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In children with tetralogy of Fallot (TOF), there is a risk of brain injury even if

intracardiac deformities are corrected. This population follow-up study aimed to identify

the correlation between cerebral morphology changes and cognition in postoperative

school-aged children with TOF. Resting-state functional magnetic resonance imaging

(rs-fMRI) and the Wechsler Intelligence Scale for Children–Chinese revised edition

(WISC-CR) were used to assess the difference between children with TOF and healthy

children (HCs). Multiple linear regression showed that the TOF group had a lower verbal

intelligence quotient (VIQ, 95.000 ± 13.433, p = 0.001) than the HC group and that VIQ

had significant positive correlations with the cortical thickness of both the left precuneus

(p < 0.05) and the right caudal middle frontal gyrus (p < 0.05) after adjustment for

preoperative SpO2, preoperative systolic blood pressure (SBP), preoperative diastolic

blood pressure (DBP) and time of aortic override (AO). Our results suggested that brain

injury induced by TOF would exert lasting effects on cortical and cognitive development

at least to school age. This study provides direct evidence of the relationship between

cortical thickness and VIQ and of the need for strengthened verbal training in school-aged

TOF patients after corrective surgery.

Keywords: tetralogy of fallot, cerebral cortical thickness, cognition, VIQ, brain injury

INTRODUCTION

Tetralogy of Fallot (TOF) is a common cyanotic congenital heart disease (CHD) (1), accounting for
almost 3.5% of CHD cases (2). TOF is mainly characterized by a ventricular septal defect (VSD),
right ventricular outflow track obstruction, aortic override (AO) and right ventricular hypertrophy
(3), all of which cause haemodynamic abnormalities that lead to a series of events including
hypoxia episodes, brain abscesses, atrial fibrillation and cerebrovascular accidents (4). Under 1%
of TOF patients who do not have surgery survive to 40 years old (5), whereas, those who undergo
surgery before 5 years old have a 30-year survival rate of 90% (6). However, although mortality
declines after surgery, survivors still face a variety of complications (7), such as myocardial damage
(2), pulmonary incompetence (8), aortic dilation and arrhythmias (9). Furthermore, over 50%
of TOF patients also exhibit cerebral damage (10), which may manifest as declines in cognitive,
psychosocial, and behavioral ability (11, 12) and influence the patients’ long-term quality of life (13).
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Brain injury in TOF patients is an important concern
(14). Children with TOF may suffer from brain injury in
the prenatal (15), postpartum preoperative, perioperative (16),
and postoperative periods due to genetic mutations, brain
blood flow disturbances, cardiopulmonary bypass (CPB) (17,
18), anesthesia procedures (19), low cardiac output (LCO)
(20) and socioeconomic status (SES) (21, 22). Of these time
periods, the prenatal and postpartum preoperative periods
are considered to carry the highest risk of brain injury
(23, 24); additionally, they overlap with a critical period of
cerebral development (25, 26). Fortunately, with advances
in neuroimaging technology, brain injuries in children with
CHDs are frequently identified early by magnetic resonance
imaging (MRI) (27, 28); these brain injuries include delayed
cerebral maturation (29), brain volume decline (30), white
matter injury (WMI) (31), and stroke (32). In addition, delayed
cortical development has been reported in CHD fetuses and
neonates; the manifestations include delayed cortical folding,
cortical depth asymmetry and reduced cortical thickness (25,
33). However, those studies describe only preoperative and
short-term postoperative morphological changes. It remains
for additional research to trace long-term cortical changes
and further examine the association between cortical changes
and cognition.

The effects of cortical changes on the cognitive ability of
postoperative children with TOF remain unclear. Therefore, we
examined the cerebral morphology of postoperative TOF patients
via MRI, evaluated their cognitive abilities and further analyzed
the correlation between them. Interestingly, the results showed
that the cortical thickness values of both the left precuneus and
the right caudal middle frontal cortex had significant positive
correlations with verbal intelligence quotient (VIQ).

