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Abstract

The fractal dimension (FD) can be used as a measure for morphological complexity in biological systems. The aim of this
study was to test the usefulness of this quantitative parameter in the context of cerebral vascular complexity. Fractal
analysis was applied on ten patients with cerebral arteriovenous malformations (AVM) and ten healthy controls. Maximum
intensity projections from Time-of-Flight MRI scans were analyzed using different measurements of FD, the Box-counting
dimension, the Minkowski dimension and generalized dimensions evaluated by means of multifractal analysis. The
physiological significance of this parameter was investigated by comparing values of FD first, with the maximum slope of
contrast media transit obtained from dynamic contrast-enhanced MRI data and second, with the nidus size obtained from
X-ray angiography data. We found that for all methods, the Box-counting dimension, the Minkowski dimension and the
generalized dimensions FD was significantly higher in the hemisphere with AVM compared to the hemisphere without AVM
indicating that FD is a sensitive parameter to capture vascular complexity. Furthermore we found a high correlation
between FD and the maximum slope of contrast media transit and between FD and the size of the central nidus pointing
out the physiological relevance of FD. The proposed method may therefore serve as an additional objective parameter,
which can be assessed automatically and might assist in the complex workup of AVMs.
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Introduction

Cerebral arteriovenous malformations (AVMs) are defined by

arteriovenous shunting through a nidus of coiled and tortuous

vessels, that directly connect feeding arteries to draining veins [1].

Due to the increased number of vessels, the vascular network

shows a higher structural complexity. Given that AVMs imply the

risk of morbidity or mortality due to intracerebral hemorrhage or

seizure, AVMs are usually treated after their diagnosis. Depending

on size and location, various methods have been developed for

clinical treatment including microsurgical resection, endovascular

embolization and stereotactic radiosurgery such as Gamma Knife

surgery [2,3,4].

Advances in magnetic resonance angiography (MRA) have

improved the accuracy of revealing the structure and hemody-

namics of AVMs, providing the basis for the choice of an optimal

therapeutic approach. While 3D-Time-of-Flight (TOF) techniques

are usually applied as non-invasive means of diagnosis to achieve

high resolution spatial imaging of the vascular system [5,6],

dynamic contrast enhanced MRI (DCE-MRI) gives information

about the vascular flow. Postprocessing methods such as the

Volume Rendering technique and Maximum Intensity Projection

(MIP) allow for a 2D representation of the blood vessels from

different projections, providing a good overview about the vascular

network. Usually AVMs are evaluated through experienced

neuroradiologists, supported by multimodal imaging techniques.

Structural and dynamic properties of the AVM provide the basis

for diagnosis and further intervention. This difficult diagnostic

process is user dependent and affected by inter-observer variation.

An objective measure that is may be related to the underlying

physiology of the AVM such as the enhanced vascular complexity

of AVMs due to feeding arteries, contrast media transit and nidus

size is expected to aid in classifying this complex vascular disease.

In the 1960s Benoit Mandelbrot introduced the term ‘‘fractal’’

for complex objects whose geometry cannot be characterized by

an integral dimension. The measured metric properties (length,

area or volume) of such a fractal object are a function of the scale

of measurement. Considering the ‘‘classical’’ example of measur-

ing the length of a coastline, the relationship between the

measured metric and the scale of measurement is obvious [7].

This relationship is reflected in the fractal dimension (FD) of an

object. A fractal object can be defined as an object, whose FD is

greater than its topological or Euclidian dimension which is zero

for a point, one for a curve and two for a plane. With this, the FD

can describe many natural geometrical features such as self-

similarity in textures or structures obtained by stochastic processes.

In biophysical sciences FD is widely used as a tool to quantify the

geometrical complexity of a structure by means of its space filling

properties [8]. Various theories have been proposed to describe

the FD of an object and numerical techniques have been

developed to estimate the dimension of a fractal or as an extension

to estimate generalized fractal dimensions obtained by multifractal

analysis (MFA) [9,10,11].
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Images representing morphologically complex structures can be

described by means of the fractal dimension using fractal analysis.

In the last few years, this image analysis technique raised attention

in analyzing the shape and complexity of natural structures

[8,12,13,14,15,16,17,18]. Widespread applications of FD can be

found in the field of neuroscience [19]. Since Kiselev et al. gave a

positive answer to the question ‘‘Is the brain cortex a fractal?’’

[20], many attempts have been made to analyze the fractal

structure of the brain [21,22]. Various studies demonstrated that

changes of the fractal dimension in the brain could be associated

with neurological diseases such as Multiple Sclerosis [23,24],

Schizophrenia [25], and Alzheimer’s disease [26].

