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Abstract The D1 protein of Photosystem II (PSII),

encoded by the psbA genes, is an indispensable component

of oxygenic photosynthesis. Due to strongly oxidative

chemistry of PSII water splitting, the D1 protein is prone to

constant photodamage requiring its replacement, whereas

most of the other PSII subunits remain ordinarily undam-

aged. In cyanobacteria, the D1 protein is encoded by a

psbA gene family, whose members are differentially

expressed according to environmental cues. Here, the

regulation of the psbA gene expression is first discussed

with emphasis on the model organisms Synechococcus sp.

and Synechocystis sp. Then, a general classification of

cyanobacterial D1 isoforms in various cyanobacterial spe-

cies into D1m, D1:1, D1:2, and D10 forms depending on

their expression pattern under acclimated growth condi-

tions and upon stress is discussed, taking into consideration

the phototolerance of different D1 forms and the expres-

sion conditions of respective members of the psbA gene

family.
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Introduction

Cyanobacteria, algae, and higher plants have a unique

capacity to use water as a source of electrons in reducing

CO2 to various organic compounds. In organisms per-

forming oxygenic photosynthesis, the linear electron

transfer (light reactions) takes place in the thylakoid

membrane-embedded protein complexes Photosystem II

(PSII), Cytochrome b6f (Cytb6f), and Photosystem I (PSI).

These multiprotein complexes harness solar energy and,

together with ATP synthase, produce reducing power

(NADPH) and chemical energy (ATP) for production of

carbohydrates. These carbohydrates together with oxygen,

the side product of photosynthetic electron transfer, enable

all heterotrophic life on Earth.

The core of PSII multisubunit pigment protein complex

is composed of the D1 and D2 proteins, which are involved

in ligating most of the redox active components of PSII

including the Mn4Ca cluster, the site of water oxidation.

The primary charge separation in PSII results in highly

oxidating chlorophyll (Chl) cation P680?, which is the

only biological compound strong enough to drive water

oxidation. The recombination of Chl cation P680? with

downstream electron transport cofactors pheophytin (Phe)-

or the primary stable electron acceptor plastoquinone QA
-

can lead to the formation of triplet Chl states and ultimately

to the formation of singlet oxygen, which in turn may

damage the photosynthetic machinery. In addition to var-

ious protective mechanisms [1, 2], the PSII repair cycle

functions to replace the damaged reaction centre protein
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D1 with a de novo synthesized copy [3, 4] (Fig. 1). The D1

protein is degraded and replaced by a new copy every 5 h

under low light growth conditions, and every 20 min under

intense illumination [5], to guarantee the maintenance of a

steady-state level of the D1 protein in PSII complexes. Due

to the capacity of photosynthetic organisms to increase the

turn-over rate of the D1 protein upon increasing light

intensity, a decrease in the total amount of D1 protein

occurs only upon prolonged and severe light stress, which

results in impairment of the photosynthetic capacity, i.e.,

photoinhibition [3, 4]. Hence, the expression of the psbA

gene(s) encoding the D1 protein must be under strict

control to guarantee the function of the photosynthetic

machinery under ever-changing environmental conditions.

In higher plants, the psbA gene encoding the PSII

reaction centre protein D1 is present only in one copy,

while all cyanobacteria have a small psbA gene family

ranging from one to six members (Table 1; http://www.

kazusa.or.jp/cyano/, http://genome.jgi-psf.org/). In the

chloroplast genome of some conifers, however, the psbA

gene has been duplicated [6]. Despite the difference in

gene number, the similarity of the plant and cyanobacterial

strategies in psbA gene expression is amazing, and is

exemplified by the studies showing the suitability of higher

plant psbA gene promoter to control the expression of the

psbA gene in cyanobacteria [7, 8]. Still, the presence of

multiple psbA genes encoding different D1 isoforms

in cyanobacteria is an indication of their importance in

regulatory mechanisms responsible for maintaining a

functional PSII upon changing environmental conditions in

natural habitats of cyanobacteria. Regulation of the psbA

gene family members in cyanobacteria follows at least two

distinct mechanistic principles. One strategy is to replace

the D1 protein present in PSII centres under unstressed

conditions with a different form when the stress is detected

(Fig. 2a). The other strategy is, upon stress conditions, to

increase the turn-over of the same D1 protein produced

under basic growth conditions (Fig. 2b). Both of these

strategies have been demonstrated in more than one

cyanobacterial species. Yet a new regulation mechanism

was recently documented in several cyanobacterial species

concerning the divergent and ‘‘silent’’ psbA genes, which

were proven to be induced by microaerobic/low oxygen

conditions [9, 10].

Fig. 1 Simplified scheme of the

PSII repair cycle. Functional

PSII dimers are inactivated by

light, and the D1 protein is

damaged. After partial

disassembly of PSII, the

damaged D1 protein is accessed

by the FtsH protease, and

degraded. Subsequently, the

ribosome-nascent D1 chain

complex is targeted to the

thylakoid membrane, and the

D1 protein is co-translationally

inserted into the membrane

and the PSII complex. The

C-terminus of the D1 protein is

post-translationally processed,

PSII is re-assembled, activated,

and the PSII dimers are formed
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A vast number of studies focusing on regulation of

cyanobacterial psbA gene expression have been published

during the past two decades. Although more and more

details are currently being disclosed, the ultimate mecha-

nisms concerning especially the trans-acting factors

regulating the psbA gene expression still remain to be

revealed. It has also become clear that, although the

increase in psbA transcripts is a general response of cyano-

bacteria upon shift of the cells to high light intensity, each

strain seems to have its own characteristic regulation

mechanisms which cannot be directly generalized to other

strains. Here, we have summarized the current knowledge

about regulation of psbA gene expression with major focus

on studies performed with model organisms Synechococcus

elongatus sp. PCC 7942 (hereafter, Synechococcus 7942)

and Synechocystis sp. PCC 6803 and 6714 (hereafter,

Synechocystis 6803 and 6714, respectively). Although at

least in some species also valid to the psbA genes, we have

here excluded the circadian regulation of gene expression,

which was recently reviewed in [11]. We apologize for not

being able to present results from all published experi-

mental systems due to space limitation and for the sake of

clarity.