MATERIALS AND METHODS

Subjects
From November 2015 to June 2016, 13 school-aged children
with TOF were validated for participation, and informed consent
was obtained from their legal guardians on their behalf. Ten
of those children eventually completed resting-state functional
magnetic resonance imaging (rs-fMRI) examination, and the data
fulfilled the criteria for further analysis. Every participating child
with TOF underwent corrected surgery in Nanjing Children’s
Hospital of Nanjing Medical University and had no known
hereditary syndromes or central nervous system diseases, such
as Down syndrome, cerebral tumors or craniocerebral trauma.
The control group consisted of 13 healthy children (HCs)
who were matched with the TOF group by age, gender, and
education level and had no cardiovascular or nervous system
diseases; informed consent was acquired from the children’s
legal guardians. All participants were right-handed and had
no contraindications to MRI, such as implanted pacemakers
or claustrophobia.

Rs-fMRI Data Acquisition
MRI data were acquired from all participants using a Siemens
MAGNETOM Avanto 1.5 T MRI machine with a standard

12-channel head coil. Subjects lay supine with sponge plugs
in the external auditory canals to reduce the effect of
scanner noise, and they were requested to lie awake quietly
with their eyes closed and avoid thinking. When questioned
afterward, all of the participants confirmed that they had
not fallen asleep in the scanner. During the scans, each
subject’s head was braced with foam padding to reduce
movement artifacts.

The scanning sequences are as follows: (1) Fluid-attenuated
inversion recovery (FLAIR): the thickness was 5mm, and there
were no gaps between slices. The repetition time (TR) was
1,200ms, and the echo time (TE) was 28ms. The matrix size was
512∗464. The total number of layers was 20. Intracranial lesions
were identified and excluded by experienced radiologists. (2)
T1-weighted imaging (T1WI): a three-dimensional magnetization
prepared rapid gradient echo (3D-MP-RAGE) imaging sequence
was used. TR was 1,900ms, and TE was 2.48ms. The turning
angle was 9◦. The field of view (FOV) was 256∗256mm, and
the matrix size was 256∗256. The protocol included 176 slices
with a thickness of 1mm each, and there were no gaps between
slices. The T1WI scans were reconstructed into 3D images with a
slice thickness of 4mm and no space between slices. (3) Resting
blood oxygenation level-dependent (BOLD) scan: gradient-echo
echo-planar imaging (GRE-EPI) was applied. TR was 2,000ms,
and TE was 25ms. The turning angle was 90◦. The FOV was
240∗240mm, and the matrix size was 64∗64. The slice thickness
was 5mm, with 2mm spacing. The total number of slices was 36,
and the scanning time was 6 min.

Rs-fMRI Data Pre-processing
Data in this experiment were preprocessed with Data Processing
Assistant for rs-fMRI (34) (DPARSF, http://www.restfmri.net) on
the MATLAB platform.

The steps were as follows:

(1) A total of 180 time points were collected by BOLD in this
experiment. In order to reduce the influence of MRI magnetic
field instability and noise during the initial scan, data from the
first 10 time points were removed.

(2) Slice-timing correction was carried out for the remaining
time points so that all images collected at one time would be
temporally aligned.

(3) Correct head movements (including translation and rotation
in 3D space). Considering the long scan time and the influence
of magnetic resonance noise, some degree of head movement
may occur, causing the haemodynamic response to be obscure.
Therefore, it was necessary to correct the headmovement of all
subjects. Subjects were removed from this study if their head
movement exceeded 1mm of translation or 1◦ of rotation
about the x, y, or z axis.

(4) Spatial registration and linear detrending. Considering the
differences in brain morphology among different subjects,
all MRI images were standardized to the same reference
space (standard anatomical template for the head, Montreal
Neurological Institute, Canada), and the standardized data
were then processed to remove linear trends.
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TABLE 1 | Characteristics of TOF and healthy children.

Variables TOF HC p-value

(n = 10) (n = 13)

Age (year) 10.01 ± 1.88 9.73 ± 0.77 0.63

Sex (male/female) 6/4 8/5 0.94

Education (year) 2.31 ± 1.25 2.42 ± 0.91 0.80

Household income (Yuan

per month)

6,750.00 ± 2,214.22 7,192.31 ± 1,575.05 0.58

Age of surgery (year) 2.10 ± 1.69 NA

Postoperative time (year) 7.33 ± 2.31 NA

Hospital stays (day) 17.38 ± 5.55 NA

Preoperative SpO2 (%) 73.29 ± 16.11 NA

Preoperative SBP

(mmHg)

98.57 ± 11.63 NA

Preoperative DBP

(mmHg)

57.57 ± 9.74 NA

Preoperative pH 7.34 ± 0.03 NA

CPB time (min) 61.75 ± 7.52 NA

AO time (min) 38.52 ± 5.38 NA

Mean ± SD. TOF, tetralogy of Fallot; HC, healthy children; SpO2, saturation of pulse

oxygen; SBP, systolic blood pressure; DBP, diastolic blood pressure; pH, potential of

hydrogen; CPB, cardiopulmonary bypass; AO, aortic occlusion; NA, not available. Bold

values represents that the results have statistical significance.

