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Background: Traumatic brain injury (TBI) is one of the diseases with high disability and mortality worldwide. Recent studies have
shown that TBI-related factors may change the complex balance between bleeding and thrombosis, leading to coagulation
disorders. The aim of this retrospective study was to investigate the prediction of coagulopathy and subdural hematoma thickness at
admission using the Glasgow Outcome Scale (GOS) in patients with severe TBI at 6 months after discharge.
Methods: In this retrospective cohort study, a total of 1006 patients with severe TBI in large medical centers in three different provinces of
China from June 2015 to June 2021 were enrolled after the exclusion criteria, and 800 patients who met the enrollment criteria were
included. A receiver operating characteristic (ROC) curve was used to determine the best cut-off values of platelet (PLT), international
normalized ratio (INR), activated partial thromboplastin time (APTT), and subdural hematoma (SDH) thickness. The ROC curve, nomogram,
calibration curve, and the decision curvewere used to evaluate the predictive effect of the coagulopathy andCoagulopathy-SDH(X1)models
on the prognoses of patients with severe TBI, and the importance of predictive indicators was ranked by machine learning.
Results: Among the patients with severe TBI on admission, 576/800 (72%) had coagulopathy, 494/800 (61%) had SDH
thickness ≥ 14.05 mm, and 385/800 (48%) had coagulopathy combined with SDH thickness ≥ 14.05 mm. Multivariate logistic
regression analyses showed that age, pupil, brain herniation, WBC, CRP, SDH, coagulopathy, and X1 were independent
prognostic factors for GOS after severe TBI. Compared with other single indicators, X1 as a predictor of the prognosis of
severe TBI was more accurate. The GOS of patients with coagulopathy and thick SDH (X1, 1 point) at 6 months after discharge
was significantly worse than that of patients with coagulopathy and thin SDH (X1, 2 points), patients without coagulopathy and
thick SDH (X1, 3 point), and patients without coagulopathy and thin SDH (X1, 4 points). In the training group, the C-index
based on the coagulopathy nomogram was 0.900. The C-index of the X1-based nomogram was 0.912. In the validation group,
the C-index based on the coagulopathy nomogram was 0.858. The C-index of the X1-based nomogram was 0.877. Decision
curve analysis also confirmed that the X1-based model had a higher clinical net benefit of GOS at 6 months after discharge
than the coagulopathy-based model in most cases, both in the training and validation groups. In addition, compared with the
calibration curve based on the coagulopathy model, the prediction of the X1 model-based calibration curve for the probability
of GOS at 6 months after discharge showed better agreement with actual observations. Machine learning compared the
importance of each independent influencing factor in the evaluation of GOS prediction after TBI, with results showing that the
importance of X1 was better than that of coagulopathy alone.
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Conclusion: Coagulopathy combined with SDH thickness could be used as a new, accurate, and objective clinical predictor,
and X1, based on combining coagulopathy with SDH thickness could be used to improve the accuracy of GOS prediction in
patients with TBI, 6 months after discharge.
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Introduction

Traumatic brain injury (TBI) is one of the leading causes of death
and disability in the world, with more than 50 million new cases
every year. More than half of the world’s population will
experience TBI in their lifetime, and the world spends more than
40 billion US dollars on TBI every year[1–3]. At present, the main
treatment methods are craniectomy, decompression surgery, and
basic vital signs support[4–6]. However, the differences in patients’
brain injuries may lead to uncertain prognoses[7], which indirectly
lead to a failure to fully and accurately determine the prognoses of
patients and provide appropriate diagnoses and treatment plans
during the early stages of injury. It is therefore necessary to
develop a model for early prediction of patient outcomes to help
physicians and families make optimal decisions.

Coagulopathy is a common clinical symptom affecting the
course of TBI in patients. More than 60% of patients with severe
TBI will have abnormalities in routine coagulation tests on
admission to the emergency department, which is more common
compared with the incidence of mild TBI (<1%)[8–10]. The inci-
dence of coagulopathy after TBI also increases with the severity of
injury[11–13]. The coexistence of TBI patients with varying degrees
of coagulopathy at admission is often associated with poor out-
comes, with reported mortalities ranging from 17 to 86% in TBI
patients with coagulopathy[14]. This may be related to a variety of
mechanisms associated with coagulopathy after TBI, including
disturbances in PLT number and function, changes in endogenous
procoagulant and anticoagulant factors, endothelial cell activa-
tion, hypoperfusion, and release of inflammatory factors[15]. The
effects of these mechanistic changes on survival and functional
outcomes, and whether they might be targeted for intervention to
improve prognostic outcomes, remain to be determined, sug-
gesting that coagulopathy may be a key indicator for predicting
the prognoses of patients with severe TBI.

