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ABSTRACT: One strategy for reaching the downhill folding
regime, primarily exploited for the λ6−85 protein fragment,
consists of cumulatively introducing mutations that speed up
folding. This is an experimentally demanding process where
chemical intuition usually serves as a guide for the choice of
amino acid residues to mutate. Such an approach can be aided
by computational methods that screen for protein engineering
hot spots. Here we present one such method that involves
sampling the energy landscape of the pseudo-wild-type protein
and investigating the effect of point mutations on this landscape. Using a novel metric for the cooperativity, we identify those
residues leading to the least cooperative folding. The folding dynamics of the selected mutants are then directly characterized and
the differences in the kinetics are analyzed within a Markov-state model framework. Although the method is general, here we
present results for a coarse-grained topology-based simulation model of λ-repressor, whose barrier is reduced from an initial value
of ∼4kBT at the midpoint to ∼1kBT, thereby reaching the downhill folding regime.

■ INTRODUCTION

Energy landscape theory predicts different scenarios for protein
folding.1 In the case of two-state folding, the equilibrium dis-
tribution is dominated by only two species (the folded and
unfolded states) separated by large free-energy barriers.2 Single-
molecule experiments are only now starting to shed some light
on the transition paths between these states.3 However, in bulk
the low population of any species intermediate between the
native and unfolded forms in the case of two-state folding re-
sults in all of the information about the mechanism being
effectively hidden. Conversely, in the downhill folding scenario,
where free-energy barriers are comparable to the thermal ener-
gy (kBT), a myriad of possible structures between the denatured
and native states can be populated as the reaction progresses.4

Hence studies on downhill folding can reveal the details of the
conformational motions of the polypeptide chain en route to
the native state.5

One of the experimental approaches used to reach the
downhill regime, first applied to the 80-residue amino-terminal
λ-repressor (fragment λ6−85) and later to the Pin WW domain,
consists of engineering the protein by introducing rate-
enhancing mutations.6−13 In the seminal fluorescence temper-
ature-jump experiments by Yang and Gruebele on λ-repressor,
this resulted in the emergence of a faster kinetic phase.6 This
new phase was interpreted as the downhill relaxation from a
vanishing barrier top, related to the so-called folding “speed
limit”.14 A large range of other mutants have been studied that
exhibit differences in both the stability and the rates and ampli-
tudes of this molecular phase. Mutations have been introduced

on the basis of needing a fluorescence probe for folding,15

altering helix propensity in the helices,13,16 removing specific
interactions,17 or reducing backbone flexibility.7 Still, the exper-
imentally intensive work of designing and expressing protein
mutants is to some extent based on chemical intuition. Compu-
tational screening methods can be of great help in designing
mutations in a systematic way.
Here we present one such approach that we apply to a simple

simulation model for λ-repressor. Contrary to most existing
methods, the focus here is in engineering the folding co-
operativity and dynamics instead of modulating protein
stability.18−24 The outline of the method is as follows. For a
given reference system we run dynamics simulations that sam-
ple both the folded and unfolded states. Assuming that the
distribution of states on a reaction coordinate is approximately
bimodal at the midpoint (at least, initially), we use the
proximity of the two peaks, relative to their broadness, as an
indication of cooperativity. We then estimate the effects on this
metric arising from mutation of each individual amino acid
residue. This description is in the spirit of the “cooperative
response” defined by Freire and coworkers.25 Finally, the results
are confirmed by running simulations on a selected mutant
and independently assessing the changes in the dynamics
using a Markov state model (MSM), which does not rely on
the reaction coordinate used in the engineering step.26 For
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computational tractability, we use as our reference a coarse-
grained, topology-based simulation model of λ-repressor. Using
our approach, we engineer the folding from being barrier-
limited under midpoint conditions to downhill. This allows us
to identify a new hot spot that, in the context of the simple
model, will maximally disrupt the cooperativity of folding. The
approach that we present is general and can be used to modu-
late barriers in either direction.