(5) Low-frequency filtering. A frequency band of 0.01–0.08Hz
was used to filter out low-frequency drift.

(6) Spatial smoothing. A Gaussian kernel function with a full
width at half maximum (FWHM) of 4× 4× 4 mm3 was used
to perform spatial smoothing of fMRI images.

Cerebral Morphology Analyses
We used the Computational Anatomy Toolbox (CAT12, http://
dbm.neuro.uni-jena.de/cat/) of SPM12 (https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/) to extract morphological indexes of
the cortical surface. An image of each subject was produced in
a standard position, such that every image had the same origin
and spatial direction. Linear and non-linear registration of high-
resolution T1WI was performed for each patient. The image was
divided into gray matter volume (GMV), white matter volume
(WMV) and cerebrospinal fluid volume (CSFV). Brain tissue
volume (BTV) and total intracranial volume (TIV) could then
be calculated.

Intelligence Assessment
All subjects had their cognitive ability assessed using the
Wechsler Intelligence Scale for Children–Chinese revised edition
(WISC-CR). The WISC is an authoritative and widely used
intelligence scale for children (12). The WISC-CR was suitable
for Chinese children between the ages of 6 and 16 years;
the test is divided into 12 domains, including common sense,
analogies, arithmetic, vocabulary, comprehension, digit span,
missing picture completion, picture arrangement, block design,
object collocation, decoding, and mazes (of these, digit span
and mazes were optional). Each subject’s results were scored
according to the operating manual and the subject’s age. The VIQ

TABLE 2 | Cerebral morphology and intelligence quotient changings in

postoperative TOF.

TOF HC p-value

CSFV 246.200 ± 53.425 266.769 ± 41.698 0.155

GMV 683.800 ± 75.295 749.692 ± 42.092 0.007

WMV 438.000 ± 56.978 496.308 ± 48.340 0.007

BTV 1,121.800 ± 129.049 1246.000 ± 86.085 0.006

TIV 1,368.100 ± 151.542 1513.154 ± 111.126 0.007

Whole

brain

CAT

2.750 ± 0.061 2.842 ± 0.068 0.001

Left hemisphere CAT

Inferior temporal 2.881 ± 0.138 3.000 ± 0.149 0.032

Lateral occipital 2.016 ± 0.111 2.123 ± 0.079 0.007

Middle temporal 3.182 ± 0.089 3.236 ± 0.145 0.156

Fusiform 2.732 ± 0.135 2.919 ± 0.153 0.003

Isthmus cingulate 2.623 ± 0.266 2.656 ± 0.199 0.368

Precuneus 2.671 ± 0.148 2.799 ± 0.076 0.007

Right hemisphere CAT

Superior frontal 3.286 ± 0.103 3.346 ± 0.309 0.282

Caudal middle frontal 2.959 ± 0.141 3.088 ± 0.101 0.009

VIQ 95.000 ± 13.433 122.000 ± 9.138 0.001

PIQ 98.600 ± 18.014 104.200 ± 12.755 0.274

FSIQ 96.100 ± 15.286 115.400 ± 10.213 0.013

Mean ± SD. TOF, tetralogy of Fallot; HC, healthy children; CSFV, cerebrospinal fluid

volume; GMV, gray matter volume; WMV, white matter volume; BTV, brain tissue volume;

TIV, total intracranial volume; CAT, cortical average thickness; VIQ, verbal intelligence

quotient; PIQ, performance intelligence quotient; FSIQ, full scale intelligence quotient. Bold

values represents that the results have statistical significance.

was determined from the first six items, and the performance
intelligence quotient (PIQ) was determined from the last six
items. Finally, the full-scale intelligence quotient (FSIQ) could
be calculated.

Statistical Analyses
We used SPSS 20.0 (IBM Corp., Armonk, NY, USA) to perform
the statistical analyses in this study. Continuous variable data are
described as the mean ± SD in Tables 1, 2. Differences between
the TOF group and the HC group were shown in some variables
by conducting one-sample t-tests. Single and multiple linear
regression analyses were used to explore the correlation between
cortical average thickness of brain regions, intelligence quotient
(IQ) and covariates. Statistical significance was considered when
the p < 0.05.

