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Abstract Phenolic compounds include a broad variety of

antioxidant plant substances such as flavonoids that have in

common an aromatic ring with one or more hydroxyl

groups. Nutraceuticals and health food supplements are

designed from flavonoids as well as pure phytochemicals,

often in isolation. However, studies on synergistic and

antagonistic effects of such compounds are relatively few.

In the current study, dual combinations prepared from five

phenolic compounds (flavonoid and non-flavonoid)

including rutin hydrate, quercetin dihydrate, hydroquinone,

kaempferol, and resveratrol were tested for their antioxi-

dant activities using DPPH� radical scavenging assay. The

synergistic antioxidant interactions among these phenolics

were evaluated by comparing their individual antioxidant

effect with that obtained by a mixture of two compounds in

various ratios. Quercetin dihydrate showed the highest

antioxidant activity. Many combinations were found sta-

tistically synergistic in particular ratios. Rutin hydrate and

resveratrol showed maximum synergy (1:1, 2:1, and 3:1

ratio). Antagonistic interactions were also identified. The

results of this study could be used by industries to develop

more potent nutraceutical supplements or guide the

researchers for further bioactivity validation using in vivo

assays.
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Introduction

Phytochemicals have long been the most plentiful source of

health care and life enhancement for humans. In addition to

medicinal applications, they have been used in cosmetics,

health, aroma, and as dietary supplements. The market for

phytochemical nutraceuticals has continuously increased

over the past few years (USD 353 billion in 2019) with

many new companies entering the market. The recent

global pandemic COVID-19 has further led to a surge in

people opting for immune-boosting dietary supplements

and nutraceuticals [1]. Also, due to their presence in the

fruits and vegetables we eat, it is easier to incorporate them

into our diet [2]. Phenolic compounds include a broad

variety of plant substances that have in common an aro-

matic ring with one or more hydroxyl groups. Flavonoids

are the most abundant phenolics and are divided into sev-

eral subgroups: flavanols, flavanones, flavonols, flavones,

anthocyanidins, and isoflavones based on the substitution

and oxidation levels of the A, B, and C rings of the flavan

nucleus which is the basic flavonoid structure (Fig. 1).

These structural features such as the ortho-dihydroxy

structure in the B-ring, the 2–3-double bond in conjugation

with a 4-oxo function, and the presence of the 3- and 5-OH

functions are thought to be closely linked to a compound’s

antioxidant potency [3]. Interestingly, the flavonoids can

interact with each other which can impact the total

antioxidant capability [4]. In fact, the interactions between
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phytochemicals can be additive, synergistic, or antagonis-

tic. The antagonistic effects of phytochemicals may be

exacerbated by excessive doses, inappropriate use, or drug

interactions [5].

Food synergy is a concept that describes the positive or

negative interactions between nutrients, their absorption,

and bioavailability in the human body [6]. It is character-

ized by effects due to the interaction of nutrients in a

variety of foods or whole foods rather than a single food

component. For instance, green tea and black pepper have a

synergistic effect, on account of increasing the bioavail-

ability of epigallocatechin gallate (EGCG), a compound

found in green tea [2]. Similarly, the polyherbal combi-

nation of Vitis vinifera, Phyllanthus emblica L., Punica

granatum, Cinnamomum cassia, and Ginkgo biloba L. with

green tea was found to show the highest antioxidant

activity as compared to the individual extracts [7]. In an

important study, Shoba et al. [8] had shown that at certain

dosages, piperine enhanced the bioavailability of curcumin

in both animal and human volunteers; the results of this

study are used today by food companies to develop ready-

to-eat items such as instant beverages (e.g. MTR rasam). In

another study, it was found that individually, red grape and

carrot had the lowest radical scavenging activity

(68 ± 1.81 and 33 ± 5.79%, respectively), but when they

were combined, the antioxidant potential improved

significantly to 93 ± 0.91% [9]. Although such studies

have been restricted in nature, they seem to highlight that if

molecules require pairing for functioning, eating them

together in the same food increases the chances of pairing.

Alternatively, eating various foods during the same 24-h

period may be sufficient for pairing to occur within the

digestive tract or systemically [10].