■ METHODS
Approach to Protein Engineering. In Figure 1a, we

present the general workflow for our method. An experimental
PDB structure file with the coordinates of the protein atoms is
the only input and is used to generate a coarse-grained, structure-
based (Go̅) model for the protein.27 The energy landscape of
this reference model is sampled via molecular dynamics (or
Monte Carlo) simulation, and the resulting trajectories pro-
jected onto a suitable reaction coordinate x. Although, for our
simulation model, we use the fraction of native contacts (Q) as
a progress variable, for more complicated models the reaction
coordinate can be variationally optimized.28,29 Using the distri-
bution of values of x for both the native (N) and unfolded (U)
states at the midpoint temperature (Tm), we define a co-
operativity metric
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where ⟨x⟩N and VarN(x) are, respectively, the mean and
variance of x computed over the native state and similarly for
the unfolded state. Intuitively it is easy to see that upon a
decrease in the free-energy barriers the mean values of x for N
and U will get closer to each other and their distributions will
become broader (Figure 1b). Hence, the lower the barrier the
lower the value of χ. In our method, we predict the changes in
this metric upon point mutations, which are systematically
introduced for every amino acid residue independently. On the
basis of these results, interesting mutants are selected, in this
case those with low values of χ. The folding dynamics of these
mutants are sampled by running new simulations, and the effect
of the mutations on the dynamics is assessed by using an MSM.

The advantage of the MSM is that it does not rely on the
projection on an order parameter,26 and hence it allows an
independent assessment of the effect of the mutation on the
dynamics. The procedure can be run iteratively to introduce
cumulative mutational effects.

Coarse-Grained Go̅ Model Simulations. We use a
protein model coarse-grained to a single bead per amino acid
residue located at the Cα atom.27 We construct the model using
the experimental X-ray structure of the λ-repressor mutant λYA
(3kz3,12 see Figure 2a). The potential-energy function is a sum

of harmonic terms for bonds and angles, a statistical potential
for the pseudodihedrals, and terms for nonbonded inter-
actions.27 Favorable nonbonded interactions are limited to re-
sidue pairs that are in contact in the reference structure (shown
in the contact map of Figure 2b). For one such pair of residues
(i,j) the interaction energy is defined as
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Figure 1. (a) Flowchart with the steps involved in the protein engineering method. (b) Theoretical free energy surfaces (top) and probability
distributions (bottom) as a function of an order parameter x under midpoint conditions. We show illustrative examples corresponding to the shift
from bimodal (two-state, red) to downhill (green) folding. U and N are the unfolded and native states respectively, and the dashed lines mark the
mean values ⟨x⟩U/N of the order parameter for the unfolded and native states.

Figure 2. (a) Cartoon representation of the experimental structure of
the YA mutant of the λ6−85 protein fragment (3kz3). We show the
heavy atoms of the experimental fluorescent probe W22 (cyan), Y33
(blue), and the L18 residue (yellow). (b) Contact map for the λYA
mutant including all native interaction pairs, as defined in the
structure-based model.
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where rij is the distance between Cα atoms in the instantaneous
conformation, σij is the same distance in the reference structure,
and εij is the residue-pair specific interaction energy,27 taken
from the Miyazawa−Jernigan matrix of contact energies.30

We run simulations of the Go̅ model using a modified
version of the Gromacs simulation package (version 4.0.531).
To propagate the dynamics based on the Langevin equation, we
use a leapfrog stochastic integrator with a time step of 10 fs.
The external friction coefficient was set to 0.1 ps−1. Bond
constraints were imposed using LINCS.32 For each protein
model, simulations were run at multiple temperatures. The
simulation data were projected onto suitable order parameters,
mainly the root-mean-square deviation (RMSD) and the
fraction of native contacts (Q). The data from simulations at
different temperatures were then combined using the weighted
histogram analysis method (WHAM).33 Error bars were
calculated from block averaging.
Computational Protein Engineering. To determine the

contribution that different residues make to the folding co-
operativity, for each mutated residue we reduce the strength
of its native interactions (those defined in the contact map,
Figure 2b) by a given amount (see the Results and Discussion).
For each of the mutants we calculate the values of ⟨Q⟩N and
⟨Q⟩U that appear in eq 1 by reweighting

⟨ ⟩ =
⟨ ⟩

⟨ ⟩
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where the average is computed over all of the saved con-
figurations from the reference simulations that are in state S ∈
{U,N}. In eq 3, ΔE is the difference in the energy between the
reference simulation and the mutant, Emut = Eref + ΔE. The
values of the variance VarS(Q) are calculated analogously
because VarS(Q) = ⟨Q2⟩s − ⟨Q⟩s