RESULTS

Table 1 shows the demography of TOF and HC groups.
No significant difference was found in age, gender, years of
education, or household income. Additionally, the hospital
records of the TOF group are summarized.

Differences in cerebral morphology and IQ between the TOF
and HC groups are shown in Table 2. Healthy children had
higher VIQ (95.000 ± 13.433) and FSIQ (95.000 ± 13.433)
scores than children with TOF. GMV (683.800 ± 75.295),
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FIGURE 1 | Comparison of cortical thickness in TOF and HC groups. (A) In left hemisphere of TOF group, the cortical thickness of inferior temporal, lateral occipital,

middle temporal, fusiform, isthmus cingulate, and precuneus were reduced. (B) TOF children had lower cortical thickness of superior frontal and caudal middle frontal

in right hemisphere.

WMV (438.000 ± 56.978), BTV (1,121.800 ± 129.049), TIV
(1,368.100± 151.542) and whole-brain cortical average thickness
(CAT, 2.750 ± 0.061) were reduced in children with TOF
compared with healthy children. Furthermore, Figure 1 shows
a 3D simulation diagram of differences in cortical thickness
between the two groups. Reduced left inferior temporal CAT
(2.881 ± 0.138), left lateral occipital CAT (2.016 ± 0.111), left
precuneus CAT (2.671 ± 0.148) and right caudal middle frontal
CAT (2.959± 0.141) were evident in the TOF group.

After analyzing the correlation among cerebral morphology
changes, IQ and hospital records (Tables 3, 4), we found that
preoperative SpO2, preoperative systolic blood pressure (SBP),
preoperative diastolic blood pressure (DBP) and time of AOwere
related to morphology changes.

In multiple linear regression, left precuneus CAT (beta:
79.905; 95% CI: 72.226,87.584) and right caudal middle frontal
CAT (beta: 143.606; 95% CI: 25.181,262.030) were related to
VIQ after adjusting for preoperative SpO2, preoperative SBP,
preoperative DBP and time of AO (Table 5).

DISCUSSION

Our population follow-up study was the first to identify the
relationship between reduced cortical thickness and low VIQ
in postoperative school-aged children with TOF, especially in

the precuneus of the left hemisphere and caudal middle frontal
cortex of the right hemisphere.

The cerebral cortex plays an irreplaceable role in
interconnecting brain areas and in sensory, motor and
cognitive processing (35) and should be given close attention
in postoperative children with TOF. Children with TOF have
reduced oxygen delivery and oxygen consumption (36), to
which the cerebral cortex is especially vulnerable (25). The
main microstructural changes that occur in the hypoxic
cerebral are impaired dendritic arborization of neurons (37)
and inhibition of glial cell formation (35, 38, 39). Although
hypoxia induced by CHD influences dendritic outgrowth,
cortical connectivity, and synapse formation (40, 41), few studies
have explored the association between cortical alterations and
cognition in postoperative children with TOF. Thus, based
on our results and published studies, we speculate herein
about the underlying mechanism of low VIQ induced by
reduced cortical thickness in postoperative school-aged children
with TOF.

The precuneusmight influence verbal cognition by combining
the temporal lobes via the temporoparietal junction (TPJ). The
precuneus, part of the posteromedial parietal cortex, is part of
the associative cortices (42). The precuneus may be involved
in visual-spatial imagery processing, episodic memory retrieval
and self-processing operations by mutually connecting with
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the frontal lobe, dorsal premotor area, supplementary motor
area, anterior cingulate cortex, and temporoparietooccipital
cortex (TPO) (42–44). In addition, many studies have indicated
that the precuneus is associated with verbal processing (45–
47). However, few studies have examined the mechanism by
which the precuneus influences verbal cognition. Recently,
studies showed that the precuneus and temporal cortex
could participate in attention, social cognition and working

TABLE 3 | Pearson correlation between cerebral structure changings and

cognitive abilities.