In the ‘‘flavonol’’ category of flavonoids, quercetin,

kaempferol, and rutin hydrate are the most abundant

compounds found in plants. A variety of fruits and veg-

etables are high in quercetin and kaempferol. Quercetin is

found in high concentrations in a few foods, such as onion,

asparagus, and berries. Green leafy vegetables, such as

spinach and kale, are the greatest plant sources of

kaempferol [11]. Capers have the greatest concentration of

rutin, quercetin (234 mg/100 g), and kaempferol (259 mg/

100 g edible part) [12]. Antioxidants such as mangiferin,

quercetin, kaempferol and gallic acid are abundant in

mango [13]. Resveratrol is a naturally occurring stilbene

found in a variety of vegetables. Dark chocolate, peanuts,

cranberry, grape peel, and guava by-products are all edi-

ble sources of resveratrol [14]. Similarly, seeds of Prosopis

cineraria [15], the root bark of Capparis decidua [16], and

seeds of Cordia dichotoma [17] contain rutin, luteolin,

gallic acid, etc.

Fig. 1 Basic flavan structure and chemical structures of flavonoid subgroups. Structures are drawn using Marvin sketch software
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While there are numerous studies that test the antioxi-

dant activity of individual compounds, limited research has

been done on the interaction between flavonoid and non-

flavonoid phenolic compounds. Based on their common

occurrence in plant-derived foods, the following flavonoids

were chosen for the current study: rutin hydrate, quercetin

dihydrate, and kaempferol. The non-flavonoid phenolics

studied were: hydroquinone and resveratrol. Here, we have

evaluated the antioxidant activity of individual phenolics

and the pairwise interaction between them for possible

synergistic or antagonistic activity by 2,2-diphenyl-1-

picrylhydrazyl (DPPH) radical scavenging assay. The

findings of the current study may aid in the development of

synergy-driven functional foods or health food supple-

ments derived from a combination of different ingredients

in a particular ratio based on optimum antioxidant activity.

Material and Methods

Chemicals

DPPH was purchased from HiMedia (India). Methanol,

rutin hydrate, kaempferol, and hydroquinone were from

Sigma Company (United States), quercetin dihydrate from

SRL (India), and resveratrol was purchased from TCI

(Shanghai, China).

DPPH.� Radical Scavenging Assay

The free radical scavenging ability was tested by DPPH

assay as per the method described in [18] with some

modifications. The methanolic solution of DPPH is purple/

violet coloured, which fades to pale yellow in the presence

of antioxidants, and the loss in absorbance is measured

spectrophotometrically at 517 nm. A 100 lM DPPH

solution was prepared in 95% methanol and 290 ll of this
solution was mixed with 10 ll of the antioxidant solution

prepared in methanol. The concentration of phenolic

compounds was kept between 100 and 500 lM and mixed

in different ratios (3:1, 2:1, 1:1, 1:2, 1:3). The reaction was

carried out in a 96 well microplate, incubated in the dark at

room temperature for 1 h, and absorbance was measured at

517 nm by using a microplate reader (ThermoScientific

Multiskan Go). The percentage DPPH inhibition (radical

scavenging activity) was calculated by the following

equation:

Inhibition% ¼ Ac � As

Ac

where Ac is the absorbance of the control and As is the

absorbance of the sample. Solution without the sample was

taken as control. The results were expressed as EC50 (lM)

obtained by plotting a curve between concentration and

inhibition percentage. EC50 is the effective concentration

necessary to get 50% inhibition. Lower the EC50 value

higher will be the antioxidant activity.

Difference in DPPH Antioxidant Activity

The difference in DPPH antioxidant activity (%) was cal-

culated by the following equation- 100�
MixEC50 � 200½ �=A EC50 þ BEC50 [4]. Here, Mix EC50 is

the value of EC50 obtained by the mixture of two com-

pounds, A EC50 is the EC50 of compound A, and B EC50 is

the EC50 of compound B. Positive values indicate syner-

gistic interaction whereas negative values indicate antag-

onistic interaction.

Statistical Analysis

Experiments were done in triplicate and the values were

calculated as mean ± standard deviation. The means were

compared using one-way analysis of variance (ANOVA),

and the least significant difference (LSD) test was per-

formed to assess statistically significant difference between

the various phenolic combination groups. P-value B 0.05,

0.01 and 0.001 was considered statistically significant.