Coagulopathy has been shown to be associated with poor
outcomes in patients with severe TBI[16–20]. However, few studies
have evaluated the role of coagulopathy in predicting outcomes at
6 months after severe TBI. In addition, clinical studies have
shown that space occupying position caused by SDH after TBI
was a common cause of clinical death, and the mortality of
patients with TBI complicated with SDH was significantly higher
than those of patients without hematomas[21,22]. TBI patients
with intracranial hemorrhage and coagulopathy have a faster
progression of intracranial hemorrhage, which is also one of the
causes of death[23]. However, previous prediction models have
not considered the importance of coagulopathy combined with
SDH in predicting the prognostic outcome of severe TBI[24–26].
This may be one of the reasons why previous single factor
prediction models have not been accurate.

In recent years, nomograms have been widely used in the
prognoses of cancer patients and the prognostic models of com-
mon diseases in clinical medicine[27]. Nomograms are able to
generate individual probabilities of clinical events by integrating
different prognostic and decisive variables, thus fulfilling the need

for integrated biological and clinical models and our need for
personalized medicine[28]. The present study therefore used coa-
gulopathy combined with SDH thickness in patients with severe
TBI, to establish and validate a novel nomogram model for
evaluating the 6-month prognoses of patients with severe TBI,
and to compare the combined model with coagulopathy alone.
Finally, this study established the importance of ranking of
machine learning for the indicators of coagulopathy and X1.

Materials and methods

Patient section

This was a retrospective cohort study that collected data from a
total of 1006 patients with severe TBI in large medical centers in
three different provinces of China from June 2015 to June 2021.
All the selected patients had not received any treatment for coa-
gulopathy at the time of admission, and the patients who were
transferred to our hospital after coagulopathy intervention from
other hospitals were excluded from this study, and all the
operations were performed by the trauma treatment group doc-
tors. Inclusion criteria were the following (1): Glasgow Coma
Scale (GCS) ≤ 8 at admission (2), isolated TBI patients, and (3)
blood tests performed within 12 h after injury, in the emergency
department. Exclusion criteria were the following (1): death on
admission (2); patients with bilateral dilated pupil sizes, no
spontaneous breathing, and no indication for surgery (3); patients
with a history of cancer, consumptive disease, acute infection,
atrial fibrillation, cerebral infarction, venous thrombosis, liver
disease and/or hematological diseases (4); a history of taking
anticoagulant drugs; and (5) among the patients transferred to
our hospital after surgical treatment in other hospitals. A total of
1006 patients with severe TBI collected in this studywere enrolled
after the above exclusion criteria, and 800 patients who met the
enrollment criteria were included. In this study, 619 patients from

HIGHLIGHTS

• To establish and validate a novel nomogram model for
evaluating the 6-month prognosis of severe traumatic brain
injury (TBI) patients with coagulopathy combined with
subdural hematoma (SDH) thickness.

• Coagulopathy combined with SDH thickness as a new
indicator had better predictive performance than
coagulopathy alone.

• Coagulopathy combined with SDH thickness could be
used as a new, accurate, and objective clinical predictor for
clinical workers to evaluate prognoses.

• The core of the establishment of the X1 model was to
combine coagulopathy with SDH thickness and combine
other indicators, which could be used to improve the
accuracy of Glasgow Outcome Scale (GOS) prediction in
severe TBI patients at 6 months after discharge.
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the 900th Hospital were selected as the training group, and 181
patients from the Affiliated Hospital of GuilinMedical University
and Ganzhou People’s Hospital of Jiangxi Province were selected
as the external validation group.

This study was approved by the Ethics Committee of the 900th
Hospital and was conducted in accordance with the Declaration
of Helsinki. Because it was a retrospective study, the ethics com-
mittee approved it without the need for patients to sign informed
consent forms in accordance with national laws and institutional
consent. Furthermore, the patient’s personal identifiable infor-
mation was anonymized and replaced with a coding system.

