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Abstract: A series of novel trifluoromethylcoumarinyl urea derivatives were designed, synthesized,
and characterized by 1H-NMR, 13C-NMR, and HR-ESI-MS. The fluorescence spectra of the target
compounds were recorded. The spectra show that most of the title compounds glow green
with λmax

em of 500–517 nm, while compounds 5r, 5s, 5u, and 5l (compounds named by authors)
glow violet with λmax

em of 381–443 nm. Moreover, the herbicidal and antifungal activities of the
synthesized compounds were evaluated for their potential use as pesticides. The results indicate
that compound 5f against the caulis of Amaranthus retroflexus and compounds 5j and 5l against the
taproot of Digitaria sanguinalis are equivalent to the commercial herbicide Acetochlor. Nine of the title
compounds are more antifungal than commercial fungicide Carbendazim against Botrytis cinerea.

Keywords: trifluoromethylcoumarinyl urea; synthesis; fluorescence; herbicidal activity;
antifungal activity

1. Introduction

Ureas are very important compounds in organic chemistry because of their extensive
applications in medicine and agriculture. The substituted ureas exhibit diversified medicinal
activities such as antimicrobial [1], antiviral [2], anti-HIV [3], anti-AIDS [4], anti-malaria [5],
anti-proliferative [6], antitumor [7], anticancer [8], anti-inflammatory [9], anti-ulcerogenic [10],
anticonvulsant [11], anti-nociceptive [12], antihypertensive [9], antidepressant [13], complement
inhibition [14], HDL-elevating [15], and inhibition of nitric oxide [16]. Urea compounds also possess
a broad spectrum of pesticidal activities, such as benzoylurea type insecticides (Diflubenzuron,
Chlorbenzuron, etc.) [17], fungicides (Triclocarban, Pencycuron, etc.) [18], sulfonylurea type herbicides
(Chlorsulfuron, Nicosulfuron, etc.), and urea herbicides (Benzthiazuron, Siduron, etc.) [19], as well as
plant growth regulators (Thidiazuron, Forchlorfenuron, etc.) [20].

On the other hand, coumarin is a subunit of many natural products and a wide range of synthetic
compounds, constituting an important class of heterocycles. These kinds of compounds are widely used
in the food, cosmetic, and perfume industries. Coumarins are also an important class of fluorescents
and are used as laser dyes, brighteners, fluorescent labels, and other organic optical materials,
such as emission layers of organic light-emitting diodes (OLED) [21–24]. Additionally, they are
sometimes used as probes to monitor certain physiological process and trace harmful substances in
environment [25–27]. It has been noted that the photophysical and spectroscopic properties of coumarin
can be easily adjusted by the introduction of different substituents into the core, which leads them to
be more flexible and fit well in various applications [28]. It is reported that the electron-withdrawing
groups on 3- or 4-position and electron-releasing groups on 6- or 7-position of the coumarin skeleton
could enhance the band intensity of fluorescence [29]. Moreover, coumarins have been extensively
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studied for their use as biological agents with anti-depressant, anticoagulant, anti-inflammatory,
antibacterial, antifungal, antimalarial, moluscicidal, and anthelmintic activities [30–36]. Much research
has been focused on coumarin derivatives for their pesticidal activities too. One of the representative
compounds is 7-hydroxyl-4-methylcoumarin, which exhibited interesting pesticidal activities of
allelopathy and antifungal, and it is reported that the C7 hydroxyl group and C4 methyl substitution
contributed significantly to the activity [37,38]. Moreover, brominated derivatives of the compound
showed remarkable larvicidal and ovicidal activities against vector mosquitoes [39]. Derivatives of
7-hydroxyl-4-methylcoumarin are also reported to show anthelmintic and acaricidal activities [40,41].

In addition, fluorine is the most electronegative of all elements, which endows it with unique
properties. Indeed, it is commonly accepted that introducing a fluorine-containing group onto the
molecule scaffold often leads to improvement of the molecular chemical, physical, and biological
properties [42]. To date, the trifluoromethyl (CF3) group has appeared as the archetypal and most
sought-after fluorine-containing group, and there have been reported a huge and ever-increasing
number of trifluoromethylated compounds in the literature [43,44]. The CF3 group is very important
in medicinal chemistry [45] due to its high lipophilicity, easy transportation, and hard degradation
in vivo [46,47]. Thus, the introduction of a CF3 group into bioactive molecules has become a preferable
approach in pharmaceutical studies [48,49]. However, the literature about CF3-substituted coumarins
is limited, and the reports about these compounds are mainly focused on their use as substrate
probes to detect the physiology [50–52]. Also, in view of these observations and in continuation of
our research program on the synthesis of fluorinated coumarins [53], we herein report the synthesis
and characterization of some novel 4-trifluoromethyl-6-substituted-ureido-7-methoxylcoumarins,
whose fluorescent properties and antifungal and herbicidal activities are also evaluated.