However, disorders in the human cerebral vascular system have

not been investigated so far by means of fractal analysis. The

fractal nature of vascular systems has been shown for the vascular

tree in the human retina [27], for the vasculature of the human

placenta [13] and for the pial vasculature in cats [28]. Supported

by theoretical considerations about the fractality of tree like

structures in biological systems, models of the cerebral vascular

system have been developed based on fractal theory [29,30].

This is a proof of concept study to investigate the influence of

vascular complexity on values of FD and its relation to the

underlying physiology in patients suffering from AVM. Based on

skeletonized MIP images from 3D-TOF MRI data, we quantified

the vascular complexity by means of FD using the widely used

Box-counting dimension (Db) [31] and as a second method to

assess FD, the Minkowski dimension (Dm) [32]. If the structure to

be analyzed is complex with subsets of regions that obey different

scaling rules, a multifractal approach using generalized fractal

dimensions may provide more information. Giving the fact, that

natural structures can not be considered as perfect fractal (or

monofractal) the fractal nature of the object can be characterized

by a hierarchy of exponents [33]. We studied multifractal

properties by applying MFA providing a generalized dimension

spectrum. From this spectrum the capacity dimension (D0), the

information dimension (D1) and the correlation dimension (D2)

[34] were used for numerical analysis. All methods were applied

and compared for ten patients with AVM and ten healthy

controls. Considering, that Db depends on the image matrix size

we additionally investigated this influence for in vivo data and for

stochastically generated fractals obtained by diffusion limited

aggregation (DLA) [35]. The physiological significance of FD was

probed using regression analysis to reveal the correlation between

FD and the maximum slope of contrast media transit from DSC-

MRI data and the mean nidus size obtained from X-ray

angiography data respectively.

Materials and Methods

Theory
The fractal dimension can be described theoretically by the

Hausdorff dimension [36]. Giving the fact that the Hausdorff

dimension can not be directly assessed, an approximation is

possible, using the concept of self-similarity. Consider an object

made up of distinct segments. If each segment is divided into r

smaller segments, the resulting number N of smaller objects follows

a power low:

N~r{FD: ð1Þ

Hence,

FD~{
log N

log r
, ð2Þ

where FD is the dimension of the scaling law. For Euclidean

objects FD equals the Euclidean dimension (D = 1,2,3,…n).

Fractal objects obey a metric scaling relation, where the exponent

(the fractal dimension, FD) is not equal to the Euclidean dimension

and is usually noninteger.

The Box-counting dimension [37] approximates the FD by

covering a binary image with a grid of boxes of a length e and

counting the number of nonempty boxes N(e). Starting with a

single box covering the whole image, progressively the box length

e is reduced by a factor of two at each step and the corresponding

numbers of nonempty boxes N(e) are counted. Db is determined

using the relationship:

Db~{ lim
e?0

log N eð Þ
log eð Þ : ð3Þ

Linear regression can be performed to obtain the slope of the

double logarithmic plot log N(e) versus log (e) providing Db.

The Minkowski or Minkowski-Bouligand dimension Dm is given

by:

Dm~2{ lim
r?0

log A rð Þ
log rð Þ , ð4Þ

where A(r) are the number of disks with the radius r, covering the

object in the binary image. A relationship between the increasing

radii and the area covering the object is given, similar to the Box-

counting dimension, in the double logarithmic plot log A(r) versus

log (r). The slope, assessed by linear regression gives Dm. A

derivation of Dm can be found elsewhere [38].

Geometrical multifractals can be characterized in terms of their

generalized dimensions Dq [39]. Dq of a binary image with M0

pixel and size L that is covered with a grid of boxes of size l is given

by:

X
i

Mi

M0

� �q

*
l

L

� � q{1ð ÞDq

, ð5Þ

where Mi is the number of pixel within the i-th box and q is

variable within the limits {?,?ð Þ. MFA provides a generalized

dimension spectrum where for q = 0: D0 is usually referred to as

the capacity dimension, for q = 1: D1 the information dimension

and for q = 2: D2 the correlation dimension respectively. These

dimensions are related by the inequality

D0§D1§D2: ð6Þ

Whereas Dq is independent from q for a monofractal structure, a

geometric object can be considered as a multifractal if the

inequality is fulfilled with statistically significant differences [40].

Participants
Ten patients (P) (seven male, three female, mean age 44.1618.5

years) showing a unilateral, supratentorial AVM with no acute

bleeding (8 left hemisphere, 2 right hemisphere), which was
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diagnosed by an experienced neuroradiologist, and ten healthy

controls (HC), four male, six female (mean age 51.4613.1 years)

showing no cerebral vascular abnormalities in the MRI scan, were

included in this study. All patients and controls gave written

informed consent to undergo the MRI protocol as specified below,

and the study was approved by the local ethics committee of the

Medical University of Graz.