Results and Discussion

Structure plays an important role in determining the

metabolism and functional properties of biologically active

molecules which we mostly intake through food [19]. In

case of flavonoids, the placement of functional groups

around the nuclear structure determines the antioxidant

action. The hydroxyl group of B ring transfers hydrogen

and an electron to hydroxyl, peroxyl, and peroxynitrite

radicals, stabilizes them, and gives rise to relatively

stable flavonoid radical; therefore, B ring hydroxyl con-

figuration is the most important factor with respect to

scavenging of ROS and RNS [20]. In the current study,

besides choosing different flavonoids, we have also tested

their antioxidant effect in combination with non-flavonoid

phenolics, thereby reaching closer to the real picture pre-

sent in natural foods. The experimental results of individual

compounds were compared with the combination of two

compounds and evaluated for synergistic or antagonistic

interactions. The results are summarized in Table 1.

When the antioxidant activity of individual compounds

was analyzed, quercetin dihydrate showed the highest

activity. Figure 2 a, b shows that with increasing concen-

tration, quercetin dihyrate shows the highest inhibition %

and lowest EC50 value, indicating highest antioxidant

activity. The radical scavenging ability of phenolic
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Table 1 Antioxidant activity of flavonoids and their combinations evaluated by DPPH assay

S.No Combination of phytochemicals in different ratio EC50 (lM) ± STDEV Difference in DPPH antioxidant activity (%) P-value

P1 P2

1 Rutin hydrate Quercetin dihydrate

1 0 323.65 ± 27.26

1 1 305.77 ± 19.26 - 0.67 ± 2.38 a-, b-

2 1 315.87 ± 3.49 - 4.17 ± 4.59 a-, b$

3 1 317.49 ± 7.00 - 4.71 ± 5.21 a-, b#

0 1 283.65 ± 4.82

1 2 312.22 ± 7.23 - 2.91 ± 2.91 a-, b#

1 3 295.29 ± 15.31 2.63 ± 6.31 a-, b-

2 Rutin hydrate Hydroquinone

1 0 310.78 ± 8.60

1 1 414.94 ± 33.22 0.21 ± 6.31 a#, b#

2 1 383.55 ± 21.51 7.66 ± 5.76 a#, b$

3 1 383.12 ± 38.25 7.12 ± 7.50 a*, b#

0 1 520.34 ± 13.34

1 2 444.33 ± 40.72 - 6.86 ± 8.22 a#, b*

1 3 494.46 ± 74.52 - 18.80 ± 15.77 a*, b-

3 Rutin hydrate Kaempferol

1 0 310.18 ± 2.27

1 1 339.70 ± 16.84 1.49 ± 3.83 a*, b*

2 1 324.83 ± 14.83 5.77 ± 4.38 a-, b#

3 1 325.38 ± 17.59 5.62 ± 4.82 a-, b#

0 1 379.31 ± 9.27

1 2 344.90 ± 12.83 - 0.03 ± 3.25 a#, b#

1 3 347.50 ± 13.73 - 0.77 ± 2.86 a#, b*

4 Rutin hydrate Resveratrol

1 0 297.21 ± 5.74

1 1 409.38 ± 20.01 30.56 ± 1.72 a$, b$

2 1 364.15 ± 25.42 38.27 ± 1.82 a#, b$

3 1 348.28 ± 23.47 40.92 ± 3.10 a*, b$

0 1 881.80 ± 52.77

1 2 489.71 ± 1.26 16.84 ± 3.47 a$, b$

1 3 550.32 ± 19.55 6.46 ± 7.03 a$, b$

5 Quercetin dihydrate Hydroquinone

1 0 269.12 ± 2.78

1 1 347.81 ± 7.51 9.56 ± 1.33 a$, b$

2 1 320.96 ± 14.83 16.43 ± 6.34 a#, b$

3 1 316.32 ± 20.88 17.82 ± 3.16 a#, b$

0 1 500.19 ± 25.53

1 2 388.27 ± 12.80 - 1.10 ± 0.62 a$, b#

1 3 387.49 ± 22.53 - 0.80 ± 6.86 a$, b#

6 Quercetin dihydrate Kaempferol

1 0 273 ± 7.98

1 1 310.60 ± 13.35 10.60 ± 3.00 a#, b$

2 1 286.94 ± 15.28 17.41 ± 3.74 a-, b$

3 1 299.36 ± 10.70 13.79 ± 4.08 a*, b$

0 1 421.32 ± 11.52

1 2 339.37 ± 26.28 2.39 ± 5.50 a#, b#

1 3 358.08 ± 11.89 - 3.05 ± 1.34 a$, b#
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Table 1 continued