2. Results and Discussion

2.1. Chemistry

The synthesis of target compounds was carried out according to Scheme 1. Compound 1 was
prepared from the reaction of resorcinol with ethyl trifluoroacetoacetate catalyzed by Con. (concentrated)
H2SO4. Compound 2 was synthesized by methylation of compound 1 with dimethyl sulfate using
anhydrous K2CO3 as catalyst in acetone. Compound 3 was synthesized by nitration of compound 2
with guanidine nitrate in Con. H2SO4. Compound 4 was obtained by reduction of compound 3
with Fe powder in aqueous solution of NH4Cl. The target compounds 5a–5u were furnished by
addition of compounds 4 to a series of isocyanates catalyzed by triethylamine in CH2Cl2 (DCM).
The structures of all target compounds were well characterized by 1H-NMR, 13C-NMR, and HR-ESI-MS.
The spectrograms were listed in the supplementary materials.

2.2. UV Absorption and Fluorescence Characteristics

The λmax
ab (maximum absorption wavelength), εmax (molar absorptivity), λmax

em (maximum
emission wavelength), ∆λ (Stokes shift) and Φf (fluorescence quantum yield) of the title compounds
are listed in Table 1. The λmax

ab of all the title compounds are 360–374 nm, and the εmax are
5.24–7.67 × 103 L·mol−1·cm−1. Most of the title compounds glow green fluorescence with λmax

em

of 500–517 nm when illuminated by ultraviolet light, while compounds 5r, 5s, 5u, and 5l glow
violet fluorescence with λmax

em of 381–443 nm (Figure 1). However compounds 5o and 5t do not
fluoresce at the concentration. The values of Φf indicate that all the title compounds are weaker
fluorescent compare to the standard reference compound quinine sulfate. Table 1 shows that alkyl
substituted compounds 5a–5i have higher fluorescence quantum yield than the phenyl substituted
compounds 5k–5p and 5r–5u, but compounds 5j and 5q with high Φf were the exceptions. From the
phenomenon, it can be concluded that electron-donating groups may favor the fluorescence of
the compounds.
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Table 1. Properties of UV absorption and fluorescence of title compounds.

Compd. λmax
ab

(nm)
A εmax × 103

(L·mol−1·cm−1)
λmax

em

(nm)
∆λ

(nm) Φf

5a 369 0.216 7.13 512 143 0.114
5b 369 0.186 6.40 511 142 0.110
5c 374 0.180 6.19 516 143 0.065
5d 373 0.188 6.73 517 145 0.044
5e 360 0.189 7.30 513 154 0.087
5f 369 0.160 5.92 512 144 0.064
5g 370 0.154 5.92 513 143 0.053
5h 370 0.150 6.90 512 142 0.070
5i 366 0.129 5.24 510 144 0.082
5j 367 0.182 7.50 507 141 0.098
5k 367 0.171 7.05 509 143 0.024
5l 369 0.174 7.17 381 12 0.028

5m 363 0.162 6.71 506 143 0.013
5n 367 0.183 7.25 500 134 0.020
5o 367 0.164 6.43 - - -
5p 363 0.166 7.40 504 141 0.041
5q 367 0.134 5.98 503 137 0.115
5r 372 0.143 5.84 443 72 0.005
5s 363 0.134 5.47 396 33 0.013
5t 365 0.136 5.55 - - -
5u 367 0.166 7.67 387 21 0.013

- no fluorescence was detected.

2.3. Herbicidal Activities

The herbicidal activities of the 21 title compounds of 20 mg·L−1 and 100 mg·L−1 against the taproot
and caulis growth of dicotyledonous weed A. retroflexus and monocotyledonous weed D. sanguinalis
were assayed. The inhibition of the compounds with effectiveness of greater than 50% to at least one
organ of the test weeds at 100 mg·L−1 are displayed in Figure 2. It indicates that compounds 5j and 5s
show medium inhibition against the taproot growth of A. retroflexus, and compounds 5f, 5s, 5k and 5n
show medium to high inhibition against the caulis growth of A. retroflexus. Moreover, compounds 5j
and 5l show medium inhibition against the taproot growth of D. sanguinalis, and compounds 5f, 5q,
and 5r show medium inhibition against the caulis growth of D. sanguinalis. Furthermore, the herbicidal
activities of 5f against the caulis of A. retroflexus, 5j and 5l against the taproot of D. sanguinalis are
equivalent to the commercial herbicide Acetochlor. It also shows that only compounds 5j and 5s
are both active to the two test herbs; the other compounds display certain selectivity between the
test herbs. Contrary to the fluorescence, the phenyl substituted compounds show higher herbicidal
activity than the alkyl substituted compounds except compound 5f substituted by cyclopentyl. All the
compounds substituted by phenyls with chlorine (5j–5l) exhibit better activity. Compounds 5o
(3-CH3Ph-), 5r (2-CH3OPh-) and 5s (3-CH3OPh-) substituted by phenyls with electron donating
groups are more active.
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2.4. Antifungal Activities

The in vitro antifungal activities of the title compounds of 20 mg·L−1 and 100 mg·L−1 against
the mycelium growth of the phytopathogens Valsa mali, B. cinerea, Colletotrichum glecosporioides,
and Fusarium oxysporum were assayed. The inhibition of the synthesized compounds with effectiveness
of greater than 50% at 100 mg·L−1 are exhibited in Figure 3. This indicates that more compounds
exhibit stronger inhibition against B. cinerea than the other three plant disease fungi (the inhibitory
rates of all the title compounds against F. oxysporum are less than 50%, and they do not appear in
Figure 3). There are only four title compounds showing medium inhibition against V. mali, and only
one compound having an inhibitory rate of more than 50% to C. glecosporioides. Meanwhile, 12 of
the title compounds exhibit medium to high activity against B. cinerea, and nine of them are more
antifungal than the commercial fungicide Carbendazim. Based on the above description, it seems that
the phenyl substitutes are of more benefit to the antifungal activity. Compounds 5j, 5l, and 5o–5t with
substitutes of –Cl, –CH3, –CF3, or –OCH3 on phenyls have more potential.
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3. Experimental Section