Magnetic Resonance Imaging
The MRI protocol included standard T1-, and T2-weighted

sequences, a 3D-TOF sequence and a DCE-MRI sequence. 3D-

TOF MR angiograms of the circle of Willis and vertebro-basilar

arteries were obtained with the following parameters to visualize

AVM: TR = 22 ms, TE = 3.68 ms, flip angle = 18u,
FOV = 200 mm, phase FOV = 75%, image matrix = 3846288,

number of slabs = 3, slices/slab = 52; slice thickness = 0.65 mm.

This resulted in a spatial resolution of 0.52 mm60.52 mm in

plane. DCE-MRI data were acquired using a 3D-FLASH

sequence with the following parameters: TR = 2.67 ms,

TE = 1.05 ms, flip angle = 16u, FOV = 230 mm, image ma-

trix = 3206320, number of slabs = 1, slices/slab = 12; slice thick-

ness = 6 mm. A dose of 0.2 ml/kg body weight contrast agent

(ProHanceH, Bracco Diagnostics, Inc., Princeton, NJ, USA) was

injected intravenously via a power injector (Spectris; Medrad Inc.,

Indianola, PA, USA) at a flow rate of 3 ml/s. All measurements

were carried out on a 3T Tim Trio system (Siemens Medical

Systems, Erlangen, Germany) using a 12 channel head coil.

Image Processing
To minimize the effect of inter-subject variability on FD due to

differences in head size and FOV positioning, the 3D-TOF images

of each patient were spatially normalized into the standard MNI

space (Montreal Neurological Institute) using FLIRT [41], a linear

registration tool and part of the FMRIB software library (FMRIB

Centre, University of Oxford, UK; http://www.fmrib.ox.ac.uk/

fsl/fsl/downloading.html). An affine 12 parameter model was

applied to coregister the 3D-TOF data sets to a template

(MNI152_T1_0.5 mm) resulting in spatially normalized 3D data

sets with a matrix size of 36464366364 each. MIP was done for

all patients and controls using MRIcro software (Chris Rorden,

University of Nottingham, UK; http://www.nitrc.org/frs/

download.php/414/mrizip.zip) and images of the axial projection

(azimuth 0u, elevation 90u) were saved in the ‘‘TIF’’ image format.

To capture the vascular tree and to remove the background from

the MIP images, a k - means clustering algorithm was applied.

Afterwards the images were converted into binary images and

skeletonized (Figure 1) using the ImageJ software v.1.45 (Wayne

Rasband, National Institutes of Health, USA; http://rsbweb.nih.

gov/ij/download.html). The images from the patients and from

the controls were separated into two halves with a resolution of

1826436 each to enable a statistical comparison between both

hemispheres.

The maximum slope of contrast media transit was evaluated

from DCE-MRI based MIP data. Intensity-time curves from the

hemispheres containing the AVM were determined for each

patient. The maximum slope is given by the maximum of the

differentiated intensity-time curve. Analysis was done with

software built in house using Matlab software (V 2010a,The

MathWorks, Inc., MA, USA).

Selective X-ray contrast enhanced angiography was performed

within three weeks from date of MRI scans for all patients to

visualize the nidus in coronal and sagittal view. The nidus size was

estimated by the average of the minimum diameter and the

maximum diameter from both views to approximate the mean

diameter.

Fractal Dimension
In order to quantify the vessel complexity two methods were

applied, using the relation (3) and (4), to access the fractal

dimension: the Box-counting dimension and the Minkowski

dimension.

For the evaluation of the Box-counting dimension, the size of

the squares forming a grid to cover the binary image was given by

e= 2n, where n grew with increment one in each iteration step.

The radii of the disks, necessary for evaluating the Minkowski

dimension, were approximated by squares with the length (2n+1)

with n = 0,1,2,…,20. The corresponding radii r are given by:

r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nz1ð Þ2

p

s
: ð7Þ

Giving the fact that natural structures represented in digital images

are of course not perfect fractals but show fractal properties in

certain range of scales. A linear relationship between the scale of

measurement and object size is therefore not guaranteed over the

whole range. The values of e and r included in the linear

regression analysis are crucial since they determine the absolute

value of the fractal dimension and have to be chosen carefully. For

each individual regression, the correlation coefficient R was

calculated starting with the smallest possible value for emin and a

value slightly above was chosen for emax. Subsequently emax was

increased until R did not change significantly giving the maximum

Figure 1. 3D-TOF images. (a) provide the basis for MIP images (b). After segmentation and skeletonizing, binary images (c) are obtained that serve
as input for the FD analysis. ((b) and (c) inverted view).
doi:10.1371/journal.pone.0041148.g001
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value of e. In a second step emin was increased until R did not

change significantly providing the minimum value of e. With that,

we defined a correlation coefficient of R = 0.995 for the linear

regression as a threshold for including data points which led to a

range of n = [1,8] for the Box-counting dimension and n = [6,20]

for the Minkowski dimension. Both methods were applied for the

whole skeletonized image and separately for the left and right

hemisphere using software built in house (http://code.google.

com/p/iqm/downloads/detail?name = Iqm_1.12.001.exe).