VIQ PIQ FSIQ

CSFV 0.058 −0.345 −0.202

GMV 0.453 0.687* 0.633*

WMV 0.392 0.464 0.457

BTV 0.438 0.605 0.571

TIV 0.395 0.395 0.416

Whole brain CAT −0.296 −0.058 −0.141

Left inferior temporal CAT 0.511 0.576 0.627

Left lateral occipital CAT −0.911** −0.480 −0.749*

Left middle temporal CAT −0.388 −0.556 −0.480

Left fusiform CAT 0.219 −0.213 −0.023

Left isthmus cingulate CAT −0.032 0.097 0.035

Left precuneus CAT 0.080 0.283 0.271

Right superior frontal CAT −0.321 −0.089 −0.182

Right caudal middle frontal CAT 0.060 0.119 0.143

*Correlation is significant at the 0.05 level, **Correlation is significant at the 0.01 level.

CSFV, cerebrospinal fluid volume; GMV, gray matter volume; WMV, white matter volume;

BTV, brain tissue volume; TIV, total intracranial volume; CAT, cortical average thickness;

VIQ, verbal intelligence quotient; PIQ, performance intelligence quotient; FSIQ, full scale

intelligence quotient. Bold values represents that the results have statistical significance.

memory by interconnecting via short U-shaped fibers and long
connections (48, 49), which was contrary to the traditional
notion in neuropsychology that the precuneus and temporal
cortex function as separate regions (50). Furthermore, the
left TPJ showed hyperactivity in patients with auditory verbal
hallucinations (AVHs) (49), and the left temporal lobe is related
to the language development of children with CHD (51).
Thus, we hypothesized that decreased left precuneus cortical
thickness could reduce the connection of the temporal lobe via
the TPJ and further influence VIQ in postoperative children
with TOF.

The middle frontal lobe is known as the secondary language
area (52, 53), and it is involved in many verbal expression
processes, such as verbal and non-verbal fluency (54–56), verbal
working memory (57–59), switching (60), and semantics (61).
The right frontal lobe mainly participates in orthography of
Chinese characters, verbal suppression, verbal strategy use and
non-verbal fluency (54, 62, 63). Our results also provided
valid proof that the middle frontal cortex is correlated
with verbal cognition. Therefore, we infer that children with
TOF had poor performance in verbal expression and led to
lower VIQ.

However, our study has some weaknesses. First, a larger
sample size would be necessary to make the results more
credible. Moreover, this study merely evaluated the overall
neurological function of school-aged children after TOF
correction and could not identify the specific timing of
injuries due to the absence of preoperative MRI results. In
addition, it is mainly children with neurological disorders
who tend to participate in these programmes, and the
results might be biased accordingly. Furthermore, this study
reported a correlation between cortical thickness and IQ.
The influence of other morphological changes on cognition

TABLE 4 | Pearson correlation between cerebral structure changings and demographic variables.

Age Hospital

stays

Age of

surgery

Postoperative

time

Preoperative

SpO2

Preoperative

SBP

Preoperative

DBP

Preoperative

pH

CPB

time

AO time

CSFV 0.365 0.322 0.771* −0.346 0.653 0.206 0.350 0.103 −0.098 −0.592

GMV −0.446 −0.462 0.283 −0.534 0.704 0.259 0.006 0.168 −0.190 −0.208

WMV −0.228 −0.282 0.320 −0.410 0.633 0.245 −0.235 −0.138 −0.201 −0.053

BTV −0.363 −0.396 0.309 −0.496 0.695 0.261 −0.102 0.036 −0.201 −0.145

TIV −0.109 −0.160 0.635 −0.572 0.887** 0.313 0.093 0.081 −0.211 −0.413

Whole brain CAT −0.446 0.258 −0.213 −0.147 −0.146 0.018 0.585 0.584 −0.028 −0.372

Left inferior temporal CAT 0.138 −0.729 −0.553 0.528 −0.124 −0.070 −0.179 0.350 0.568 0.241

Left lateral occipital CAT −0.003 0.567 0.155 −0.123 −0.344 −0.012 −0.134 −0.722 −0.383 0.285

Left middle temporal CAT 0.375 0.473 0.156 0.141 −0.178 −0.537 0.126 0.579 −0.049 −0.486

Left fusiform CAT 0.092 −0.184 −0.066 0.116 0.083 0.764* 0.816* −0.165 0.526 0.033

Left isthmus cingulate CAT 0.074 −0.190 0.708 −0.500 0.929** 0.198 0.471 0.598 −0.032 −0.779*

Left precuneus CAT −0.174 −0.288 −0.310 0.119 −0.143 −0.072 0.428 0.632 0.260 −0.197