3.1. Chemistry

3.1.1. General Procedures

All chemicals were obtained from commercial sources and used without further purification.
Glass plates pre-coated with silica gel 60 GF254 (Qingdao Haiyang Chemical Co., Ltd., Qingdao,
China) were used for analytical thin layer chromatography (TLC). An uncorrected WRS-1B digital
melting-point apparatus (Shanghai Precision Optical Instrument Co., Ltd., Shanghai, China) was
used to determine the melting points. A Bruker Avance III HD 500 MHz nuclear magnetic resonance
instrument (Bruker, Fällanden, Switzerland) was used to record the 1H- and 13C-NMR spectra in
CDCl3 or DMSO-d6 (1H at 500 MHz and 13C at 126 MHz) using tetramethylsilane (TMS) as the internal
standard. A maXis Q-TOF high-resolution mass spectra instrument (Bruker, Karlsruhe, Germany) was
used to measure the HR-ESI-MS. An F-4600 fluorescence spectrophotometer (Hitachi, Tokyo, Japan)
was used to record the fluorescence.

3.1.2. Synthesis of 4-Trifluoromethyl-7-hydroxycoumarin (1)

Concentrated sulfuric acid (2 mL) and trifluoroacetoacetate (3.7 g, 10 mmol) were added dropwise
in turn to the solution of resorcinol (2.2 g, 10 mmol) in ethanol (4 mL) with stirring. Then the mixture
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was heated to maintain at 80 ◦C until the end of the reaction was detected by TLC. The resulted thick
magenta liquid was dripped into 10 mL of cold water with rigorous stirring. The precipitate was
filtered and dried to give compound 1. Yield 88.9%, m.p. (melting point) 175–176 ◦C [lit. (literature)
178–179 ◦C] [54].

3.1.3. Synthesis of 4-Trifluoromethyl-7-methoxycoumarin (2)

Dimethyl sulfate (2.5 g, 20 mmol) was added dropwise to the suspension of compound 1 (5.8 g,
25 mmol) and anhydrous K2CO3 (4.1 g, 30 mmol) in 66 mL of acetone with stirring. Then the mixture
was heated to reflux for 8 h. After K2CO3 was filtered out, the filtrate was rotary evaporated to 1/3 of
the total volume. Then the residue was allowed to cool to room temperature until a white solid
precipitated. The solid product was filtered out and washed with cold water to neutral pH to get
compound 2. Yield 97.8%, m.p. 110–112 ◦C (lit. 111–112 ◦C) [55].

3.1.4. Synthesis of 4-Trifluoromethyl-6-nitro-7-methoxycoumarin (3)

Guanidine nitrate (1.4 g, 11.6 mmol) was added batch-wise to the solution of 2 (2.6 g, 10.7 mmol)
in 16 mL Conc. H2SO4 with stirring at 0–5 ◦C. The mixture was stirred at room temperature for 3 h
until the end of the reaction. Then the reaction mixture was poured into 40 mL of ice water with
stirring to obtain a pale yellow solid. The solid product was filtered and dried to give compound 3.
Yield 97.7%, m.p. 118–119 ◦C (as reported) [53].

3.1.5. Synthesis of 4-Trifluoromethyl-6-amino-7-methoxycoumarin (4)

The mixture of compound 3 (2.9 g, 10 mmol), iron powder (5.0 g, 90 mmol), NH4Cl (1.1 g,
20 mmol) and 50 mL water was mechanically stirred at room temperature until the end of the reaction.
The mixture was extracted with ethyl acetate (50 mL × 3). The extract was dried over anhydrous
sodium sulfate, then filtered and rotary evaporated to get a dark yellow crystal of compound 4.
Yield 70%, m.p. 179–180 ◦C (as reported) [53]. The compound is unstable and needs to be used as soon
as possible for the next step.

3.1.6. General Procedure for Synthesis of 4-Trifluoromethyl-6-amino-7-methoxycoumarinyl Urea
Derivatives (5a–5u)

To a cool suspension of 4 (0.65 g, 2.5 mmol) in 3.5 mL of anhydrous dichloromethane, isocyanate
(3 mmol) was added dropwise with stirring. The mixture was allowed to return to room temperature
until the end of the reaction. The solid produced was filtered and chromatographed on a flash silica
gel column (ethyl acetate/petroleum ether = 1:3) to give the target compounds 5a–5u. The yield,
appearance, m.p., NMR and HR-ESI-MS (MS) date of the synthesized compounds are listed below.