Multifractal analysis was carried out using FracLac (Karperien,

A., FracLac for ImageJ, version 2.5; http://imagej.nih.gov/ij/

plugins/fraclac/fraclac.html), a plugin for ImageJ software

(Wayne Rasband, National Institutes of Health, USA). General-

ized dimensions were evaluated within the range q = [0,5] using a

box size range of n = [1,8].

Simulation
The influence of the image matrix size on FD was investigated

using a statistical fractal obtained by diffusion limited aggregation

[35]. DLA is the process when particles, which perform a random

walk due to Brownian motion, aggregate and form a cluster. Ten

fractals were generated and FD (Db, Dm) was calculated for the

whole image and separately for the left and right half of the

images. This was carried out for DLA fractals with a matrix size of

5126512 pixels and of 3646436 pixels, which is equivalent to the

image size of in vivo data, and 2566512 pixels and 1836436

pixels respectively.

Statistical Analysis
The group of ten patients (P) was divided into two subgroups

including hemispheres with AVM (PAVM) and hemispheres

without AVM (Pno AVM). Subsequently, from the group of healthy

controls (HC) two subgroups were built containing the left and the

right hemisphere (HCleft, HCright). The significances of the

differences in FD values of these groups were quantified using a

262 mixed-design ANOVA test with a within-subjects factor of

hemisphere (for patients: AVM, no AVM, for healthy controls:

left, right) and a between-subject factor of group (P, HC) for both

methods (Db, Dm) evaluating FD. Statistical differences in FD for

the whole images of patients and controls (Ptotal, HCtotal) were

tested using an unpaired, two-tailed t-test. Results from the

multifractal analysis were analyzed using a total of three paired,

two-tailed t-tests to investigate statistical differences between the

hemisphere with AVM and the hemisphere without AVM for D0,

D1 and D2. Multifractality was investigated using a total of four

paired, two-tailed t-tests to test the significance between D0, D1

and D2 for the hemisphere with AVM and the hemisphere without

AVM. To ensure the applicability of these statistical tests, the

normal distribution of the data was tested using the Kolmogorov-

Smirnov test. The significance of differences in FD for ten

statistical fractals with regards to image matrix size was tested

using a total of four 3-way ANOVAs for repeated measurements

comparing Db and Dm for the total images matrix sizes 5126512

and 3646436 and their left and right image halves. The level of

significance was set at p,0.05 for all tests. All statistical analysis

were carried out using the statistical package IBM SPSS Statistics

19 (SPSS Inc., Chicago, Illinois, USA).

Linear regression models were used to test for correlation first,

between FD and the maximum slope of contrast tracer transit and

second, between FD and the nidus size. A post hoc power analysis

was performed to estimate the sample size for Db, Dm. D0, D1 and

D2 based on the correlation coefficients.

Results

To investigate if the fractal dimension can measure vascular

complexity in patients with AVM, the Box-counting dimension,

the Minkowski dimension and the generalized dimensions have

been calculated. To ensure that FD specifically captures the higher

vascular complexity in AVMs, Db and Dm were evaluated for both

hemispheres in patients and controls separately and for the whole

brain. Additionally D0, D1 and D2 were evaluated for both

hemispheres in patients. The results of the Kolmogorov-Smirnov

test revealed the normal distribution of the data and ensured the

applicability of the statistical tests below.

For Db the main effects of hemisphere (F(1,18) = 6.8, p = 0.017,

g= 0.07) and group (F(1,18) = 4.6, p = 0.045, g= 0.21) were

qualified by an interaction between hemisphere and group

(F(1,18) = 7.0, p = 0.016, g= 0.07). For Dm the main effects of

hemisphere (F(1,18) = 5.7, p = 0.028, g= 0.18) and group

(F(1,18) = 3.5, p = 0.078, g= 0.16) were again qualified by an

interaction between hemisphere and group (F(1,18) = 6.6,

p = 0.019, g= 0.21).

Posthoc-analysis using Bonferroni adjustment for multiple

comparison indicated that patients had significantly higher FD

values for Db and Dm in hemispheres with AVM compared with

the hemispheres without AVM (Db: p = 0.002, Dm: p = 0.002). For

both methods healthy controls had similar values for FD in both

hemispheres with no significant differences in FD (Db: p = 0.982,

Dm: p = 0.892). No significant differences were observed compar-

ing the non affected hemisphere of patients with healthy controls

(HCleft: Db: p = 0.574, Dm: p = 0.918, HCright: Db: p = 0.691, Dm:

p = 0.872) but significant differences when comparing the patient’s

hemisphere with AVM with the hemispheres of healthy controls

(HCleft: Db: p = 0.015, Dm: p = 0.020, HCright: Db: p = 0.010, Dm:

p = 0.024).