S.No Combination of phytochemicals in different ratio EC50 (lM) ± STDEV Difference in DPPH antioxidant activity (%) P-value

P1 P2

7 Quercetin dihydrate Resveratrol

1 0 267.38 ± 1.49

1 1 402.71 ± 25.80 8.00 ± 2.45 a$, b$

2 1 350.46 ± 23.56 19.92 ± 3.34 a#, b$

3 1 325.95 ± 17.76 25.50 ± 2.35 a#, b$

0 1 607.63 ± 37.24

1 2 461.57 ± 40.83 - 5.36 ± 5.14 a$, b#

1 3 485.81 ± 37.39 - 10.93 ± 4.07 a$, b#

8 Hydroquinone Kaempferol

1 0 435.18 ± 4.22

1 1 375.71 ± 13.92 12.82 ± 2.87 a#, b#

2 1 394.56 ± 26.79 8.45 ± 5.86 a-, b-

3 1 407.99 ± 13.12 5.33 ± 2.69 a*, b-

0 1 426.63 ± 3.59

1 2 384.08 ± 14.40 10.87 ± 2.97 a#, b#

1 3 391.06 ± 4.91 9.25 ± 0.99 a$, b$

9 Hydroquinone Resveratrol

1 0 381.06 ± 16.21

1 1 430.31 ± 25.90 11.24 ± 3.21 a*, b$

2 1 405.37 ± 51.99 16.49 ± 8.41 a-, b#

3 1 418.34 ± 36.26 13.74 ± 5.53 a-, b#

0 1 588.25 ± 20.43

1 2 457.01 ± 43.97 5.77 ± 7.05 a*, b#

1 3 488.84 ± 50.18 - 0.74 ± 7.45 a*, b*

10 Kaempferol Resveratrol

1 0 439.63 ± 3.36

1 1 517.21 ± 32.37 - 0.4 ± 4.10 a#, b-

2 1 522.21 ± 25.53 - 1.47 ± 5.82 a#, b-

3 1 511.68 ± 27.45 0.52 ± 7.22 a#, b-

0 1 591.04 ± 59.66

1 2 545.28 ± 40.40 - 5.74 ± 2.08 a#, b-

1 3 560.33 ± 45.83 - 8.63 ± 2.75 a#, b-

Variables a and b indicate statistical comparison of EC50 values of the phytochemical combinations with phytochemical 1 (1:0) and phytochemical 2 (0:1),

respectively

The superscripts *, #, and $ are for P-value B 0.05, 0.01, and 0.001. ‘ - ’ represents non-significant values
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compounds is generally thought to be due to the hydrogen

donating ability of their hydroxyl groups, that is, the more

hydroxyl groups are present, the greater the probability of

free radical scavenging action. In context of the currently

obtained results, it is important to note that quercetin has

five hydroxyl groups, whereas all other compounds have

less than five hydroxyl groups (Fig. 3), thereby lending

credence to the generalized statement above. The avail-

ability of hydroxyl groups is influenced by both chemical

structure and spatial conformation, which can alter a

molecule’s reactivity [21]. In the present study, rutin

hydrate (glycoside of quercetin) showed less antioxidant

activity than its aglycone counterpart (quercetin dihydrate).

This was in accordance with other studies [22] that the

number of sugar moieties in a flavonoid (in the resulting

flavonoid glycosides) as well as their position, all play a

significant role in antioxidant activity. Aglycones are often

found to have more antioxidant activity than their gly-

coside counterparts. Even though glycosides are generally

considered to be weaker antioxidants than aglycones, a

glucose moiety can sometimes improve bioavailability

[20].

The individual non-flavonoid phenolic compounds (hy-

droquinone and resveratrol) had the lowest antioxidant

activity. This could be attributed to their different/unique

structure and the number of hydroxyl groups (lesser in

comparison to quercetin). However, when they were paired

with all other flavonoids and with each other, a statistically

significant increase in the antioxidant activity was observed

for some ratios, thereby producing a synergistic effect

(Table 1). This result highlights the importance of con-

sidering both qualitative as well as quantitative parameters

while designing antioxidant food supplements.