2. To restrict these averages to
U or N, we set a dividing line between these states to Q = 0.55,
which approximately corresponds to the maximum in the
free-energy barrier for the Go̅ models (see the Results and
Discussion). The reweighting approach used here is exact for
exhaustive sampling. We check the accuracy of this calculation
by estimating ⟨Q⟩ and Var(Q) from the first and second mo-
ments of the probability distribution P(Q) obtained from
WHAM (see Supporting Information (SI), Figure S1).
Markov-State Model. To assess the effects of the dynamics

in an independent way, we use an MSM methodology.34,35 We
assume that the dynamics of the system can be described as a
discrete-time Markov process using the transition matrix
T(Δt). The elements Tji of this matrix are the probabilities
that being in microstate i the system will be found in microstate
j after a lag time Δt. The dynamics of the system can then be
expressed using the discrete-time analog of the continuous-time
master equation26

+ Δ = Δ Δk t t k tp T p(( 1) ) ( ) ( ) (4)

where the column-vector p(kΔt) contains the populations of
each microstate at time kΔt. We calculate the elements of T
using the maximum-likelihood estimator36
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where N(Δt) = (N)ji is the transition count matrix that we
obtain directly from the discretized simulation trajectories (see
later). We compute equilibrium populations from the right

eigenvector of the stationary mode of the transition matrix (ψ0
R)

and relaxation times τi from its eigenvalues λi as τi = −Δt/ln λi.
Errors in these quantities are obtained using a bootstrap
method.37

Discretization, Data Clustering, and Assignment of
Transitions. Here we define the microstate space using
information from the native contacts alone by first discretizing
the conformations into strings and then clustering the strings
into microstates. The native contact map discretization is ade-
quate for a Go̅ model, as stable non-native interactions cannot
be formed; however, the process can be generalized to other
systems by considering the full contact matrix, including non-
native interactions. A recent study has found contact-map-based
Markov models to be more robust than RMSD-based ones.38

Discretization. In the same spirit as previous Ising-like
models for protein folding,39,40 we discretize the simulation
data assuming that each of the contacts has two possibilities:
either being formed (1) or not (0). Hence, for a protein with N
native contacts, there are a total of 2N possible strings of zeros
and ones, each corresponding to a contact map. In principle,
this discretization would rapidly become intractable for even a
small number of contacts. However, for λ-repressor (with a
total of 115 contacts in the contact map, see Figure 2b), we find
that in practice very few states are populated due to the limited
length of the simulation runs. (Out of more than 4 × 1034

possibilities, ∼34 788 different strings were visited in the 40 000
frames saved during a 4 μs simulation time of λYA at the
midpoint.)

Clustering into Microstates. The discretized trajectory is then
clustered using a K-medoids algorithm.41 Instead of randomly
initializing the cluster centers, we take advantage of the dynam-
ics trajectory, where contiguous snapshots will usually belong in
the same energy basin. We sequentially assign the time series of
strings to an existing cluster when the Hamming distance42

between the instantaneous string conformation and the cluster
center is shorter than a certain cutoff. If the Hamming distances
to the centers of several existing clusters are below the cutoff,
the lowest is chosen. After all the conformations have been as-
signed sequentially and the initial clustering has been generated,
we optimize it by reading the strings from the trajectory in a
randomized order and checking the assignment of each in-
dividual string to the clusters. The cluster centers are updated
in the event that a string is added, which is more central within
the cluster than the existing cluster center. The procedure is
repeated until no strings are reassigned in a randomized parsing
of the trajectory. We find that this procedure is very efficient in
generating structurally meaningful clusters as the initial assign-
ment already produces a very good first guess.
The final number of clusters depends on the value of the

Hamming distance cutoff, with lower values resulting in a
higher number of clusters. A low cutoff is, in principle, desirable
to produce finely resolved clusters. However, we find that the
fraction of the simulation data accounted for by the frequently
visited clusters, here defined as those visited for an aggregate
simulation time of at least 10 ns, is reduced with decreasing
cutoffs. We therefore choose a Hamming distance cutoff as a
compromise between resolving multiple clusters in both the
unfolded and native states and maximizing the number of
trajectory frames included in the frequently visited clusters.