Comparing patients with controls for the whole image showed a

significantly higher value of Db (p = 0.020) and a statistical trend

for elevated Dm (p = 0.067) in patients. Overall Dm was higher than

Table 1. Mean values of Db and Dm for the patients’
hemispheres with AVM (PAVM), hemispheres without AVM (Pno

AVM) and the entire brain (Ptotal).

Db Dm

Mean SEM Mean SEM

Patients PAVM 1.146 0.022 1.340 0.044

Pno AVM 1.072 0.014 1.212 0.023

Ptotal 1.152 0.018 1.284 0.033

Healthy Controls HCleft 1.068 0.022 1.203 0.031

HCright 1.053 0.015 1.208 0.028

HCtotal 1.092 0.015 1.203 0.025

DLA 256x512left 1.392 0.007 1.595 0.009

256x512right 1.390 0.008 1.601 0.010

512x512 1.390 0.005 1.597 0.007

182x436left 1.387 0.009 1.591 0.011

182x436right 1.297 0.008 1.580 0.009

364x436 1.360 0.005 1.587 0.005

Mean values of Db and Dm for healthy controls including the left and right
hemispheres (HCleft, HCright) and the entire brain (HCtotal). Mean values of Db and
Dm are presented for ten statistical fractals obtained by DLA for images different
image matrix sizes. Values are as mean 6 standard error of the mean (SEM).
doi:10.1371/journal.pone.0041148.t001
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Db for all subgroups in patients and controls. Mean values and

standard error mean for all groups are reported in Table 1 and

summarized in Figure 2.

To illustrate the proposed methods, the log-log plots for Db and

Dm are shown in Figure 3 for a single patient. The different slopes

reveal the higher FD in the left hemisphere suffering from a large

AVM (nidus size = 2.9 cm) (Db = 1.28, Dm = 1.61) compared to the

unaffected hemisphere (Db = 1.11, Dm = 1.24).

FD of ten statistical fractals obtained by DLA was analyzed to

study the influence of the image matrix size on the quantitative

results. Db and Dm were evaluated for the image matrix size of

5126512 pixels and 2566512 pixels for the left and right image

halves respectively. No significant differences were found between

different image matrix sizes for this resolution within one method.

Subsequently, Db and Dm were evaluated for an image matrix size

which matches the matrix size of the in-vivo data of 3646436

pixels and 1826436 pixels for the left and right halves respectively.

Only the ANOVA for Db yielded a significant difference

(F(1,18) = 60.104, p = 0.000, g= 0.875) between the whole image

and both image halves. No significant differences were found

between different matrix sizes for this resolution using the

Minkowski method. These results reveal that FD evaluated by

the Box-counting method is sensitive to the image matrix size.

Mean values and standard error mean for all groups are reported

in Table 1 and summarized in Figure 4.

The generalized dimensions were higher in the hemisphere with

AVM compared to the hemisphere without AVM for all q in the

evaluated range (Figure 5). Significantly higher FD values were

found for D0, D1, and D2 in hemispheres with AVM compared

with the hemispheres without AVM (D0: p,0.001, D1: p,0.001,

D2: p = 0.036). Mean values and standard error mean for D0, D1,

and D2 are reported in Table 2. Differences between D0, D1, and

Figure 2. Mean values and standard error mean of Db (left side of the figure) and Dm (right side of the figure) comparing patients
(Ptotal) with healthy controls (HCtotal) for the whole image, hemispheres of patients with AVM (PAVM) compared to the hemisphere
without AVM (Pno AVM) and comparison of the left and right hemisphere of healthy controls (HCleft, HCright). Asterisks indicate
significant differences in group comparisons: * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0041148.g002

Figure 3. The curves in the double logarithmic plots show the relationship between the scales of measurement and object size in
one representative patient. Values of FD assessed by means of Db (left side of the figure) and Dm (right side of the figure) were evaluated from the
different slopes using Eq. (3) and (4). The red lines were obtained from the hemisphere with AVM and the black lines were obtained from the
hemisphere without AVM demonstrating that FD is sensitive to the vascular complexity due to AVMs.
doi:10.1371/journal.pone.0041148.g003
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D2 were significant in both hemispheres with and without AVM

(all p,0.001) indicating that the cerebral vascular system show

multifractal properties. Examples for five patients are shown in

Figure 6 providing MIP images, skeletonized images and values of

FD (Db, Dm, D0, D1, and D2) for the left and the right hemispheres.