Fig. 3 Chemical structures of a Flavonoids, and b Non-flavonoid phenolic compounds. Structures are drawn using Marvin sketch software
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Fig. 4 a Antagonistic antioxidant interaction between rutin hydrate

and hydroquinone in 1:3 ratio b Synergistic antioxidant interaction

between Rutin hydrate and Resveratrol in 2:1 ratio. Theoretical EC50

is calculated by mixing the individual graphs of both compounds.

Theoretical EC50 value less than the experimental value shows

antagonism, whereas theoretical EC50 value more than the experi-

mental value shows synergism. Inset represents a photo of 96 well-

plate
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Although rutin hydrate and quercetin dihydrate showed

the highest individual antioxidant activity among the

studied compounds, they did not show any statistically

significant synergism. Rutin hydrate showed synergism

with kaempferol (3:1, 2:1, 1:1). When the flavonoid

kaempferol, with only one hydroxyl group in its B ring,

was paired with the non-flavonoid phenolic resveratrol

(exhibiting least antioxidant potential in this study), a weak

DPPH scavenging activity was observed, indicating sta-

tistical antagonism. Rutin hydrate and hydroquinone

showed maximum antagonism in 1:3 ratio (Fig. 4a).

Maximum synergism was observed when rutin hydrate was

paired with resveratrol. However, with an increasing con-

centration of resveratrol, a significant decrease in syner-

gism was observed (Fig. 4b). It was observed that as the

concentration of weaker antioxidants like hydroquinone

and resveratrol increases, synergism decreases, that is, the

biological activity of the combination of free radical

scavenging is decreased.

Conclusion

Some crops, fruits and vegetables such as millets, citrus

fruits, grapes, pomegranates, apples, dates, green and yel-

low vegetables (peppers), cabbage, carrots, dark leafy

greens, and banana, have been known worldwide to contain

antioxidants [23, 24]. Besides the beneficial antioxidant

and medicinal properties of individual phytochemicals, it is

being recognized that their combinations, as found in fruits

and vegetables, contribute significantly to their nutrition

and health benefits [25]. In a representative study, Wang

et al. [26] used four different assays and reported on the

synergistic antioxidant potential of combinations of—fruit

and legume; and, raspberry and adzuki bean. As per the

ancient Indian system of medicine known as Ayurveda,

certain food combinations are incompatible (viruddha

ahara) like banana and milk, and are to be avoided for

better health [27]. Besides, when phytochemicals are con-

sumed in combinations, their concentration gets balanced

thereby offsetting a potential toxic effect of an individual

phytochemical consumed in high concentration. For

instance, Das et al. [28] showed that the reduced antioxi-

dant activity of decaffeinated green tea could be improved

on addition of herbal extract of Hibiscus sabdariffa,

thereby pointing towards phytochemical synergism.

From the current study, it is evident that the interactions

between phytochemicals can be synergistic or antagonistic.

Consuming vegetables rich in these compounds in different

combinations may contribute to some synergism. In the

current study, we have tested combination effects of two

phytochemicals at a time which is a simpler glimpse into a

more complex phenomenon; but we are aware that models

to test effect (as well as bioavailability) of a combination of

more than two bioactives (as present in foods) also need to

be developed for such studies. Also, customer choices with

respect to sensory properties such as taste (besides health

benefits) needs to be evaluated for food supplements based

on phytochemical combinations [29]. Additionally, before

proceeding with cell culture-based studies or animal trials,

the pharmaceutical companies need to first test the effect of

nutraceutical combinations using in vitro assays (such as

DPPH assay used in the current study), as the in vivo

studies require greater investment in terms of money and

approval from ethics committees.

For production of dietary supplements, the phenolics in

foods can be used in particular ratios. Thus, identifying the

synergistic combinations of bioactives and optimizing their

proportions in the mixture will be a useful effort in the

development of functional foods. For instance, juice made

from three different sources, such as hemp seeds, pumpkin

seeds, and pear juice, showed 52.60% increased scaveng-

ing activity and produced a greater synergistic interaction

[30]. Still, many phenolic compounds have not been tested

for the effect of their interactions on antioxidant activity.

Therefore, further research is required for a better under-

standing of their mechanism of action. Based on such

studies, certain food combinations can be promoted (due to

synergism) while some can be ruled out (due to

antagonism).
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