIs with significant between-subject choice-predictive 
classification accuracy in at least one time point (light green) are 

shown. The time-points with significant decoding accuracy are high-
lighted as white dots in the time-course of activity. The bottom row 
represents the temporal generalization accuracy matrix, for each ROI, 
using the within-subject decision decoding. Statistical significance of 
the classification is indicated by black dots
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evidence for memory-based decisions (Wagner et al. 2005). 
We have provided further evidence that the profile of activ-
ity in this parietal region, but also in prefrontal and striatal 
regions, is compatible with the representation of a decision 
variable during both item recognition (Sestieri et al. 2014) 
and source memory (Guidotti et al. 2019) decisions. The 
present results, obtained through a reanalysis of our original 
item recognition dataset, provide further evidence for the 
presence of decision-related activity in parietal and frontal 
regions and allow a comparison of the spatial distribution 
of choice-predictive signals across studies that used a simi-
lar between-subject MVPA approach but different memory 
paradigms (Fig. 5). Interestingly, choice-predictive activity 
during item recognition and source memory is observed 
in regions, respectively, located more dorsally and more 
ventrally with respect to the intraparietal sulcus. This topo-
graphical distinction might reflect the greater contribution 
of familiarity and recollection signals in the two types of 
decisions and is consistent with previous evidence suggest-
ing that these processes are associated with more dorsal and 
ventral parietal activations (Vilberg and Rugg 2008; Wag-
ner et al. 2005). We note, however, that several features of 
the present multivariate approach (e.g. the classification of 
decision outcome regardless of decision accuracy, the modu-
lation by decision evidence) likely emphasized the contri-
bution of post-retrieval signals associated with decision-
making rather than mnemonic signals directly involved in 
the retrieval process.

The present results additionally demonstrate that, 
when directly testing whether regions track the memory 
decision or the action intention, decision signals seem to 
predominate in the left lateral posterior parietal cortex. 
The fact that action-predictive activity was only observed 
in the most ventral aspect of the medial PPC is perhaps 
surprising, given the known role of the parietal cortex in 
motor planning across different task paradigms (Andersen 
and Cui 2009). As a matter of fact, several studies have 
suggested that the PPC comprises a mosaic of multiple 
intentional maps, each specialized for a particular motor 
effector based on its pattern of cortico-cortical connections 
(Andersen and Cui 2009; Rizzolatti et al. 1997). These 
sensori-motor regions are also involved in the allocation 
of visuospatial attention and are predominantly located in 
the posterior-dorsal aspect of the lateral PPC and in the 
medial PPC (Astafiev et al. 2003; Connolly et al. 2003; 
Galati et al. 2011; Sereno et al. 2001). However, effector-
specificity is far from absolute, especially when focusing 
on signals that precede movement execution, and the loca-
tion of effector-specific regions show considerable inter-
individual differences (Filimon 2010; Galati et al. 2011; 
Gallivan and Culham 2015; Heed et al. 2011). The present 
work, which was based on a between-subject design that 
specifically highlights consistent patterns of activity across 
subjects, might in part account for the absence of action-
predictive activity in left lateral PPC. At the same time, 
the inter-subject variability of action predictive signals 
appears in contrast with the shared spatial representation 
of retrieval-related activity, which has been demonstrated 
across different paradigms (Chen et al. 2017; Guidotti 
et al. 2019; Kragel and Polyn 2016).

Finally, the present study shows that regions involved in 
action planning, i.e. that are sensitive to the effector used 
to report the old/new decisions, were not modulated by the 
amount of decision evidence and were thus insensitive to a 
key decision variable that had a profound effect on behav-
ioral performance. This seems to be the case regardless 
of whether the sensori-motor regions are defined a priori 
using an active localizer task (Sestieri et al. 2014) or, as in 
the present study, by focusing on action-predictive signals. 
In the field of perceptual decision-making, such modula-
tion has been often interpreted as a sign of the substantial 
overlap between the neural system supporting decision and 
action planning. We note that the present results do not 
rule against the presence of multiple potential plans in sen-
sori-motor regions before movement execution (Cisek and 
Kalaska 2005), but suggest that evidence for recognition 
decision is not directly translated into action plans, as in 
the case of sensory evidence during perceptual decisions 
(Donner et al. 2009; Gould et al. 2012; Tosoni et al. 2008). 
This apparent lack of embodiment might reflect the fact 

Fig. 5   Choice-predictive activity in item recognition and source 
memory. The figure illustrates the topographical relationship in pari-
etal regions between choice-predictive activity during item recogni-
tion (green, present study) and source memory [red, (Guidotti et  al. 
2019)]. The two studies used very similar across-subject MVPA 
approaches
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that memory-based decisions are associated with general 
intentions to act but not with the use of a specific effector.