For the observed correlations between FD and the contrast

media transit the post hoc power analysis estimated a sample size

of n = 7 for Db, n = 7 for Dm, n = 23 for D0, n = 17 for D1 and

n = 14 for D2. The sample size for the correlation between FD and

nidus size was estimated as follows: n = 7 for Db, n = 6 for Dm,

n = 25 for D0, n = 20 for D1 and n = 19 for D2. The linear

regression analysis showed a strong and positive linear correlation

between FD of the affected hemisphere and the maximum slope of

contrast media transit for Db and Dm (Db: r = 0.913, p,0.0001; Dm:

r = 0.926, p,0.0001), (Figure 7). A strong correlation was also

found between FD and the nidus size (Db: r = 0.944, p,0.0001;

Dm: r = 0.963, p,0.0001), (Figure 8). Overall D0, D1, and D2

showed a weaker positive linear correlation compared with Db and

Dm for both the maximum slope of contrast media transit (D0:

r = 0.624, p = 0.003; D1: r = 0.692, p,0.001; D2: r = 0.740,

p,0.001), (Figure 7) and the nidus size (D0: r = 0.690, p,0.027;

D1: r = 0.734, p,0.016; D2: r = 0.752, p,0.012), (Figure 8).

Figure 4. Mean values and standard error mean of Db and Dm for statistical fractals obtained by DLA. On the left side of the figure
fractals with an image matrix size of 5126512 pixels and 2566512 pixels for the image halves were analyzed. On the right side of the figure fractal
analysis based on image matrix size of 3646436 pixels and 1826436 pixels for the image halves showing significant differences in Db due to image
matrix size. Asterisks indicate significant differences in group comparisons: * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0041148.g004

Figure 5. Mean values and standard error mean of the generalized dimensions in the range q = [0,5] obtained by multifractal
analysis. The red line indicates the patient’s hemisphere with AVM, the black line the hemisphere without AVM.
doi:10.1371/journal.pone.0041148.g005
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Discussion

Fractal analysis has been shown to provide useful information in

analyzing natural structures by means of their space filling

properties in many applications in biology and medicine

[12,15,17,22]. Giving the fact that the structures to be analyzed

are usually represented in digital images with a certain resolution

defined by the image matrix, scales and order of magnitudes are

always restricted. In order to apply fractal analysis to digital

images it has to be assured that the scaling range covers at least

two orders of magnitude [8] providing an estimation of the fractal

dimension. Since this criterion was met for our data, we showed as

a proof of concept that FD, a measure for the fractal nature of

complex structures, is significantly elevated in cerebral vascular

systems with higher structural complexity in AVMs and that FD

strongly correlates with physiological and anatomical properties

like vascular flow and nidus size. This new method may thus

provide an objective and sensitive measurement for structural

vascular complexity with some belongs on important character-

istics of AVMs.

Two methods, the Box-counting method and the Minkowski

method were applied to access FD in ten patients with AVM and

ten healthy controls. Additionally multfractal analysis was

performed for patients to study multifractal properties of the

cerebral vascular system. The interpretation of a spectrum of

generalized dimensions is not trivial especially in the light of

correlation with physiological parameters. It has been shown that

the spectrum of generalized dimensions is shifted due to pathologic

changes [42]. Giving the fact that such variation in the spectrum

can not be described with a single parameter that can be

correlated with physiological parameters, we focused on the

separate evaluation of three specific dimensions (D0, D1, and D2) as

a subset of the generalized dimension spectrum. This justifies that

the generalized dimensions were evaluated in the range q = [0,5]

supported by several concerns about the interpretation of

generalized dimensions for q,0 [43,44].

Our strategy to evaluate FD separately for both hemispheres

and the whole brain ensured that higher FD values could be

associated specifically with vessel complexity due to AVMs despite

anatomical issues. All methods showed significantly higher FD in

the hemisphere with AVM compared to the hemisphere without

AVM. While Db, evaluated for the whole brain was significantly

higher in patients than in controls, Dm showed a statistical trend for

higher values. Considering the variability of FD between the

subjects this effect can be explained by the limited number of

subjects involved in this study. In patients Db evaluated for the

whole brain was higher than Db evaluated for the hemisphere with

AVM. This finding supports the fact, that absolute values for

different image sizes are not comparable using the standard Box-

counting method. No such effect could be observed for the

dimensions Dm, D0, D1, and D2. We also found, that D0, D1, and D2

were significantly different fulfilling equation (6). This may

indicate that the cerebral vascular system shows multifractal

properties.

As would be expected, FD strongly correlates with the

maximum slope of contrast media transit because the tracer

transit time is related to the number of vessels feeding the nidus.

The strong correlation between FD and the nidus size is not that

obvious but suggests that there is a relation between vascular

complexity and nidus size. D0, D1, and D2 obtained from the

multifractal analysis show a weaker correlation with the tracer

transit time and the nidus size compared with Db and Dm. This

observation suggests that Db and Dm are more robust parameters

for characterizing physiological properties in patients with AVM.