Assignment. Transitions between microstates for the con-
struction of the master equation model are calculated directly.
A transition between microstate i and j is assigned every time
that the simulation jumps from one frequently visited cluster to
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another after a certain lag time Δt. When the trajectory reaches
an infrequently visited cluster j, we consider that it remains in
the initial microstate i. This procedure produces less accurate
kinetics than transition-based assignment,43 but in this case it
allows us to capture the qualitative differences between the
different models.

■ RESULTS AND DISCUSSION
Folding of the λYA Model Is Barrier-Limited at the

Midpoint. We start by analyzing the simulations of the coarse-
grained topology-based model of the λ-repressor. We use the

experimental structure of the λYA mutant (see Methods) that
differs from the wild type (WT) by only four internal amino
acid residues (92.5% sequence identity) and that is also very
similar structurally (RMSD = 0.7 Å). We choose this structure
as λYA has been proposed to fold downhill under native
conditions and to have a small (>3 kBT) barrier at its Tm. Also,
it was crystallized as a shorter sequence than the WT and in the
absence of DNA, which makes it a closer match to the
experimental construct.12,44

From the projection of our Go̅ model simulation trajectories
on the fraction of native contacts (Q), we find primarily two
interconverting states under midpoint conditions (Figure 3a).
The potentials of mean force for the λYA mutant (Figure 3c)
indicate that the protein folds downhill under native conditions
and is barrier-limited at the simulation midpoint (Tm ≃ 310 K),
consistent with the experimental results.10 On the basis of the
projection on Q, the barrier is 2.3 kcal/mol at the midpoint
(i.e., ΔGU† = 3.7kBT), in agreement with results by Gruebele
and coworkers.12 We also observe a sparsely populated
intermediate state on the folded side of the dominant barrier
(Q ≃ 0.7), with helix 5 slightly detached from the protein core.
This substate has been described before in coarse-grained45 and
implicit solvent simulations.16 Additional support for its pre-
sence comes from explicit solvent simulations, where many
contacts that involve helix 5 form late in transition paths,46 the
low helical propensity predicted by AGADIR,47,7 and the high
B factors.12 We note that we have also found this state to
appear when the WT structure is used to construct the Go̅
model, making this a robust prediction.

Identification of Hot Spots for Protein Engineering. In
the context of the simple Go̅ model a natural way of simulating
mutations is just scaling the contact energies εij in eq 2. For this
scaling, we choose a value of 0.5 (i.e., scaling by half the contact
strength of every contact made by the mutated amino acid

Figure 3. (a) Time series for the projection of the simulation
trajectory for λYA on the fraction of native contacts (Q) at 310 K. (b)
Heat capacity thermogram calculated from WHAM. (c) Potentials of
mean force at native (top) and midpoint (bottom) conditions.

Figure 4. (a) Normalized value of the cooperativity metric χ from the native contacts Q upon a single-point mutation for every amino acid residue in
the λYA sequence. Values under a threshold of 0.9 are shown in green. Secondary structure is shown schematically under the sequence. (b)
Correlation between χ calculated from Q and χ calculated from the RMSD from native.(c) Cartoon of the structure of λ-repressor with color code
indicating the value of χ. The color scale goes from high (red) to low (green) χ. Spheres are shown for the residues with >10% decrease in χ. The
transparent surface envelops the residues identified by Gruebele and coworkers to be the folding core of the protein (see text).

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp405904g | J. Phys. Chem. B 2013, 117, 13435−1344313438



residue) to calculate the cooperativity metric χ. This type of
conservative mutation, corresponding to a small decrease in the

strength of the interactions formed by the selected residue, is
likely to destabilize the folded state;48 the effect is similar to the
small perturbations used in experimental ϕ-value analysis49

rather than the disruptive effects that might arise from intro-
ducing a more bulky or charged group. In Figure 4, we show
the resulting values of χ of each of the “single-point mutants”
normalized by the value for λYA, which are generally very close
to that for the reference simulation, suggesting very small changes
in the cooperativity. The robustness to mutations is in agreement
with a number of studies that suggest that cooperativity and free-
energy barriers are carefully selected features of protein-energy
landscapes.50,51 However, there are a number of cooperativity hot
spots that, according to this calculation, can reduce the folding
cooperativity (shown in green in Figure 4a).
To calculate the cooperativity metric χ, we are relying on the