Regulation of psbA gene expression in cyanobacteria

As typical to eubacteria, the psbA gene expression can be

expected to be regulated at the levels of transcription

initiation, elongation, and termination, mRNA stability as

well as translation. In cyanobacteria, the initiation of

transcription is considered to be the most crucial determi-

nant of gene expression. RNA polymerase holoenzyme,

composed of the catalytically active core and one of the

several sigma factors, initiates transcription. The sigma

factors are responsible for promoter recognition, and the

chromatine structure along with various cis-acting ele-

ments up- and downstream from the transcription start site

regulates the level of gene expression. It has been shown

that the principal sigma factor (Group 1) specifically rec-

ognizes the hexameric -35 and -10 regions located in

the promoter region of many cyanobacterial psbA genes

[12–14]. The light-responsive expression of the psbA gene,

however, seems to require the function of SigB, SigD, and

SigE [15–18].

The tertiary structure of DNA is known to have a marked

effect on gene expression [19]. AT repeats on one face of

the DNA, often found in the region -240 to -40 from the

transcriptional start, influence the formation of DNA double

helix, and these bends may modulate transcriptional activ-

ity. An intrinsic curvature composed of several AT tracts

has been found in the upstream region of psbA genes in

many organisms including Synechocystis 6803 and Micro-

cystis aeruginosa K-81 [20, 21]. Modification of these

tracts was observed to severely downregulate the tran-

scription of the psbA gene, which, however, still remained

light-responsive in nature.

Specific features of psbA gene regulation have mainly

been addressed in studies with Synechococcus elongatus

PCC 7942 and Synechocystis 6803 and 6714. Below, we

focus on regulation of psbA gene expression in these

species.

psbA gene expression in Synechococcus elongatus PCC

7942

In Synechococcus 7942, the three psbA genes encode two

distinct D1 protein isoforms, D1:1 being encoded by psbAI

Table 1 The psbA genes and the D1 isoforms present in various cyanobacterial species, classified according to their functional features

D1 forms D1m D1:1 D1:2 D10 Selected references

Synechocystis sp. PCC 6803 1 protein

psbA2

psbA3

1 protein

psbA1

[9, 10, 52, 54–58]

Anabaena sp. PCC 7120 1 protein

psbA1

1 protein

psbA2 psbA3 psbA4

1 protein

psbA0

[9, 10, 95]

Thermosynechococcus

elongatus BP-1

1 protein

psbA1

1 protein

psbA3

1 protein

psbA2

[9, 91, 96]

Synechococcus sp. PCC 7942 1 protein

psbA1

1 protein

psbA2

psbA3

[22–24, 27, 28, 35]

Gloeobacter violaceus PCC 7421 1 protein

psbA1

psbA2

psbA3

1, maybe 2 proteins

psbA4 psbA5

[88]
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and D1:2 by psbAII and psbAIII [22–27]. Under low light

conditions (125 lmol photons m-2 s-1), more than 80%

of total psbA transcripts originate from psbAI, but a shift of

Synechococcus 7942 cells to high light (750 lmol pho-

tons m-2 s-1) decreases the transcription of psbAI while

the transcription of psbAII and psbAIII increases [28–31].

Due to enhanced turnover and differences in transcription

activity between the psbAI and the psbAII and psbAIII

genes, a rapid interchange of the D1:1 form by D1:2 occurs

upon shift of cells to high light, which in turn is important

for adaptation of cells to changing environmental cues [23,

24, 27, 32–34]. Moreover, mutant strains of Synechococcus

7942 [22] in which the exchange of D1:1 to D1:2 is

blocked suffer enhanced inhibition of PSII under UVB and

high light illumination [35], showing that the two isoforms

are functionally distinct.

All three psbA genes in Synechococcus 7942 give rise to

transcripts of 1.2 kb with 50 ends comprising 49–52 bases

upstream from the coding region (Fig. 3a; [22]). The con-

stitutive expression of the psbAII and psbAIII genes is

driven by basal r70 type promoter elements residing

between -39 and ?12 for psbAII and positions -38 and -1

for psbAIII [30], whereas in psbAI the r70 promoter

TATAAT is replaced by an atypical -10 element, TCTCCT

[22]. In addition to the promoter of the psbA gene, there are

regulatory elements within the transcribed region, which

enhance gene expression and confer light-responsiveness.

psbAI promoter region encompasses nucleotides -54 to

?1, and one or more proteins bind specifically to the psbAI

upstream region (?1 to ?43; [36, 37]). At least one of the

regulatory factors is shared with psbAI and psbAII [37],

whereas the gel mobility shift experiments have shown

binding of a de novo synthesized protein factor specifically

to the 50 end (66 bp) of the psbAI coding region [38]. This

so far uncharacterized protein factor is essential for tran-

scriptional activation of the psbAI gene [38]. Moreover,

PsfR protein has been identified as a regulator of psbAI

gene expression [39]. Overexpression of psfR results in

enhanced expression of psbAI without an effect on psbAII

and III. However, knock-out of psfR did not prevent psbAI

expression. Thomas and coauthors [39] have suggested that

PsfR may rather regulate gene expression via protein–

protein interactions than via direct binding to the psbAI

promoter. Moreover, a recent study suggested that the D1

protein might regulate its own synthesis: gel mobility shift

experiments provided evidence that the degradation prod-

ucts of the D1:1 protein bind to the upstream region (-106

to -10) of the psbAI gene, thereby possibly regulating

the efficiency of transcription [40]. Additional upstream

sequences enhance expression but are not needed for light-

responsive regulation.