1-Ethyl-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5a). Light yellow solid; yield:
42.8%; m.p. 232–233 ◦C; 1H-NMR (500 MHz, DMSO) δ: 8.68 (s, 1H), 8.14 (s, 1H), 7.23 (s, 1H),
6.95 (t, J = 5.3 Hz, 1H), 6.83 (s, 1H), 4.01 (s, 3H), 3.20–3.09 (m, 2H), 1.08 (t, J = 7.2 Hz, 3H); 13C-NMR
(126 MHz, DMSO) δ: 159.46, 155.39, 152.17, 150.33, 140.41 (q, J = 31.5 Hz), 127.99, 122.27 (q, J = 275.94 Hz),
113.47 (q, J = 6.3 Hz), 111.52 (q, J = 1.26Hz), 106.07, 100.16, 57.24, 34.31, 15.72.; HR-ESI-MS m/z: 353.0712
[M + Na]+ (calculated for C14H13F3N2NaO4, 353.0725).

1-Propyl-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5b). White solid; yield: 31.1%; m.p.
229 ◦C. 1H-NMR (500 MHz, DMSO) δ: 8.68 (s, 1H), 8.16 (s, 1H), 7.22 (s, 1H), 6.97 (t, J = 5.3 Hz, 1H), 6.82
(s, 1H), 4.00 (s, 3H), 3.06 (q, J = 5 Hz, 2H), 1.52–1.38 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); 13C-NMR (126MHz,
DMSO) δ: 159.47, 155.50, 152.16, 150.32, 140.41 (q, J = 31.5 Hz), 128.03, 122.27 (q, J = 275.94 Hz), 113.49
(q, J = 6.3 Hz), 111.48, 106.09, 100.18, 57.26, 41.24, 23.31, 11.83; HR-ESI-MS m/z: 367.0882 [M + Na]+

(calculated for C15H15F3N2NaO4, 367.0882).
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1-Isopropyl-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5c). Light yellow solid; yield: 54.2%;
m.p. 224 ◦C; 1H-NMR (500 MHz, DMSO) δ: 8.66 (s, 1H), 8.07 (s, 1H), 7.20 (s, 1H), 6.90 (d, J = 7.2 Hz, 1H),
6.80 (s, 1H), 3.99 (s, 3H), 3.82–3.72 (m, 1H), 1.10 (d, J = 6.4 Hz, 6H); 13C-NMR (126 MHz, DMSO) δ:
159.45, 154.74, 152.11, 150.28, 140.42 (q, J = 31.5 Hz), 128.03, 122.16 (q, J = 275.94 Hz), 113.43 (q, J = 5.0 Hz),
111.36 (q, J = 2.52 Hz), 106.06, 100.11, 57.22, 41.36, 23.41; ESI-MS m/z: 345.30 [M + Na]+ (calculated for
C15H16F3N2O4, 345.21).

1-(tert-Butyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5d). yellow solid; Yield: 31.1%;
m.p. 237 ◦C; 1H-NMR (500 MHz, CDCl3) δ: 8.54 (s, 1H), 6.87 (s, 1H), 6.83 (s, 1H), 6.64 (s, 1H), 4.90 (s, 1H),
3.93 (s, 3H), 1.40 (s, 9H); 13C-NMR (126 MHz, CDCl3) δ: 159.76 (q, J = 6.2 Hz), 152.2 (q, J = 22.68 Hz), 151.92
(q, J = 5.5 Hz), 150.76 (q, J = 7.3 Hz), 142.11 (q, J = 32.76 Hz), 127.15 (q, J = 12.2 Hz), 121.57 (q, J = 275.94 Hz),
113.46 (q, J = 2.52 Hz), 112.58 (q, J =5.04 Hz), 106.85, 98.98 (q, J = 6.2 Hz), 56.33, 51.03, 29.31; HR-ESI-MS
m/z: 381.1038 [M + Na]+ (calculated for C16H17F3N2NaO4, 381.1038).

1-Hexyl-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5e). Light yellow solid; yield: 31.2%;
m.p. 143 ◦C; 1H-NMR (500 MHz, CDCl3) δ: 8.68 (s, 1H), 7.29 (s, 1H), 6.82 (s, 1H), 6.63 (s, 1H), 5.47
(t, J = 5.0 Hz, 1H), 3.89 (s, 3H), 3.28 (q, J = 5 Hz, 2H), 1.58–1.48 (m, 2H), 1.38–1.20 (m, 6H), 0.85 (t, J = 6.6 Hz,
3H); 13C-NMR (126 MHz, CDCl3) δ: 159.73, 154.77, 151.80, 150.85, 142.13 (q, J = 32.76 Hz), 126.90, 122.63
(q, J = 122.37 Hz), 113.61 (q, J = 1.26 Hz), 112.66 (q, J = 5.04 Hz), 106.90, 98.98, 56.38, 40.53, 31.50, 29.99, 26.56,
22.57, 14.00; HR-ESI-MS m/z: 409.1346 [M + Na]+ (calculated for C18H21F3N2NaO4, 409.1351).