adequacy of Q as a reaction coordinate, but the results could be
different for alternative progress parameters for the folding
reaction.29 In Figure 4b, we compare the estimates of the
cooperativity metric from the fraction of native contacts (χQ)
and the RMSD (χRMSD). We find that the agreement between
the two estimates is extremely good, with a Pearson correlation
coefficient of R = 0.88, that increases to 0.97 if we remove the
outlier F76. The high χQ and low χRMSD for this mutation point
to a deviation from the expected behavior of the mutational
approach (i.e., the model probability distributions from
Figure 1b). For F76, the mutation results in a population
shift from the native to the intermediate, which differently
affects the estimates of ⟨Q⟩ and Var(Q) from different reaction
coordinates (see SI, Figure S2). It is therefore advisable to

Figure 5. Time series for the projection of the simulation trajectory for
the λYA mutants L18×0.5 (blue) and L18×0 (green) on the fraction
of native contacts (Q) at their midpoint temperatures. (b) Heat
capacity thermograms calculated from WHAM for the mutants. (c)
Potentials of mean force under native (top) and midpoint (bottom)
conditions. We show the results for the WT (red) for reference.

Figure 6. Potentials of mean force (in kcal/mol) for Q and the RMSD to native for the different models for λ-repressor: λYA (a), L18×0.5 (b), and
L18×0 (c). In each case, we overlay ellipsoids centered at the average RMSD and Q values for the cluster with principal axes of one standard deviation. (d)
Snapshots and average contact maps for the seven most populated clusters for the L18×0 model, with the same color code and names as those in panel c.
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examine the distributions that are used to calculate χ, as this will
allow one to spot possible deviations from the expected behavior.
Although alternative descriptions of χ, for example, based on the
cooperativity parameter Ωc

52 or the calorimetric criterion,53 may
be able to overcome this limitation, we do not pursue them here.
We also analyze the distribution of χ values in the 3-D

structure of the λ-repressor (Figure 4c). A number of hot spots
cluster around a central core formed by helices 1 and 4 and the
turns between helices 3−4 and 4−5. This indicates that the
network of contacts formed by these residues is the most
sensitive part of the protein for folding cooperativity. The
cluster of hot spots that we identify is in remarkable agreement
with the region that Gruebele and coworkers have expressed in
the construct λblue1, consisting of the two-helix bundle formed
by helices 1 and 4 connected by linkers. They found that λblue1
folds with similar Tm and rates as the λ6−85 fragment, indicating
that this region comprises the minimal folding core of the
protein.54 Looking at the predicted values of our cooperativity
metric, we find that out of the 23 residues with more than a
10% decrease in χ, 18 are within the cooperative core proposed
by Gruebele and coworkers (Figure 4c). Although our results
also agree with some of the experimental mutations (e.g.,
Asp14), in other cases our simple method for changing the
energetics fails to predict changes in the barriers derived from
analysis of T-jump experiments, indicating that a more detailed
energy function will be needed for quantitatively reproducing
changes in Tm values and free-energy barriers. Our method,
however, is a powerful tool for making approximate predictions
that can direct mutational analysis from experimentalists.
We focus on the Leu18 single-point mutant, which according

to our calculation would produce the greatest decrease in χ.
(See Figure 4a,b.) To test this prediction, we run simulations of
the Go̅ model where we scale the εij of the L18 contacts by
0.5 (L18×0.5) and where we remove the contact altogether
(L18×0), leaving only an excluded volume term. In the
projection on Q we see that transitions between the folded and
unfolded states are much faster for the L18×0.5 mutant and
become entirely diffusive for L18×0. (See Figure 5a.) From
the WHAM analysis of the simulations, we confirm the results
of our prediction: upon mutation, the heat-capacity curves
become considerably broader, a characteristic signature of the
reduction of the cooperativity55 (Figure 5b). Also, potentials of
mean force on Q reveal a decrease in the midpoint free-energy
barrier from 3.7 kBT (λYA) to 1.4 kBT (L18×0), making the full
mutant an apparent downhill folder, at least according to this
projection (Figure 5c). The differences in the free-energy
barriers are due to small changes in both the enthalpic and
entropic contributions to the free energy (see SI, Figure S3).
Dynamics of the Model Mutants from a Markov State