One reason might be the sensitivity of MFA with regards to object

size as pointed out in [33,45]. Taking into account that the post

hoc power analysis estimated a larger sample size required for the

Table 2. Mean values of D0, D1 and D2 for the patients’
hemispheres with AVM (PAVM), hemispheres without AVM (Pno

AVM) and the entire brain (Ptotal).

D0 D1 D2

Mean SEM Mean SEM Mean SEM

Patients PAVM 1.639 0.008 1.528 0.010 1.468 0.017

Pno AVM 1.566 0.015 1.466 0.017 1.414 0.020

Ptotal 1.569 0.007 1.496 0.012 1.458 0.013

Values are as mean 6 standard error of the mean (SEM).
doi:10.1371/journal.pone.0041148.t002

Figure 6. MIP images of five patients (first column), skeleton-
ized images (second column) and values of FD for Db, Dm, D0,
D1, and D2 for the left and the right hemispheres (red indicates
the hemisphere with AVM).
doi:10.1371/journal.pone.0041148.g006
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correlation between D0 and the tracer transit time and for D0, D1,

and D2 and the nidus size, correlation results from the MFA can

not be considered as reliable. However more cases have to be

analyzed to proof if MFA provide information superior to fractal

analysis.

Many methods with different theoretic assumptions have been

developed to evaluate FD [10]. Db is the most prominent method

to obtain FD because of its simplicity. However, this method also

has some limitations in that absolute values are sensitive with

regards to image size [46] defined by the image matrix. Giving

the fact that the box size is doubled at each iteration step starting

with the size of one pixel, a complete covering of the image is

only possible if the dimensions of the image to be analyzed are

given as a power of two. If this is not the case, FD is dependent

from the initial location of the grid. For our data, this resulted in

different values of FD for the whole brain and the two

hemispheres. Ten statistical fractals obtained by DLA showed

that Db of the whole image equals Db of the halves using a matrix

Figure 7. Correlation between values of Db, Dm, D0, D1, and D2

and the maximum slope of contrast media transit obtained
from DCE-MRI data.
doi:10.1371/journal.pone.0041148.g007

Figure 8. Correlation between values of Db, Dm, D0, D1, and D2

and the nidus size evaluated from X-ray angiography data.
doi:10.1371/journal.pone.0041148.g008
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of 5126512 pixels and 2566512 pixels respectively. Values of Db

significantly differed when using a matrix of 3646436 pixels for

the whole image and 1826436 pixels for the two halves. This

observation was also confirmed for in vivo data from healthy

controls. Even though this effect was small compared to

differences in Db due to AVMs it can not be neglected. To

overcome these limitations in the Box-counting method exten-

sions of this technique have been proposed [10] such as the

sliding Box-counting dimension in which each box is slid over

the image overlapping the previous box. However, the assess-

ment of FD by evaluating the Minkowski dimension uses a

different concept in which the structure itself is covered through

geometrical objects such as circles or triangles. This strategy

reduces variations in FD due to different image matrix sizes as

we demonstrated in this paper. No significant differences in Dm

could be observed for different image matrix sizes neither in

computer simulations nor for in vivo data. These results suggest

that the Minkowski dimension is a suitable measure for analyzing

images with image dimensions not based on 2n.

Even though all methods Db, Dm and the generalized

dimensions are measurements for FD, differences between these

methods could be observed for our data. Overall the generalized

dimensions showed the highest absolute values. Dm was higher

than Db for all subgroups. Db and Dm are both approximations of

the Hausdorff dimension which are only equal for strictly self

similar objects [47,48]. This is not fulfilled for biological

structures explaining the observed differences. It has to be noted,

that FD values obtained by different algorithms vary in a wide

range and that absolute values are hardly comparable [49].

Many parameters such as the starting point of the initial grid in

the Box-counting dimension, the margin around the object and

the number of data points involved in the regression analysis

affect the computation of absolute values of FD. Specifically in

the simulation analyzing a fractal obtained by DLA, the Box-

counting dimension shows a value of around 1.39. This can be

explained through the fact that Db is prone to margins without

any texture since Db is sensitive to the overall complexity. The

Minkowski dimension measures the local connectivity of the

object and calculates an average value making this method less

sensitive to this border effects. Our values of FD for the DLA are

around 1.6 for the Minkowski method and are inline with values

reported in the literature.

As expected, the log-log plots representing the scaling charac-

teristics of the vascular system did not show a linear relationship

between the scale of measurement and the object size. Hence, the

slope of the log-log plot would provide biased values of FD when

using all data points for the linear regression. Complex methods

have been developed, trying to identify the largest range of self-

similarity. These techniques are based on combination of curve-

fitting tests and curvilinearity tests [50]. One way to address this

issue is to use the correlation coefficient as a threshold for

determining the range of linearity. We used this method in our

work resulting in a constant number of data points for which the

linear regression was carried out in all subjects.