1-Cyclopentyl-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5f). Light yellow solid; yield:
43.6%; m.p. 225 ◦C; 1H-NMR (500 MHz, DMSO) δ: 8.68 (s, 1H), 8.07 (s, 1H), 7.21 (s, 1H), 7.01
(d, J = 6.9 Hz, 1H), 6.81 (s, 1H), 4.00 (s, 3H), 3.97-3.91 (m, 1H), 1.90–1.81 (m, 2H), 1.72–1.48 (m, 4H),
1.45–1.31 (m, 2H); 13C-NMR (126 MHz, DMSO) δ: 159.49, 155.02, 152.10, 150.30, 140.42 (q, J = 32.76 Hz),
128.04, 122.29(q, J = 273.42 Hz),113.52 (q, J = 1.26 Hz), 111.34 (q, J = 2.52 Hz), 106.10, 100.18, 57.27, 51.28,
33.30, 23.59; HR-ESI-MS m/z: 393.1033 [M + Na]+ (calculated for C17H17F3N2NaO4, 393.1038).

1-Cyclohexyl-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5g). Light yellow solid; yield
48.9%; m.p. 265 ◦C; 1H-NMR (500 MHz, DMSO) δ: 8.68 (s, 1H), 8.13 (s, 1H), 7.23 (s, 1H), 6.95
(d, J = 7.5 Hz, 1H), 6.82 (s, 1H), 3.99 (s, 3H), 3.54–3.45 (m, 1H),1.86–1.76 (m, 2H), 1.72–1.63 (m, 2H),
1.37–1.11 (m, 6H); 13C-NMR (126 MHz, DMSO) δ: 159.48, 154.70, 152.14, 150.29, 140.42 (q, J = 31.5 Hz),
128.06, 122.28(q, J = 275.94 Hz), 113.49(q, J = 6.3 Hz), 111.40 (q, J = 2.52 Hz), 106.09, 100.18, 57.27, 48.02,
33.35, 25.70, 24.71; HR-ESI-MS m/z: 407.1191 [M + Na]+ (calculated for C18H19F3N2NaO4, 407.1195).

1-(2-(3-(Prop-1-en-2-yl)phenyl)propan-2-yl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea
(5h). Light yellow solid; yield: 20.0%; m.p. 228–229 ◦C; 1H-NMR (500 MHz, DMSO) δ: 8.52 (s, 1H), 8.29
(s, 1H), 7.50 (s, 1H), 7.47 (s, 1H), 7.39–7.29 (m, 3H), 7.22 (s, 1H), 6.79 (s, 1H), 5.38 (s, 1H), 5.08 (s, 1H),
4.01 (s, 3H), 2.11 (s, 3H), 1.62 (s, 6H); 13C-NMR (126 MHz, DMSO) δ: 159.43, 154.39, 152.20, 150.33,
148.72, 143.45, 140.62, 140.34 (q, J = 31.5 Hz), 128.54, 128.04, 124.66, 123.56, 122.22 (q, J = 275.94 Hz),
122.21, 113.47 (q, J = 6.3 Hz), 112.89, 111.22, 106.03, 100.21, 57.29, 55.01, 30.25, 22.01; HR-ESI-MS m/z:
483.1504 [M + Na]+ (calculated for C24H23F3N2NaO4, 483.1508).

1-Phenethyl-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5i). Light yellow solid; yield:
41.7%; m.p. 222 ◦C; 1H-NMR (500 MHz, DMSO) δ: 8.68 (s, 1H), 8.22 (s, 1H), 7.36–7.29 (m, 2H),
7.27–7.24 (m, 2H), 7.23–7.18 (m, 2H), 6.99 (t, J = 5.1 Hz, 1H), 6.82 (s, 1H), 3.98 (s, 3H), 3.38
(q, J = 6.6 Hz, 2H), 2.75 (t, J = 7.0 Hz, 2H); 13C-NMR (126 MHz, DMSO) δ: 159.46, 155.48, 152.21, 150.38,
140.40 (q, J = 31.5 Hz), 139.96, 129.17, 128.84, 127.96, 126.57, 122.28 (q, J = 275.94 Hz), 113.53 (q, J = 6.3Hz),
111.57 (q, J = 1.26 Hz), 106.09, 100.21, 57.25, 40.92, 36.20; HR-ESI-MS m/z: 429.1038 [M + Na]+ (calculated
for C20H17F3N2NaO4, 429.1038).

1-(2-Chlorophenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5j). Yellow solid; yield:
45.0%; m.p. 231 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.76 (s, 1H), 8.64 (s, 1H), 8.52 (s, 1H), 7.96
(s, 1H), 7.68–7.44 (m, 2H), 7.33 (d, J = 6.2 Hz, 1H), 7.27 (s, 1H), 6.83 (s, 1H), 4.03 (s, 3H); 13C-NMR
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(126 MHz, DMSO) δ: 159.34, 152.77, 152.54, 151.06, 140.72, 140.24 (q, J = 32.76 Hz), 130.54, 130.08
(q, J = 31.5 Hz), 126.78, 122.25 (q, J =274.68 Hz), 122.16, 118.80 (q, J = 3.6 Hz), 114.32 (q, J = 4.0 Hz),
113.83 (q, J = 5.2 Hz), 112.27, 106.13, 100.50, 57.44; HR-ESI-MS m/z: 435.0328, 437.0298 [M + Na]+

(calculated for C18H12ClF3N2NaO4, 435.0335, 437.0306).