Both psbAII and psbAIII also bind regulatory proteins in

the regions ?1 to ?41 in psbAII and -2 to ?38 in psbAIII.

One such protein is CmpR, which is required for expres-

sion of the best-characterized low-CO2 inducible operon

cmpABCD [41]. The exact binding site of the CmpR pro-

tein has been shown to be the palindromic TTA-N7-TAA

and TTA-N8-TAA sequences in the enhancer elements of

psbAII and psbAIII, respectively [41]. Knock-out of CmpR,

however, did not completely stall the expression of the

psbA genes. Moreover, the region between the -10 basal

Fig. 2 Mode of expression of the psbA genes. a Regulation of the

psbA genes in Synechococcus 7942, which contains the D1:1 and

D1:2 forms. Upon standard conditions, the psbAI gene is actively

transcribed while the psbAII and psbAIII genes are repressed, and

accordingly the D1:1 isoform is synthesized and accumulates in PSII

complexes. High light (or other stresses resulting in thiol-reducing

conditions) activates the transcription of the psbAII and psbAIII genes

with concomitant inactivation of psbAI. Consequently, the D1:2

isoform accumulates in PSII complexes. Adaptation to the new

ambient conditions reverses the situation. b Regulation of the psbA2
and psbA3 genes in Synechocystis 6803, which contains the D1m and

D10 forms. Under standard conditions, the psbA1 gene is silent and

most of the psbA transcripts and the D1m protein are produced by the

psbA2 gene. Intense illumination results in enhanced transcription rate

of the psbA2 and especially that of psbA3, providing transcripts for

rapid D1 turnover. Transcription of trace amounts of psbA1 gene also

occurs at high light intensity, but no D10 protein has been found to

accumulate in PSII complexes. c Regulation of the ‘‘silent’’ psbA1
gene, which is induced under low O2 pressure and encodes the D10

form. Transcript or protein products of the psbA1 gene in Synecho-
cystis 6803, previously thought to be a silent gene, cannot be detected

under standard growth conditions. Microaerobic or anaerobic condi-

tions result in activation of transcription

3700 P. Mulo et al.



promoter and the Shine–Dalgarno sequence of the psbAII

gene in Synechococcus 7942 shares similarity with that in

Microcystis aeruginosa K-81 [42]. This AT-rich region

upstream from the Shine–Dalgarno sequence seems to

function as a negative cis-element, which might bind reg-

ulatory factors and/or ribosomes affecting accumulation of

the psbAII transcripts [42]. Additionally, upstream of the

basal promoters are negative elements that depress the

expression [30].

Besides the 1.2-kb psbAII transcripts, the psbAII gene

also produces 1.6-kb transcripts which originate 419 bp

upstream from the start site for the 1.2-kb psbAII mRNA.

This dicistronic message contains a 342-bp ORF immedi-

ately upstream of the psbAII coding region [28]. Expression

of the 1.6-kb transcript, however, is not light dependent

[43]. Whether the gene product of this ORF is somehow

involved in the regulation of psbA gene expression, for

example as a regulatory factor, remains to be elucidated.

Induction of psbAII/III messages occurs not only at high

light intensity, but also upon a shift of the cells to low

temperature under constant low light intensity, to UVB

irradiation as well as to anoxia and to light favoring exci-

tation of PSI [35, 38, 44–46]. However, neither heat shock

nor oxidative stress produced similar responses as gener-

ated by an increase in light intensity [32]. It is conceivable

that the reducing power, produced by the two photosys-

tems, cannot be used efficiently in carbon assimilation

under stress conditions, thus leading to elevated levels of

thiol reductants. Reducing conditions, in turn, are likely to

be sensed as a signal to induce the expression of psbAII/III.

Indeed, addition of reduced DTT to the cell suspension

was shown to induce the psbAII/III gene expression and

down-regulation of the psbAI gene expression. Inhibitors

of photosynthetic electron transfer chain (DCMU and

DBMIB) did not cause any changes in psbA gene expres-

sion when added under low light conditions, but both

chemicals dramatically reduced the induction of psbAII/III

when added upon a high light shift. These results indicate

that the thiol redox state rather than the redox state of the

plastoquinone pool regulates psbA gene expression in

Synechococcus 7942 [46].

Besides redox regulation, the expression of the psbA

genes has been suggested to be controlled via a blue light

photoreceptor. Shift of cells to low-fluence blue light was

shown to induce transcription of the psbAII/III genes, and

this induction could be reversed by a subsequent pulse of

red light [47]. Since blue light has been shown to regulate

chloroplast gene expression in higher plants, it is possible

that components of an ancient blue light photosensory

pathway are evolutionarily conserved during the diver-

gence of plant chloroplasts from cyanobacteria [48, 49].

One possible candidate for a blue light receptor is NblS, a

putative histidine kinase, which is involved—among other

things—in controlling psbA gene expression [50].