Although it is possible to evaluate FD from gray scale images,

in this study all methods for evaluating FD were applied on

binary images. For the evaluation of vascular complexity the

relevant information is the branching pattern, the side length of

individual branches and the angles between them. Hence, gray

values in MIP images do not provide additional interpretable

information the evaluation of FD from binary images seems

reasonable. To obtain binary images from TOF MIP images

several preprocessing steps are involved. These steps include

vessel segmentation and skeletonizing. Many methods have been

developed and applied for segmenting the vascular tree [51]. In

this work we used a k-means clustering algorithm for

segmentation and the skeletonize algorithm implemented in

the ImageJ software. Our strategy provided binary images that

sufficiently captured small vessels in AVMs and worked reliably

for all data. This was confirmed by a visual comparison to

ensure that even small arteries feeding the nidus and are visible

in the MIP images are represented in the skeletionized images.

However, the choice of the segmentation algorithm is crucial for

the absolute values of FD and parameters influencing the

preprocessing steps must be strictly kept constant for group

comparisons.

AVM is a cerebral vascular disease, which is heterogeneous in

its appearance. The more ore less compact nidus can be supplied

by one or more feeding arteries, shunting blood to one ore more

draining veins. Using the proposed method, specifically the

structural complexity of the feeding arteries has an influence on

FD. The investigation of AVM by means of MRI usually

includes dynamic sequences providing hemodynamic information

about the vascular system. This information is an important

additional information helping neuroradiologists to classify the

AVM. Even though the evaluation of FD does not include any

information about the vascular hemodynamic hence only

anatomical structures are evaluated with regards to their

complexity, the blood flow is indirectly reflected in FD due to

the increased number of vessels.

It has to be noted that a MIP of 3D-TOF MR images is only

an approximate representation of the vascular system giving the

fact that superimposed vessels can not be discriminated for a

fixed projection plane. Ideally a three dimensional structure

should be analyzed by three-dimensional fractal analysis provid-

ing FD values between two and three. The projection of a fractal

from a m-dimensional space into a (m-1) dimensional subspace is

well defined [36] and explain our values of FD between one and

two. However, a three-dimensional fractal analysis requires an

accurate 3D model of the structure to be analyzed. While in the

field of neuroimaging this technique has successfully been applied

for the analysis of a 3D gray matter model extracted from T1

weighted MR images [24], a 3D model from the cerebral

vascular system from TOF-MRI can not be obtained easily.

Even though 3D vessel segmentation algorithms are explored

intensively in medical image analysis [52], the algorithms are

optimized for a specific imaging modality and can not be easily

applied on TOF-MRI data due to low contrast and limited

resolution. Segmentation methods that specifically deal with

TOF-MRI data [53] are relative new, complex and clinically not

verified. Hence they are not ‘‘state-of-the-art’’ and not included

in image processing tools provided by MR manufactures. On the

other hand MIP is available on every scanner and is a standard

representation of TOF-MR images commonly used by clinicians.

Since the focus of this work is on the clinical applicability of the

proposed method and considering the strong correlation between

FD and physiological parameters the approximation we used

seems to be reasonable. Nevertheless, the 2D fractal analysis is a

limitation in the proposed method especially in the light of

providing absolute values of FD from the 3D vascular structure.

However, more studies have to be made to investigate 3D vessel

segmentation algorithms based on TOF-MRI data focusing on

vascular diseases such as AVM. These future studies may provide

the basis for the application of 3D fractal analysis on the human

cerebral vascular system.

In principle, our proposed method can also be applied to MIP

images obtained by contrast enhanced MRA. Though this

technique provides a good representation of the vascular system,
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it inherits the problem of contrast agent bolus timing. The time

between the application of the contrast agent and the image

acquisition heavily influences the weighting of the arterial system

and the venous system. As it is difficult to keep this weighting

constant for all patients we evaluated images based on a native

TOF sequence. However, the applicability of this technique is not

limited to any special sequence if the image resolution is high

enough.

Conclusions
In this work we present a novel approach for the quantitative

measure of cerebral vascular complexity by means of fractal

dimension. Our results suggest that FD assessed by the Box-

counting dimension and the Minkowski dimension is related to

structural vascular complexity due to the increased number of

feeding arteries in patients suffering from AVM. The strong

correlation between FD and the maximum slope of contrast media

transit and between FD and the nidus size, as determined by the

gold-standard X-ray angiography, underlines the physiological

relevance of this measure. FD analysis is a simple and robust

technique that may yield an objective measure for investigating

vascular disorders such as AVM. However, further studies are

needed including more patients to determine the sensitivity of the

proposed methods.
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