Multiple roles of the striatum in memory‑based 
decisions

Recent neuroimaging and neuropsychological evidence have 
contributed to expand the view of basal ganglia involvement 
beyond non-declarative memory [reviewed in Scimeca and 
Badre (2012)]. The emerging view is that the striatum is 
not the source of the mnemonic signal itself (i.e. it is not 
involved in the actual retrieval of information) but it may 
act to modulate the memory retrieval process in the ser-
vice of the current behavioral goals. Several findings of the 
present study converge to highlight the involvement of the 
striatum in different aspects of memory-based decisions. In 
particular, locally distributed activity in this region showed 
the highest choice-classification accuracy and sensitivity to 
decision evidence and significantly predicted choices also in 
the lowest evidence condition, when perceived oldness and 
objective memory status were most divergent (see Abe et al. 
2008). Furthermore, the within-subject analysis, which does 
not distinguish between choice- or action-predictive activity, 
suggests that this region might be crucial for representing 
the association between memory decisions and motor com-
mands. Indeed, whereas the first peak of classification accu-
racy was representative of decision-related activity that was 
shared across subjects, the second peak could not be associ-
ated neither with choice- nor with action-predictive activ-
ity observed across subjects. We acknowledge that multiple 
sources of inter-subject variability (i.e. idiosyncratic spatial 
and temporal features of locally distributed activity) might 
explain the lower performance of the between-subject com-
pared to the within-subject analyses. However, we believe 
that the main factor that contributed to the observed differ-
ence between the results of the two decoding approach is the 
manipulation of the choice–response association. The lack 
of temporal generalization between the two peaks of activ-
ity suggests that the second peak reflected a different neural 
code or the involvement of a distinct neural population.

The first peak of decision-predictive activity observed in 
the present study, reflecting the differential classification of 
old vs. new items, is consistent with the proposed role of the 
striatum in signaling the adaptive significance of perceived 
oldness for the current goals (Scimeca and Badre 2012). 
Previous evidence indicates that old items are intrinsically 
associated with higher reward than new items especially 
when successful retrieval happens in difficult recognition 
tasks (Bunzeck et al. 2010; Han et al. 2010). On this basis, 
one might assume that the early peak of classification accu-
racy reflects the contribution of the striatum in the evalua-
tion stage of the decision process, which is associated with 

the representation of the subjective values of choice options 
(Kable and Glimcher 2009).

Instead, the second peak of classification activity 
observed in the striatum appears to represent the transfor-
mation of a memory decision signal (old/new) into a neural 
code that helps specifying what to do with the output of the 
memory decision (i.e. the appropriate action). This informa-
tion could be in turn used by regions involved in the execu-
tion of the motor plan (eye/hand), which do not directly rep-
resent a memory decision variable. This function is likely 
performed in combination with fronto-parietal regions, 
but we note that the distinction between the two peaks of 
decision-predictive activity is most evident in the striatum. 
The basal ganglia have been strongly associated with the 
control of habits (e.g. Rangel et al. 2008). Specifically, it has 
been argued that the habit system learns to assign values to 
actions and stimulus–response associations in stable envi-
ronments. One interpretation of the current results is, there-
fore, that the striatum is involved in the conversion process 
from the presumably biased (old vs. new) evaluation system 
to the creation of the stimulus–response bonds (which indi-
cate the action that should be taken in a particular state of 
the world) that maximize reward. In summary, by following 
the framework of the ‘actor–critic’ architecture proposed by 
Sugrue and colleagues (Sugrue et al. 2005), we propose that 
the striatum would be both actively involved in the valua-
tion stage of assignment of subjective value of the choice 
option (actor, first peak of classification accuracy) and in 
the creation of the optimal stimulus–response association 
(critic, second peak).

An additional interpretation of the second peak of classi-
fication accuracy in the striatum is based on the well-known 
role of this structure in action selection. As extensively 
described by studies on functional anatomy of the striatum 
(Redgrave et al. 2010, 2011), this structure receives direct 
and indirect excitatory inputs from the cortex and the brain-
stem, respectively, and returns output information through 
inhibitory signals (again both directly and indirectly) to the 
cortex and the thalamus. Such a re-entrant looped archi-
tecture, allowing selective removal of tonic inhibitory out-
put on specific loops, would represent an optimal neural 
basis for the implementation of action selection (Redgrave 
et al. 2011). Thus, according to this view, the second peak 
of activity in the striatum would directly reflect response 
selection rather than the specification of the memory choice/
response association.

The comprehension of the role of the striatum in memory 
decision-making is also relevant for clinical neuropsychol-
ogy investigations, especially for the understanding of the 
behavioral pattern of patients with a known dysfunction of 
the nigra-striatal pathway (e.g. Parkinson disease). Previ-
ous research has shown that these patients do not usually 
suffer from profound amnesia but can exhibit multifaceted 
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recognition deficits (see Scimeca and Badre 2012). Based 
on the present results, we predict that these patients would 
not be particularly impaired in recognition per se, but rather 
in assigning the adaptive significance of oldness and new-
ness to the current goal/context, or in producing specific 
responses as a function of the recognition decision. These 
deficits might be exacerbated by paradigms that manipu-
late, within subjects, which option is incentivized, or which 
action must be executed based on the memory choice.
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