Concomitantly with upregulation of psbAII and psbAIII

the amount of psbAI transcripts decreases as an immediate

Fig. 3 Regulatory elements of the psbA genes. a Regulatory elements

of the psbAI, psbAII and psbAIII genes in Synechococcus 7942 (not in

scale). The region composing the 1.2 kb transcript of each psbA gene

is shown as a thick line. The coding region (starting with ATG) is

marked as a solid black line and the 50UTR as a striped line with a

number below indicating the length in base pairs (bp). For each gene,

the -10 and -30 regulatory elements (atypical TCTCCT in psbAI)
are shown. The black triangles show the approximate binding sites for

various (putative) trans-acting regulatory factors. (1) One psbAI-
specific and at least one regulatory factor shared with psbAI and

psbAII bind to the 50 end of the psbAI coding region. (2) The

degradation products of the D1:1 protein bind to the upstream region

of the psbAI gene. (3–4) CmpR increases the expression of psbAII and

psbAIII by interacting with the TTA-N7/8-TAA sequence. Other

uncharacterized regulatory proteins may be involved as well, and the

AT-rich region downstream from the basal elements of the psbAII
gene may additionally affect the gene expression. Additional negative

and positive elements upstream of the basal promoter have been

identified (not shown), but the interacting trans-factors remain to be

elucidated. b Regulatory elements of the psbA1, psbA2 and psbA3
genes in Synechocystis 6803 (not in scale). The region composing the

1.2 kb transcript of each psbA gene is shown as a thick line. The

coding region (starting with ATG) is marked as a solid black line, and

the 50UTR as a striped line with a number below indicating the length

in base pairs (bp). The transcription start site of the psbA1 gene is not

known. For each gene, the -10 and -30 regulatory elements are

shown. The -30 site in psbA1 differs significantly from those of

psbA2 and psbA3. The black triangles show the binding sites

(TTCAA-N4-TTACAA) of at least one putative transcriptional

repressor, which stalls transcription of the psbA2 and psbA3 genes

in the dark

The psbA gene family 3701



reaction when Synechococcus cells are shifted to bright

light [29, 51]. This is mostly due to destabilization of the

psbAI transcript (T1/2 = 10–12 min), which is dependent

on the 52-nt untranslated leader sequence [29, 51]. Desta-

bilization of the psbAI transcript is accompanied by a

decrease in transcription activity of the psbAI gene [37].

Similarly, the degradation of the psbAIII mRNA has been

shown to be accelerated at high light intensity, but the

psbAII transcripts are long-lived and apparently not subject

to post-transcriptional regulation [29]. Determinants of

psbA mRNA turnover have been shown to reside within the

untranslated leader regions of the psbA genes as well as

within the coding region [51]. The region encoding the first

membrane span of the D1 protein is essential for the sta-

bility of both the psbAI and psbAII transcripts, probably via

pausing of ribosomes, which protects the mRNAs [51].

In contrast to an immediate response of cells to high

light, prolonged exposure of Synechococcus 7942 cells to

high light leads to an increased accumulation of all psbA

transcripts, including psbAI. This was shown to result from

restabilization of the psbAI transcript after several hours at

high light intensity [32]. Nevertheless, despite vigorous

reaccumulation of psbAI, no corresponding increase in the

amount of D1:1 could be detected in the thylakoid mem-

brane of high light-adapted Synechococcus 7942 cells [32]

probably due to a high sensitivity of D1:1-containing PSII

centres to photoinhibition.

psbA gene expression in Synechocystis sp. PCC 6803

and 6714

In Synechocystis sp., only one type of D1 (D1m, see below)

protein, encoded by both the psbA2 and psbA3 genes, has

been detected under normal growth conditions as well as

under most stress conditions [52]. However, recent studies

have revealed anaerobiosis-induced expression of the

psbA1 gene [9, 10], which was previously thought to be a

silent pseudogene. The transcript from psbA2 accounts for

90% and from psbA3 for 3–10% of the total psbA transcript

pool under normal growth conditions (ca. 50 lmol pho-

tons m-2 s-1), whereas under these conditions the psbA1

gene remains silent [52–55]. Intense illumination increases

the transcription of the psbA2 and psbA3 genes, and this

induction is not affected by addition of electron transfer

inhibitors [56–61]. Studies using S1 nuclease protection

assay, micro-arrays [62] and northern blotting [63] have

shown that UVB exposure of the cells also induces an

increase in the total psbA transcript pool primarily through

increased accumulation of psbA3 transcripts [57, 64].

However, inactivation of either psbA2 or psbA3 up-regu-

lates the expression of the intact gene to the normal wild

type level without marked effects on cell metabolism,

indicating that either gene alone is sufficient to support

autotrophic growth of the cells [54, 63]. Thus, Synecho-

cystis pattern of supplemental expression of an identical

protein isoform under excitation stress is distinct from the

D1 isoform exchange found in Synechococcus 7942.

In Synechocystis 6803, both the -35 and -10 elements

are present in the upstream regions of the psbA2 and psbA3

genes (Fig. 3b). The transcription start points for psbA2

and psbA3 have been mapped to positions -49 and -88,

respectively, relative to the ATG site [52]. The promoter

region of psbA1 differs significantly from those of psbA2

and psbA3, especially in the -35 element, which is iden-

tical in psbA2 and psbA3. psbA1 also lacks a Shine–

Dalgarno sequence, which, however, is not absolutely

required for successful translation [65]. The transcription

start site of psbA1 has not yet been defined and hence the

location of promoter is uncertain. In addition to the pos-

sible promoter next to the coding region of the psbA1 gene,

there is a distal promoter-like region.

Synechocystis 6803 mutants with modified degradation

rates of the D1 protein have provided evidence that not only

light intensity but also the rate of D1 synthesis regulates

transcription of the psbA2 and psbA3 genes [5, 66–69],

which additionally seems to require de novo synthesized

protein factors [70, 71]. Transcription of the psbA genes

during the recovery process after photoinhibitory treatment

of Synechocystis 6714, however, was not prevented by

inhibition of translation, and the photoinhibitory treatment

longer than 40 min finally resulted in increased stability of

the psbA messages [58]. Transcription of the psbA genes

ceases rapidly upon shift of the cells to darkness, even in the

presence of an external energy source, indicating that the

energy status of the cells does not directly affect the tran-

scription activity of the psbA genes in Synechocystis [60].