Right superior frontal CAT −0.227 0.272 0.082 −0.224 0.143 0.467 0.881** 0.279 0.118 −0.409

Right caudal middle frontal CAT −0.388 0.115 −0.135 −0.167 0.123 0.250 0.742 0.671 0.140 −0.486

*Correlation is significant at the 0.05 level. **Correlation is significant at the 0.01 level. CSFV, cerebrospinal fluid volume; GMV, gray matter volume; WMV, white matter volume; BTV,

brain tissue volume; TIV, total intracranial volume; CAT, cortical average thickness; SpO2, saturation of pulse oxygen; SBP, systolic blood pressure; DBP, diastolic blood pressure; pH,

potential of hydrogen; CPB, cardiopulmonary bypass; AO, aortic occlusion. Bold values represents that the results have statistical significance.
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TABLE 5 | Multivariable association of cerebral structure changings and cognitive abilities in TOF postoperative children.

VIQ FSIQ

Beta (95 % CI) p-value Beta (95%CI) p-value

CSFV −0.167 (−1.681, 1.348) 0.396 −0.283 (−1.570, 1.004) 0.219

GMV 0.199 (−2.576, 2.974) 0.529 0.369 (−2.531, 3.269) 0.353

WMV 0.183 (−11.191, 11.556) 0.872 0.618 (−14.510, 15.746) 0.695

BTV 0.131 (−2.257, 2.520) 0.612 0.261 (−2.439, 2.962) 0.435

TIV −0.545 (−3.892, 2.801) 0.286 −0.664 (−8.180, 6.852) 0.463

Whole brain CAT 290.098 (−1,670.986, 2,251.182) 0.311 471.829 (−813.154, 1,756.813) 0.134

Left inferior temporal CAT 51.623 (−233.107, 336.353) 0.261 63.877 (−602.372, 730.127) 0.438

Left lateral occipital CAT −104.201 (−694.515, 486.113) 0.267 −128.442 (−1495.279, 1238.394) 0.444

Left middle temporal CAT −5.064 (−2,135.642, 2,125.515) 0.981 −74.679 (−3057.549, 2908.192) 0.804

Left fusiform CAT −288.834 (−1,961.253, 1,383.584) 0.272 −460.896 (−1,344.694, 422.902) 0.095

Left isthmus cingulate CAT 36.404 (−1,271.914, 1,344.721) 0.784 9.942 (−2,023.929, 2,043.813) 0.961

Left precuneus CAT 79.905 (72.226, 87.584) 0.005 112.598 (−307.122, 532.318) 0.182

Right superior frontal CAT −733.161 (−7,193.769, 5,727.447) 0.386 −830.596 (−13,705.810, 12,044.617) 0.563

Right caudal middle frontal CAT 143.606 (25.181, 262.030) 0.041 206.552 (−361.043, 774.147) 0.136

Adjusted for preoperative SpO2, preoperative SBP, preoperative DBP and AO time. CSFV, cerebrospinal fluid volume; GMV, gray matter volume; WMV, white matter volume; BTV, brain

tissue volume; TIV, total intracranial volume; CAT, cortical average thickness; SpO2, saturation of pulse oxygen; SBP, systolic blood pressure; DBP, diastolic blood pressure; AO, aortic

occlusion; VIQ, verbal intelligence quotient; FSIQ, full scale intelligence quotient; CI, confidence interval. Bold values represents that the results have statistical significance.

is expected to be shown in future articles. Finally, this
study was based on the preliminary exploration of TOF
cases, and functional validation is needed to explore the
underlying mechanism.

CONCLUSION

In this study, the VIQ of postoperative school-aged children
with TOF was lower than that of healthy children of similar
age and was correlated with reduced cortical thickness of
the precuneus in the left hemisphere and the caudal middle
frontal cortex in the right hemisphere. The results implied
that brain damage before the correction of intracardiac
deformity continuously influenced the cortical development
and cognitive abilities of children with TOF, at least to
school age. The underlying mechanisms might consist of
delayed language development affected by left precuneus-
temporal connections and poor verbal expression induced by
right middle frontal cortex dysfunction. Therefore, even if
the intracardiac deformities of TOF patients are corrected,
the possibility of brain injury should also be given close
attention after surgery. Furthermore, language expression
training for children with TOF should be strengthened after
corrective surgery.
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