Model. The reduction of the free-energy barriers we observe
could be due to the choice of a suboptimal progress coordinate
for folding. To assess the effect on the dynamics independently
of the projection on Q, we construct a transition network from
the discretized simulation trajectory (see the Methods). The
K-medoids algorithm results in 21 to 23 clusters, accounting for
89−93% of the total simulation time. In Figure 6. we show
the clusters represented by the mean and standard deviation of
the values of Q and RMSD of the corresponding confor-
mations. When overlaid on the potential of mean force, the
clusters appear reasonably well-separated, particularly for the
intermediate to high values of Q. It is important to note that
while for λYA there is a gap between clusters on the folded and
unfolded sides of the barrier (Q ≃ 0.55), for the L18×0 mutant

such a gap does not exist as a result of the non-negligible
population in the barrier region. (See Figure 6c.) In Figure 6d,
we show snapshots corresponding to the seven most populated
clusters for the L18×0 mutant, including folded (n) and
unfolded (u) clusters and multiple clusters in the transition
region (t). Some of the clusters look quite structurally diverse.
However, this is natural because we have used the native
contact-map for the clustering. The average contact maps
clearly indicate the structure formation events that are taking
place en route to folding.
We construct the MSM for the three different models with a

lag time Δt = 1 ns, for which eigenvalues are approximately
converged, as required for Markovian dynamics (not shown).
We analyze the relaxation times, τi, that we calculate from the
eigenvalues of the transition matrix, T. (See Figure 7a.) The
slowest mode is about one order of magnitude slower for the
λYA than it is for the L18×0 mutant, with the L18×0.5 mutant
being somewhere in between. According to the sign structure of
the right eigenvectors ψ1

R, this mode in fact corresponds to
exchange between high Q and low Q microstates (i.e., folding,
see Figure 7b). Hence the speedup in τ1 is consistent with the
reduction in the free-energy barrier in the projection on Q.
Also, for the two mutants we find a reduction of the gap
between the first and second slowest modes, a characteristic
feature of downhill folding.56 Interestingly, the next few modes

Figure 7. (a) Spectrum of relaxation times for the MSM of the λ-
repressor model and the L18 mutants. (b) Top row shows potentials
of mean force (in kcal/mol) with overlaid circles indicating the mean
values of Q for the different microstates of the MSM. Error bars
indicate one standard deviation. The next three rows show the values
of the slowest right eigenvectors ψi

R projected on Q. Shaded areas are
shown to illustrate the sign structure of the eigenvectors.
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appear at very similar values of the relaxation time for all three
models, although they correspond to substantially different
processes. For example, in the case of the λYA, the second
mode ψ2

R corresponds to the exchange of the native cluster with
the helix-detached intermediate, while for the mutants a more
diverse set of configurations is involved, including clusters that
in the two-state case would be at the top of the barrier (Q ≃
0.55, see Figure 7b).
To gain further insight into how the dynamical signatures in

our model mutants may result in different signals in kinetic
experiments, we calculate relaxations using the derived
transition matrices. We use eq 4 to propagate the dynamics
from a theoretical initial distribution that we set to be the fully
folded microstate (i.e., p(0) is a vector of zeros but for the fully
folded state N). To calculate a proxy for the signal of the
most usually studied experimental probe, the fluorescence of
Trp22, we use the fraction of native contacts of this residue
(QW22, Figure 8a). The relaxation is faster as we go from λYA
(Figure 8b) to the engineered models (Figure 8c,d). However,
the two-state approximation also starts to become worse as we

approach the downhill mutant, which requires three exponen-
tials to fit the data. The fastest phase in the downhill mutant
appears on a time scale similar to the fast eigenmodes of the
MSM. This kinetic analysis hence validates the results from the
projection approach, confirming the decrease in free-energy
barriers, speed-up in rates, and emergence of “strange kinetics”.