Numerous studies during the past 10 years have sug-

gested an involvement of the intersystem redox status in

the regulation of psbA gene expression in Synechocystis

6803. These experiments mainly followed the accumula-

tion of psbA transcripts in cells exposed to different

nutrient regimes, light quantities and qualities as well as to

electron transfer inhibitors, DCMU and DBMIB. The

presence of DCMU or DBMIB upon illumination of cells

results in accumulation of PSII reaction centres with a

reduced quinone at a QA site, which was suggested to act as

a signal to transiently increase the amount of psbA tran-

scripts in Synechocystis 6803 and 6714 [59]. A more recent

study by the same authors suggested that the occupancy of

the plastoquinone binding QO site in the Cyt b6f complex

might be involved in regulation of the psbA gene expres-

sion. This conclusion was deduced from the fact that the

reduction of the intersystem carriers activated the tran-

scription of the psbA gene and destabilized the message,

whereas oxidation of the electron transfer chain decreased

transcription and stabilized the psbA message [72]. Li and

3702 P. Mulo et al.



Sherman have shown that long-term (6 h) treatment of

Synechocystis 6803 cells with either DCMU or DBMIB has

strong effects on accumulation of psbA transcripts and

indicated that reduction of the plastoquinone pool (pres-

ence of DBMIB) decreases, and oxidation (presence of

DCMU) increases the expression of the psbA genes [69].

RppA, a response regulator of a two-component system,

was suggested to sense the changes in the redox poise and

accordingly to adjust the stoichiometry between PSII and

PSI via regulating the expression of photosynthetic genes,

e.g., psbA [69]. The effects of blue, orange, and far-red

light on the expression of psbA gene in Synechocystis 6803

made El Bissati and coworkers conclude that light quality

regulates the expression of photosynthetic genes via a

redox control occurring in the Cyt b6f complex [73].

However, data not supporting this interpretation also exist.

Comparison of the action spectra of psbA transcription to

that of PSII activity, photosynthesis and photoinhibition

[63], as well as subjecting Synechocystis 6803 cells to over-

saturating single turn-over flashes inducing photoinhibition

but without affecting the oxidation state of the intersystem

redox carriers [61], made the authors conclude that the

redox state of the electron transfer chain is an unlikely

candidate to carry information for regulation of psbA

expression.

The half-life of psbA2 and psbA3 transcripts in Syn-

echocystis 6803 under illumination is around 10–20 min,

and independent of light intensity or the rate of PSII

electron transfer [56, 58, 59, 66, 72, 74], whereas the sta-

bility of psbA transcripts increases remarkably in darkness

[56, 60, 71, 75]. Stabilization of transcripts is dependent on

cessation of photosynthetic electron transfer rather than on

light per se [56, 60, 61, 72]. Other factors, such as poly-

amines, have also been suggested to affect the stability of

psbA transcripts [71]. Transfer of dark-treated cells back to

light induces rapid protein-synthesis-independent accumu-

lation of psbA transcripts [60]. Indeed, the 170-bp upstream

region of the psbA2 gene was shown to bind protein factors

in the dark, suggesting that the transcription of the psbA2

gene is down-regulated in darkness via transcriptional

repressor proteins [60]. Specifically, a hexanucleotide

direct repeat, TTACAA-N4-TTACAA, found in the pro-

moter region of Synechocystis 6803 psbA2 and psbA3

genes as well as in Anabaena 7120, has been shown to act

as a binding site for a putative repressor in the dark

(Fig. 3b; [76]).

Translational regulation of D1 synthesis

in cyanobacteria

It is well known that translation is a key regulatory step in

the chloroplasts of higher plants, and many trans-acting

factors involved in translation of the D1 protein in chlo-

roplasts have been characterized since the 1980s [77].

Evidence is accumulating indicating that the D1 protein

synthesis in cyanobacteria is also not solely controlled at

the transcriptional level, e.g., in Synechococcus 7942,

practically no D1:1 protein accumulated upon stress in the

thylakoid membrane, even though high amounts of psbAI

transcripts were present [32, 35, 46, 78]. Moreover, upon

anoxia and under thiol-reducing conditions in the presence

of electron transfer inhibitors, a substantial amount of

psbAII/III messages accumulates without synthesis of the

D1:2 protein [45, 79]. It has been shown that, if there are

psbA transcripts present in Synechococcus 7942, the mes-

sages are always efficiently associated with ribosomes,

suggesting that initiation of translation does not play a

significant role in regulation of psbA gene expression,

whereas membrane targeting of nascent D1 protein ribo-

some complex might, at least under some conditions, be a

rate-limiting step for D1 protein synthesis [5]. Elongation

of translation is also under strict regulation in Synecho-

cystis 6803: upon shift of the cells from light to darkness,

the abundant psbA transcripts keep attached to ribosomes

and D1 translation continues up to a distinct pausing site.