1-(3-Chlorophenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5k). Yellow solid; yield:
41.5%; m.p. 241 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.57 (s, 1H), 8.62 (s, 1H), 8.50 (s, 1H), 7.69 (s, 1H),
7.32–7.25 (m, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 7.7 Hz, 1H), 6.83 (s, 1H), 4.01 (s, 3H); 13C-NMR
(126 MHz, DMSO) δ: 159.36, 152.70, 152.54, 151.04, 141.38, 140.24 (q, J = 31.2 Hz), 133.77, 131.00, 126.83,
122.27(q, J = 275.94 Hz), 122.21, 117.87, 117.03, 113.91 (q, J = 6.3 Hz), 112.28 (q, J = 1.6 Hz), 106.15,
100.54, 57.47; HR-ESI-MS m/z: 435.0323, 437.0294 [M + Na]+ (calculated for C18H12ClF3N2NaO4,
435.0335, 437.0306).

1-(4-Chlorophenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5l). White solid; yield:
44.8%; m.p. 243 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.52 (s, 1H), 8.67 (s, 1H), 8.51 (s, 1H), 7.49
(d, J = 8.5 Hz, 2H), 7.39–7.27 (m, 3H), 6.87 (s, 1H), 4.04 (s, 3H); 13C-NMR (126 MHz, DMSO) δ: 159.39,
152.75, 152.52, 150.97, 140.34 (q, J = 52.92 Hz), 138.85, 129.22, 126.97, 126.06, 122.29 (q, J = 287.28 Hz),
120.11, 113.92 (q, J = 2.52 Hz), 112.22 (q, J = 2.2 Hz), 106.17, 100.53, 57.48; HR-ESI-MS m/z: 435.0323,
437.0294 [M + Na]+ (calculated for C18H12ClF3N2NaO4, 435.0335, 437.0306).

1-(3-Fluorophenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5m). Yellow solid; yield:
53.8%; m.p. 292 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.62 (s, 1H), 8.66 (s, 1H), 8.55 (s, 1H), 7.48
(d, J = 11.8 Hz, 1H), 7.38–7.27 (m, 2H), 7.11 (d, J = 8.1 Hz, 1H), 6.87 (s, 1H), 6.81 (t, J = 8.4 Hz, 1H), 4.04
(s, 3H); 13C-NMR (126 MHz, DMSO) δ: 162.90 (d, J = 240 Hz), 159.37, 152.71, 152.53, 151.01, 141.69
(d, J = 11.3 Hz), 140.25 (q, J = 32.76 Hz), 130.92 (d, J = 9.8 Hz), 126.86, 122.26 (q, J = 275.94 Hz), 114.33
(d, J = 2.3 Hz), 113.85 (q, J = 6.3 Hz), 112.26, 108.90 (d, J = 21.42 Hz), 106.14, 105.28 (d, J = 26.46 Hz),
100.50, 57.45; HR-ESI-MS m/z: 419.0620 [M + Na]+ (calculated for C18H12F4N2NaO4, 419.0631).

1-(2,4-Difluorophenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5n). Light yellow
solid; yield: 47.6%; m.p. 240 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.28 (s, 1H), 8.95 (s, 1H), 8.67 (s, 1H),
8.13 (q, J = 10, 1H), 7.35–7.26 (m, 2H), 7.05 (t, J = 8.6 Hz, 1H), 6.85 (s, 1H), 4.04 (s, 3H); 13C-NMR
(126 MHz, DMSO) δ: 159.38, 157.39 (dd, J1 =240 Hz, J2 =11.25 Hz), 152.86, 152.68 (dd, J1 = 243.75 Hz, J2

= 12.5 Hz), 152.64, 151.01, 140.27 (q, J = 31.5 Hz), 126.96, 124.24 (dd, J1 = 7.5 Hz, J2 = 3.75 Hz), 122.69
(dd, J1 = 6.25 Hz, J2 = 2.5 Hz), 122.25 (q, J = 273.75 Hz), 113.82 (q, J = 6.3 Hz), 112.40 (q, J = 2.0 Hz),
111.52 (dd, J1 = 21.25 Hz, J2 = 3.75 Hz), 106.12, 104.25 (dd, J1 = 22.5 Hz, J2 = 3.75 Hz), 100.51, 57.42;
HR-ESI-MS m/z: 437.0527 [M + Na]+ (calculated for C18H11F5N2NaO4, 437.0537).

1-(m-Tolyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5o). Yellow solid, yield: 24.7%;
m.p. 217–218 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.33 (s, 1H), 8.68 (s, 1H), 8.47 (s, 1H), 7.32 (s, 1H),
7.29 (s, 1H), 7.23 (d, J = 8.3 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 6.86 (s, 1H), 6.82 (d, J = 7.3 Hz, 1H), 4.04
(s, 3H), 2.30 (s, 3H); 13C-NMR (126 MHz, DMSO) δ: 159.39, 152.83, 152.47, 150.84, 140.30 (q, J = 31.5 Hz),
139.80, 138.56, 129.19, 127.22, 123.31, 122.29 (q, J = 275.94 Hz), 119.07, 115.82, 113.78 (q, J = 5.04 Hz),
112.03 (q, J = 1.6 Hz), 106.15, 100.46, 57.44, 21.70; HR-ESI-MS m/z: 415.0874 [M + Na]+ (calculated for
C19h15f3n2nao4, 415.0882).