■ CONCLUSIONS
We present a new approach to computational protein engi-
neering that can be very useful as a tool to guide the search for
relevant mutants to be studied experimentally. In particular, we
engineer the transition from two-state to downhill folding by
tuning the cooperativity of a protein model that folds in a two-
state fashion at the midpoint and reaches downhill folding upon
single-point modifications in the simplified energy function.
The method is novel in that it focuses on modulating the
probability distribution for a given order parameter and
therefore accounts for the ensemble nature of protein folding.
In this respect, our approach is similar to SMArtEPS, an Ising-
model-based method recently developed to predict changes in
stability in protein mutants.24 In this case, we assume that Q is a
good order parameter for folding and modulate the probability
distribution for this parameter. This is a reasonable assumption
in the context of a Go̅ model. In more complicated scenarios, a
step involving the optimization of the reaction coordinate28,29

can be incorporated as part of step 2 in the algorithm (Figure 1a).
Also, we approximate the probability distribution on Q as
being bimodal (see eq 1). This may break down when the two-
state approximation does not hold, particularly if we use more
detailed (i.e., atomistic) protein models. However, we note that
for a large subset of single-domain proteins studied with micro-
second atomistic MD simulations, the distributions along a
coordinate are still largely two-state,46 and many small domains
have been shown to fold in a two-state fashion experimen-
tally.57,58 While most methods focus on recovering the correct
Tm, here emphasis is placed on dynamic aspects. We validate the
results of the engineering by comparing the MSM of the original
protein model with that of the mutants. In the context of a more
detailed model it will be possible to make direct comparison with
the exact kinetic signatures observed for different mutants.
The work that we present here is based on a simple topology-

based model that considers only the interactions present in the
native conformation of the protein. Non-native interactions
could modify the emerging picture, although these have been
found to have only relatively small effects on protein folding
cooperativity.59 Our results do, however, stand by themselves, as
there are a number of experimental references that we are able to
reproduce. First, the general features of folding of λYA such as
two-state folding near the midpoint12 are captured by the simple
Go̅ model. In addition, we are able to locate a cooperative
folding core that overlaps with that identified by Gruebele and
coworkers.54 One possible concern is whether the proposed
mutants will be stable. Although it is not possible to answer that
question in advance, we speculate that they will, as our estimate
of the melting temperature for L18×0 (Tm ≃ 290 K) involves a
decrease to 92% of the Tm of the original model (315 K), while
the experimental Tm of λYA is 344 K.
Our approach is particularly promising in the context of

a more detailed description of the effects of mutations in
the model for the interactions. For example, we show one
possibility here, in which we replace the εij of the residue pairs
that change upon mutation with the corresponding values from
the Miyazawa−Jernigan interaction matrix30 and substitute the

Figure 8. (a) Cartoon representation of λYA. Residues that form
contacts with the W22 side chain are shown in atomic detail for heavy
atoms and as transparent spheres centered in the Cα. (b) Decay of the
normalized fraction of native W22 contacts, QW22, for λYA (circles),
with lines corresponding to single (violet), double (cyan), and triple
(magenta) exponential fitting expressions. Residuals are shown in the
bottom panel. (c) Same for L18×0.5. (d) Same for L18×0.

Figure 9. (a) Correlation between experimentally determined Tm
values and those calculated by substituting the εij involving the
mutated residue in the simulations. The correlation line is shown in
gray. (b) Histogram of the relative changes in εij from λYA.
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knowledge-based torsion terms according to the mutation.
Using this method for the computational protein engineering,
the agreement with the experimental Tm for a database of 17
different mutants8,10,12,13 is very good (see Figure 9a), although
this does not guarantee that the barrier heights will be
reproduced. Interestingly the changes in the εij terms obtained
by swapping the Miyazawa−Jernigan contact energies required to
produce the mutations from our reference sequence (Figure 9b)
support the scaling factors (particularly the 0.5 scaling) used
in this study. Taken together, these results suggest the future
directions for refining the current approach with a more
accurate description of the energetics. This will be possible by
carefully calibrating the results of the model against extensive
data sets of mutation effects in the thermodynamics60 and
kinetics61 of protein folding.
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(58) De Sancho, D.; Muñoz, V. Integrated Prediction of Protein
Folding and Unfolding Rates from Only Size and Structural Class.
Phys. Chem. Chem. Phys. 2011, 13, 17030−17043.
(59) Clementi, C.; Plotkin, S. S. The Effects of Nonnative
Interactions on Protein Folding Rates: Theory and Simulation. Protein
Sci. 2004, 13, 1750−1766.
(60) Gromiha, M. M.; An, J.; Kono, H.; Oobatake, M.; Uedaira, H.;
Sarai, A. ProTherm: Thermodynamic Database for Proteins and
Mutants. Nucleic Acids Res. 1999, 27, 286−288.
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