However, the newly formed ribosome-nascent D1 chain

complexes are not targeted to the thylakoid membrane, and

therefore no complete D1 synthesis takes place in the dark

[80]. Indeed, the ribosome complexes are targeted to the

thylakoid membranes and D1 synthesis can be completed

only in light to replace the damaged D1 protein, indicating

that it is not the initiation of translation but rather the

translational elongation that is an important regulatory

step in expression of the psbA genes [80]. Translational

elongation of proteins in general and in particular that of

the D1 protein is also sensitive to singlet oxygen, which is

generated especially during photosynthesis [81, 82]. An

additional regulatory factor is the availability of chloro-

phyll: although the accumulation of psbA transcripts is

independent of chlorophyll availability, the lack of chlo-

rophyll seems to affect the initiation of psbA translation

[83]. Further complexity to the regulation of psbA gene

expression is provided by the membrane insertion and

C-terminal processing of the D1 protein as well as the

assembly of PSII (see [84] and references therein). The

different steps of PSII assembly and function are assisted

by a number of auxiliary proteins, including factors

involved in degradation of the damaged D1 protein, in

translation and membrane insertion of the new D1 copy,

and in PSII (super) complex formation and activation

[85, 86]. Putative antisense mRNAs against various psbA

genes in Synechocystis 6803 might represent a novel

regulatory network in psbA gene expression and are

presently under intense research (Wolfgang Hess, unpub-

lished results).
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Functional classification of cyanobacterial D1 proteins

Nearly 40 fully sequenced cyanobacterial genomes toge-

ther with functional characterization of several psbA gene

families make it now possible to attempt to classify this

important gene family and its product, the D1 protein. This,

however, faces a serious difficulty since the psbA genes

within a species tend to be more closely related to their

family relatives than to functionally similar members of

other species. Therefore, the classification of D1 isoforms

based solely on the genomic data is unavoidably prone to

errors. In order to be accurate, one has to take into con-

sideration the specific response and behavior of the

individual members of the gene family as a response to a

variety of factors. From evidence accumulated so far, we

attempt here a classification of the D1 isoforms based on

the manner that their expression is regulated under typical

growth conditions as well as under various environmental

stresses (Fig. 2; Table 1).

From a functional point of view cyanobacterial D1

proteins can be divided into the following four categories:

i) D1m is a D1 form expressed and present in the PSII

centres under normal growth conditions. D1m is also

induced under most stress conditions (m denotes for

‘‘major’’);

ii) D1:1 is a D1 form expressed and assembled into PSII

under normal growth conditions, but repressed under

stress;

iii) D1:2 is a D1 form repressed under normal growth

conditions, but induced and accumulated into PSII by

stress;

iv) D10 is a D1 form virtually silent under standard

growth conditions, but induced under microaerobic/

low oxygen conditions

In the following section, we will characterize the above-

mentioned D1 isoforms one by one. The individual func-

tional distinctiveness of each D1 form, and the justification

of placing them in these distinct categories, is also

discussed.

The D1m isoform

Charasteristic to the D1m isoform is its presence in PSII

centres both under normal growth conditions and when the

cells are exposed to stress. This isoform thus contributes to

the maintenance of functional PSII, but the defining trait is

its increased expression under environmental stress con-

ditions that speed up D1 degradation. A typical example of

D1m is the D1 isoform encoded by the psbA2 and psbA3

genes in Synechocystis 6803 (see ‘‘psbA gene expression in

Synechocystis sp. PCC 6803 and 6714’’). In this cyano-

bacterium, the psbA2 transcript is responsible for almost all

the D1 protein produced under regular growth. When the

rate of D1 degradation increases, e.g., upon exposure of

the cells to high light or UVB stress, the transcription of the

psbA3 gene is considerably enhanced thereby enabling an

increased turnover rate of the D1 protein (Fig. 2b). When

the stress condition is removed, the pattern of the psbA2

and psbA3 gene expression reverses. Both genes are alone

sufficient to support normal autotrophic growth mode of

the cells [54, 87].

Interestingly, Gloeobaacter violaceus PCC 7421, a

cyanobacterium that shows deep molecular and ultrastruc-

tural divergence from other cyanobacteria and is considered

very primitive, regulates its five psbA genes in a similar

manner as Synechocystis 6803 [88]. Under standard growth

conditions (10 lmol photons m-2 s-1, 25�C), the D1 pro-

tein is produced by psbAI (glr2322) and psbAII (glr0779)

both showing considerably high levels of expression,

whereas under stress, psbAIII (gll3144) is induced supple-

menting the available transcripts. All three genes are

encoding the same D1 isoform. The other two psbA genes in

Gloeobacter encode distinctly different D1 proteins of

unclear function. One of them, psbAV (glr2656), encodes

the most divergent psbA sequence known to date [88].

The D1:1 isoform

D1:1, also known as D1 form 1, is best described in Syn-

echococcus 7942 and is, together with D1:2, part of a

specific regulation mechanism in response to stress con-

ditions. Recently, a similar stress-response mechanism was

revealed in Anabaena PCC 7120, Thermosynechococcus

elongatus BP-1, and the marine Synechococcus WH 7803

[89]. These are diverse cyanobacterial species with no

easily traceable phylogenetic relationship. The defining

characteristic of D1:1 is its high level of expression in well-

acclimated cells, and a distinct down-regulation upon

abrupt changes in the standard growth conditions (Fig. 2a).

Once the cell acclimates to the new status quo or the stress

is removed the expression of the genes encoding D1:1

increases and it becomes once again the dominant D1 form

in PSII centres. For some time, D1:1 was also associated

with the presence of a specific amino acid at position 130

proven to influence the potential of the redox active

D1-Phe residue (see discussion in the next section). This is

situated in a conserved portion of the D1 protein and it has

been proven true, so far, that the D1:1 protein always

contains a glutamine residue at this position. While this is

true, the reverse is not: not every D1 with a glutamine at

130 is a D1:1. A clear example is the low-expressed,

divergent D10 encoding psbA genes from Anabaena 7120

(psbA0) and Synechocystis 6803 (psbA1) that have a

glutamine at position 130 but functionally are clearly not

D1:1 forms (see the following section on D10).
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The D1:2 isoform

The D1:2 isoform reflects the mirror image of its ‘‘sister’’

form D1:1 in its expression. D1:2 is expressed at low level

in well-acclimated cells, but upon stress conditions the

expression is markedly induced and D1:2 replaces D1:1 in

PSII centres (Fig. 2a). Upon acclimation or removal of

stress, the D1:2 will be repressed and replaced by D1:1.