1-(3-(Trifluoromethyl)phenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5p). Light yellow
solid; yield 39.0%; m.p. 219 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.24 (s, 1H), 9.06 (s, 1H), 8.66 (s, 1H),
8.08 (d, J = 8.1 Hz, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.35–7.28 (m, 2H), 7.07 (t, J = 7.3 Hz, 1H), 6.86 (s, 1H),
4.05 (s, 3H); 13C-NMR (126 MHz, DMSO) δ: 159.40, 152.95, 151.10, 140.26(q, J = 31.5 Hz), 136.13, 129.76,
127.98, 126.94, 124.36, 123.32, 123.17, 122.27 (q, J = 275.94 Hz), 118.98, 113.84 (q, J = 6.3 Hz), 112.99,
106.11, 100.56, 57.43; HR-ESI-MS m/z: 469.0593 [M + Na]+ (calculated for C19H12F6N2NaO4, 469.0599).

1-(4-(Trifluoromethyl)phenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5q). Yellow solid;
yield: 16.9%; m.p. 212–213 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.80 (s, 1H), 8.67 (s, 1H), 8.59 (s, 1H), 7.66
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(q, J = 9.0 Hz, 4H), 7.29 (s, 1H), 6.86 (s, 1H), 4.04 (s, 3H); 13C-NMR (126 MHz, DMSO) δ : 159.35, 152.62,
152.56, 151.08, 143.58, 140.24 (q, J = 32.76 Hz), 126.74, 126.65 (q, J = 3.78 Hz), 125.00 (q, J = 270 Hz),
122.47 (q, J = 31.5 Hz), 122.26 (q, J = 275.94 Hz), 118.28, 113.88 (q, J = 6.3 Hz), 112.34, 106.14, 100.54,
57.47; HR-ESI-MS m/z: 469.0593 [M + Na]+ (calculated for C19H12F6N2NaO4, 469.0599).

1-(2-Methoxyphenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5r). Light yellow solid,
yield: 30.9%; m.p. 152 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.15 (s, 1H), 9.01 (s, 1H), 8.69 (s, 1H), 8.09
(dd, J1 = 7.9 Hz, J2 = 1.1 Hz, 1H), 7.27 (s, 1H), 7.06–6.95 (m, 2H), 6.93–6.87 (m, 1H), 6.84 (s, 1H), 4.03
(s, 3H), 3.88 (s, 3H); 13C-NMR (126 MHz, DMSO) δ: 159.42, 153.15, 152.90, 150.89, 148.76, 140.35
(q, J = 32.76 Hz), 128.81, 127.36, 122.77, 122.28 (q, J = 275.94 Hz), 120.94, 119.89, 113.65 (q, J = 6.3 Hz),
112.69 (q, J = 1.9 Hz), 111.34, 106.08, 100.40, 57.28, 56.17; HR-ESI-MS m/z: 431.0826 [M + Na]+

(calculated for C19H15F3N2NaO5, 431.0831).

1-(3-Methoxyphenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5s). Yellow solid; yield:
37.8%; m.p. 196 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.40 (s, 1H), 8.67 (s, 1H), 8.47 (s, 1H), 7.29 (s, 1H),
7.20 (t, J = 8.1 Hz, 1H), 7.11 (t, J = 2.1 Hz, 1H), 6.98 (dd, J1 = 8.0 Hz, J2 = 1.1 Hz, 1H), 6.86 (s, 1H), 6.58
(dd, J1 = 8.2 Hz, J2 =2.3 Hz, 1H), 4.04 (s, 3H), 3.75 (s, 3H); 13C-NMR (126 MHz, DMSO) δ: 160.21, 159.39,
152.78, 152.52, 150.90, 141.06, 140.29(q, J = 32.76 Hz), 130.16, 127.12, 122.29 (q, J = 275.94 Hz), 113.82
(q, J = 6.3Hz) 112.13 (q, J = 1.9 Hz), 111.00, 107.86, 106.16, 104.50, 100.49, 57.45, 55.46; HR-ESI-MS m/z:
431.0829 [M + Na]+ (calculated for C19H15F3N2NaO5, 431.0831).

1-(4-Methoxyphenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5t). Light yellow solid;
yield: 37.7%; m.p. 212–213 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.21 (s, 1H), 8.68 (s, 1H), 8.40 (s, 1H), 7.36
(d, J = 7.9 Hz, 2H), 7.28 (s, 1H), 6.91–6.83 (m, 3H), 4.03 (s, 3H), 3.72 (s, 3H); 13C-NMR (126 MHz, DMSO)
δ: 159.43, 155.10, 153.01, 152.42, 150.75, 140.32 (q, J = 31.5 Hz), 132.85, 127.36, 122.28 (q, J = 275.94 Hz),
120.42, 114.55, 113.76 (q, J = 5.04 Hz), 111.94 (q, J = 1.1 Hz), 106.16, 100.42, 57.43, 55.66; HR-ESI-MS m/z:
431.0826 [M + Na]+ (calculated for C19H15F3N2NaO5, 431.0831).

1-(4-(Trifluoromethoxy) phenyl)-3-(7-methoxy-2-oxo-4-(trifluoromethyl)-2H-chromen-6-yl) urea (5u). Light yellow
solid; yield: 43.7%; m.p. 209 ◦C; 1H-NMR (500 MHz, DMSO) δ: 9.61 (s, 1H), 8.70 (s, 1H), 8.54 (s, 1H),
7.62–7.56 (m, 2H), 7.39–7.29 (m, 3H), 6.88 (s, 1H), 4.07 (s, 3H); 13C-NMR (126 MHz, DMSO) δ: 159.37,
152.79, 152.52, 150.98, 143.24 (q, J = 2.52 Hz), 140.28 (q, J = 31.5 Hz), 139.12, 126.95, 122.29, 122.27
(q, J = 273.75 Hz), 120.67 (q, J = 273.75 Hz), 119.84, 113.86 (q, J = 5.04 Hz), 112.25, 106.16, 100.52, 57.47;
HR-ESI-MS m/z: 463.3020 [M + Na]+ (calculated for C19H13F6N2O5, 463.3024).

3.2. Determination of UV Absorption and Fluorescence Spectrum

The title compounds were dissolved in methanol to prepare 1 and 10 µg·mL−1 solutions, and the
same concentrations of the reference compound, quinine sulfate, were obtained using 0.1 mol·L−1

H2SO4 aqueous solution as the solvent. The 10 µg·mL−1 solutions of all the compounds were used to
record UV absorption spectra. The intersection point wavelength of UV spectrums of title compound
and quinine sulfate that lay between 300 to 400 nm was selected as the excitation wavelength to record
the fluorescence spectrum. The 1 µg·mL−1 solutions were used to determine the fluorescence to ensure
the absorbance was less than 0.05. The refraction indexes (n) of the 1 µg·mL−1 solutions were also
measured to calculate the Φf. ∆λ and Φf were calculated according to the following formulas [56]:

∆λ = λmax
em − λmax

ab (1)

Φf = (n2
x·Dx·Φfstd)/(n2

std·Dstd), (2)

where nx, nstd—refraction index of title compound and reference compound, respectively;
Dx, Dstd—fluorescence peak area of title compound and reference compound, respectively;
Φfstd—fluorescence quantum efficiency of reference compound with value of 0.55.
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3.3. Procedures for Activities Evaluation

3.3.1. Herbicidal Activity

The inhibition of the title compounds against the taproot and caulis growth of dicotyledonous
weed A. retroflexus and monocotyledonous weed D. sanguinalis were determined in vitro [57].
Two-milligram and 10-mg portions of the title compounds were dissolved in 1 mL of acetone to
give 2 and 10 g·L−1 of stock solutions, respectively. A suspension of 0.3 g agar powder in 60 mL
distilled water was microwave heated to melt. Then 0.6 mL of the stock solution was added to
60 mL of the melting agar of about 50 ◦C to achieve the required concentration. Then, 10 mL of the
compound–agar medium was poured into a small beaker (10 mL) and cooled to room temperature.
After that, 10 just-germinated weed seeds were planted onto the surface of the medium. Then the
beaker was sealed with a piece of plastic wrap with several small holes made in it by a needle. Finally,
cultivation was achieved in an illumination incubator (28 ± 1 ◦C, 50–55% relative humidity, 12 h L:
12 h D) for seven days. Acetone was used as a blank control, and Acetochlor was used as a positive
control. Each treatment was repeated three times. After cultivation, the taproot and caulis lengths of
the weed seedlings were measured, and the growth inhibitory rate of the treatment to the untreated
control was determined.

3.3.2. Antifungal Activity

The in vitro antifungal activities of the title compounds against the mycelium growth of four
phytopathogenic fungi, V. mali, B. cinerea, F. oxysporium, and C. glecosporioides, were tested [57]. The stock
solutions of the title compounds were prepared according to the procedures in Section 3.3.1. Then 1 mL
of the stock solutions was added to 100 mL portions of melted (~50 ◦C) potato dextrose agar (PDA),
and the mixtures were fully shaken to obtain the required concentrations of compound mixed medium.
Then 5 mL portions of the mixed medium were poured into 6 cm petri dishes and allowed to cool to
ambient temperature to form solid plates. After that, one 4 mm activated mycelium disk was inoculated
on each of the PDA plates and incubated at 28 ◦C in the dark for a sufficient period. Acetone was used
as a blank control, and Carbendazim was used as a positive control. Each treatment was repeated three
times. The radius (mm) of the fungus mycelium settlements was measured and the growth inhibition
rate relative to the untreated control was calculated.

4. Conclusions

In conclusion, 21 novel trifluoromethylcoumarinyl urea derivatives have been designed and
synthesized according to the principle of bioactive substructure combination. The fluorescence
spectrums of the title compounds showed that most of them glow green with λmax

em of 500–517 nm
when illuminated by ultraviolet light, while compounds 5r, 5s, 5u, and 5l glow violet with a λmax

em

of 381–443 nm. However, the fluorescent intensity of all the title compounds is weaker than the
standard reference compound, quinine sulfate. Moreover, the pesticidal activities evaluation of the
title compounds indicated that compound 5f against the caulis of A. retroflexus and compounds 5j and
5l against the taproot of D. sanguinalis are equivalent to the commercial herbicide Acetochlor. Nine of
the title compounds are more antifungal than commercial fungicide Carbendazim against B. cinerea.

Supplementary Materials: Supplementary materials are available online. Figures S1–S71.
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