This D1 form exchange is one of the clearest mechanisms

documented so far on gene regulation as adaptation to

changing environmental conditions, and it was well docu-

mented in Synechococcus 7942 by numerous studies (see

‘‘psbA gene expression in Synechococcus elongatus PCC

7942’’). The exchange is facilitated by the fast turnover

rate of the D1 protein, establishing a correlation between

the expression levels of distinct psbA genes, the form of D1

protein present in PSII centres, and the functional charac-

teristics of PSII. The evolutionary development and

maintenance of this regulation mechanism speaks for a

direct requirement of the functional characteristics of both

D1 forms, thus offering unique advantages under their

specific expression conditions. A good question raised by

the presence of D1:2 under stress conditions is why the

cells do not always possess D1:2 in the PSII centres? The

answer, while not clear yet, has to do with a discreet

advantage of D1:1 over D1:2 under standard growth con-

ditions. Maintenance of D1:1 in the PSII centres seems to

give an evolutionary advantage over mutants containing

only the D1:2 form, generated by random mutagenesis.

D1:2 is a functionally well-defined form and different

from its counterpart D1:1, as shown by artificially made

mutant strains of Synechococcus 7942 [22]. In these strains,

the exchange of D1:1 to D1:2 is blocked, which results in

enhanced PSII photoinhibition under UVB and high light

illumination [35]. Furthermore, it has been shown that a

transgenic Synechocystis 6803 strain expressing the Syn-

echococcus 7942 D1:2 isoform possesses a faster decay of

variable fluorescence in the presence of DCMU, reflecting

faster recombination of reduced QA with positive charges

on the donor side of PSII, compared to a Synechocystis

6803 mutant expressing only the D1:1 isoform from Syn-

echococcus 7942 [25]. Thermoluminescence [27] and

fluorescence life time data [26] from Synechococcus 7942

cells containing only the D1:1 or the D1:2 isoform also

support enhanced charge recombination in PSII centers

containing D1:2. It is important to note that this functional

difference between the D1:1 and D1:2 isoforms is corre-

lated with the presence of a glutamate residue in D1:2

instead of a glutamine residue at position 130 in the D1

protein sequence, which interacts with a key Phe co-factor

[7, 90]. It was recently shown that Glu occupies D1-130

position in all high-light D1 isoforms identified so far,

whereas Gln is found in the low light D1 isoforms, like

D1:1 [91]. The correlation of the D1 Gln130Glu amino

acid replacement with phototolerance is apparently related

to accelerated charge recombination, i.e., to the existence

of an Em (Phe/Phe-)-dependent photoprotection [92]. It is

worth noting here that the single D1 protein in higher

plants has strictly conserved Glu130 residue.

The D10 isoform

The term D10 was for a long time used only for the product of

psbA1 gene in Synechocystis 6803. This gene was consid-

ered enigmatic as its open reading frame was intact but its

transcript could not be detected by classic hybridization

methods [54, 56, 75]. However, artificial activation of psbA1

in Synechocystis 6803 [53], via replacement of the 320-bp

upstream fragment of the psbA1 gene with a 160-bp

upstream fragment of psbA2, leads to production of a

functional and light-responsive, albeit aberrant, D1 protein

[93, 94]. Whole genome sequences and functional studies

recently published from several cyanobacterial species

(http://www.kazusa.or.jp/cyano/, http://genome.jgi-psf.org/)

have revealed that, apart from Synechocystis 6803, a psbA1-

type divergent, low-expressed and non-responsive psbA

gene also exist in Anabaena sp. PCC 7120 (psbA0-alr3742)

[95], Thermosynechococcus elongatus BP-1 (psbA2-tlr1844)

[91, 96], Cyanothece sp. ATCC 51142 (psbA2) [10], and

possibly Gloeobacter violaceus PCC 7421 [88]. So far, in

cyanobacterial species where the expression of the psbA gene

family has been characterized, Synechococcus 7942 is the

only species that does not contain such a gene [32].

During the past year, two independent studies demon-

strated induction of the psbA gene encoding the D10 isoform

under microaerobic [9] or low oxygen [10] conditions in

Synechocystis 6803, Anabaena 7120, Thermosynechococ-

cus elongatus BP-1, and Cyanothece sp. ATCC 51142

(Fig. 2c). Already earlier, the Anabaena psbA0 (alr3742)

gene was found to be expressed at a very low constitutive

level and was not responsive to photo-oxidative UVB stress,

light stress, or nitrogen stress [95]. This behavior of psbA0

of Anabaena 7120 is very similar to that of psbA1 of Syn-

echocystis 6803. Indeed, both these genes are in fact not

silent even under normal growth conditions, but transcribed

to a very low level insufficient to play a significant role as

part of the cellular psbA transcript pool [95].

While still we do not have an answer regarding the

direct functional role of the D10 isoform, we can now

with a high degree of confidence establish D10 as a widely

distributed D1 isoform important for adaptation of cyano-

bacterial cells to specific environmental conditions,

particularly to a microaerobic pressure. The conditions

requiring the presence of D10 thus have a sufficient evo-

lutionary importance to ensure that the gene has been

selectively maintained in the genome. There are no major
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sequence characteristics that would individualize the D10

from the other D1 forms. In the D1 forms functionally

characterized [9], there are only three amino acid residues

that are both conserved in all traditional D1 forms and

mutated but conserved across all the D10 proteins. These

modifications are Gly80Ala, Phe158Leu, and Thr286Ala

[9]. The low-oxygen-pressure-induced D10 form encoded

by psbA2 in Cyanothece [10] also has the same consistent

modifications. Some initial molecular modelling studies

did not show any major D1 conformational changes [9],

and it is not yet clear what, if any, are the implications of

these modifications on the general PSII function. It is worth

mentioning, however, that at least two of the conserved

modifications in D10 (Phe158Leu and Thr286Ala) are

located in the binding pockets of important Chl residues:

ChlD1, the place of initial charge separation, and Chl PD1,

the most probable location of the stable cation P680?. The

fact that the genes encoding D10 are present in such a

diverse array of cyanobacterial species and that all these

genes apparently respond to the same environmental cue

makes it very likely that the encoded D1 protein belongs to

a distinct category: D10. The clear selective advantage of

D10 over the regular D1 is not obvious and remains to be

identified. Also, while under standard laboratory growth

conditions the cells do not usually experience periods of

microaerobic growth, in the natural environment they do

occur as a result from imbalanced cellular metabolism,

specific environmental conditions or due to niche a given

cyanobacteria inhabits, e.g., in microbial mats [97].

psbA genes in cyanophages

Cyanobacteria are responsible for a majority of primary

production in oligotrophic regions of oceans. Cyanophages,

viruses that infect cyanobacteria, are equally abundant in

marine ecosystems, and probably exert major ecological

effects on the marine environment [98, 99]. The first cyano-

phages were isolated in 1963 [100], but only recently it has

been found that many of the cyanophages infecting Syn-

echococcus and Prochlorococcus hosts possess psbA and

psbD genes encoding the D1 and D2 proteins, respectively

[101–107]. The photosynthesis genes in cyanophages

originate from their host cyanobacteria, and thus show

marked (up to 95%) identity to their host homologs at

amino acid level [103, 105, 108, 109]. Accordingly, Pro-

chlorococcus myoviruses and podoviruses encode the only

D1 form found in Prochlorococcus, whereas in Synecho-

coccus myoviruses, the stress-responsive D1:2 form of

Synechococcus D1 protein has been selected over D1:1

[107].

It has been shown that the cyanophage psbA gene is

indeed both transcribed and translated in cyanobacteria

during infection [104, 110], and at the same time the

expression of the host photosynthesis genes declines [104].

Since all bacteriophages rely on their hosts to provide

energy and carbon sources for replication and assembly, it

is conceivable that the expression of the cyanophage psbA

gene allows continuous operation of the PSII repair cycle

(Fig. 1), even if infection down-regulates the expression of

the host psbA gene. Thus, the D1 protein encoded by the

cyanophage is likely to replace the light-sensitive D1

protein of the host (despite possessing some unique fea-

tures in structure [111]), thus allowing photosynthesis to

continue efficiently even under bright light [104, 110, 112,

113], and thereby provide the energy needed by the virus

for its replication. Obviously, the prevalence of photosyn-

thesis genes in cyanophages serves as a valuable genetic

reservoir for the host, and has probably played a role in

driving host niche differentiation [105].

Summary

The D1 protein of PSII is a specialized protein component

targeted to photodamage and rapid turnover in all organ-

isms performing oxygenic photosynthesis. In cyano-

bacteria, which can inhabit various extreme habitats, the

D1 protein is encoded by a small gene family. Obviously,

the range of environmental factors cyanobacteria may face

during their life cycle requires the possibility to modify the

expression of the psbA genes, and more importantly the

presence of a proper D1 isoform in PSII centres, in order to

guarantee the best adaptation and fitness under given

conditions. Optimal adaptation to varying environmental

conditions seems to be obtained via complex regulation of

not only one, but several, psbA genes. During the past two

decades, it has become clear that there is not a single,

universal pattern of regulation of psbA gene expression in

cyanobacteria, but rather the ecological niche occupied by

the individual strain has guided the evolution towards

proper adaptation and satisfactory fitness. Ongoing release

of genomic data from a vast number of cyanobacterial

species will certainly provide additional tools to further

study the regulatory factors of psbA gene expression in

different cyanobacterial species. Understanding the adap-

tation processes of the photosynthetic machinery to

changing environmental cues will be of utmost importance

when biotechnological applications, for example the pro-

duction of biofuels and improvement of crop yields, are to

be developed.
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interchange between two distinct forms of cyanobacterial

photosystem II reaction-center protein D1 in response to

photoinhibition. Proc Natl Acad Sci USA 90:9973–9977

25. Tichy M, Lupinkova L, Sicora C, Vass I, Kuvikova S, Prasil O,

Komenda J (2003) Synechocystis 6803 mutants expressing

distinct forms of the Photosystem II D1 protein from Synecho-
coccus 7942: relationship between the psbA coding region and

sensitivity to visible and UV-B radiation. Biochim Biophys Acta

1605:55–66

26. Campbell D, Bruce D, Carpenter C, Gustafsson P, Öquist G
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67. Mulo P, Laakso S, Mäenpää P, Aro EM (1998) Stepwise pho-

toinhibition of photosystem II. Studies with Synechocystis
species PCC 6803 mutants with a modified D-E loop of the

reaction center polypeptide D1. Plant Physiol 117:483–490

68. Komenda J, Hassan HA, Diner BA, Debus RJ, Barber J, Nixon

PJ (2000) Degradation of the Photosystem II D1 and D2 proteins

in different strains of the cyanobacterium Synechocystis PCC

6803 varying with respect to the type and level of psbA tran-

script. Plant Mol Biol 42:635–645

69. Li H, Sherman LA (2000) A redox-responsive regulator of

photosynthesis gene expression in the cyanobacterium Syn-
echocystis sp. strain PCC 6803. J Bacteriol 182:4268–4277
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