Data collection and definition

Clinical characteristics of patients included the following: sex,
age, blood pressure, pupil size, brain herniation, subarachnoid

hemorrhage (SAH), Glasgow Coma Scale (GCS), cerebral
ischemia (CI), white blood cell (WBC), neutrophil (NEU),
lymphocyte (LYM), monocyte (MNC), mean corpuscular
volume (MCV), mean corpuscular hemoglobin (MCH), crea-
tinine (CR), admission blood glucose (Glu), total protein (TP),
albumin (ALB), globulin (GLB), creatine kinase (CK), creatine
kinase isoenzyme (CK-MB), potassium (K), sodium (Na), cal-
cium (Ca), fibrin degradation product (FDP), plasma D
D-Dimer, plasma thrombin time (TT), fibrinogen (FIB), plasma
C-reactive protein (CRP).

In the absence of a generally accepted definition of coagulo-
pathy after TBI, coagulopathy was defined as any of the following
conditions based on previous studies[9,13,14,29], and the defini-
tions and reference values proposed by local institutions and
laboratories: INR >1.2, APTT > 35 s, or PLT <100 000/μl. All
CT and laboratory data were obtained on admission.

Figure 1. Flowchart for patient selection.
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X1was defined as a new combined index of coagulopathy with
subdural hematoma thickness (Coagulopathy-SDH). The ROC
curve showed that the thickness of the best SDH cut-off value was
14.05 mm, the thick group of SDH was ≥ 14.05 mm (n=494),
and the thin group of SDH was <14.05 mm (n=306). Patients
with coagulopathy and a thick SDH thickness were assigned X1
(1 point), those with coagulopathy and a thin SDH thickness were
assigned X1 (2 points), those without coagulopathy and a thick
SDH thickness were assigned X1 (3 points), and those without
coagulopathy and a thin SDH thickness were assigned X1
(4 points).

Application of machine learning in clinical prediction models

The significance and role of machine learning in clinical pre-
diction models are self-evident. First, machine learning is able
to learn underlying patterns and regularities from large
amounts of clinical data, thereby helping physicians to more
accurately predict a patient’s disease risk, diagnosis, or treat-
ment effect. Secondly, machine learning can automatically
process complex data, including different types of clinical
indicators, biomarkers, imaging data, etc., so as to provide
doctors with more comprehensive and multiangle information.
In addition, machine learning is capable of continuously
optimizing and improving predictive models to greater accu-
racy and reliability. In the process of building clinical predic-
tion models, the common machine learning steps include data
preprocessing, feature selection, model selection, and evalua-
tion. First, raw data needs to be cleaned, processed, and

Table 1
The relationship between clinical characteristics and prognosis in
patients with severe traumatic brain injury.

Variables Classification GOS> 3 GOS≤ 3

Sex Male 292 (80.2%) 339 (77.8%)
Female 72 (19.8%) 97 (22.2%)
Miss 0 0

Age 44.78± 20.006 51.98± 18.286
Miss 0 0

Hypertension Y 67 (18.4%) 136 (31.2%)
N 297 (81.6%) 300 (68.8%)
Miss 0 0

Pupil Unequal 64 (17.6%) 230 (52.8%)
Equal 300 (82.4%) 206 (47.2%)
Miss 0 0

SAH Y 210 (57.7%) 299 (68.6%)
N 154 (42.3%) 136 (31.2%)
Miss 0 1

Brain
herniation

Y 30 (8.2%) 280 (64.2%)

N 334 (91.8%) 156 (35.8%)
Miss 0 0

CI Y 9 (2.5%) 31 (7.1%)
N 354 (97.3%) 405 (92.9%)
Miss 1 0

WBC 13.25 (10.6075–17.62) 18.185 (14.395–22.975)
Miss 0 6

NEU 11.22
(8.7425–14.9725)

15.805
(12.242–20.4125)

Miss 0 6
LYM 1.17 (0.85–1.71) 1.21 (0.8375–1.8825)

Miss 0 6
MON 0.57 (0.34–0.78) 0.71 (0.41–1.03)

Miss 0 6
MCV 89 (85.525–92.2) 89.7 (86.9–92.5)

Miss 0 6
MCH 30.5 (29.1–31.7) 30.3 (29.3–31.4)

Miss 0 6
CR 68 (56.1–78) 79 (64–98.15)

Miss 0 7
GLU 7.78 (6.2075–9.3475) 10.2 (7.975–13.75)

Miss 0 7
TP 68 (63–73.475) 65.2 (56.05–72)

Miss 0 11
ALB 41 (37.525–44) 39 (33–43)

Miss 0 11
GLB 24.95 (21.7–29.3) 24 (19.4–28.7)

Miss 142 190
CK 311 (140.1–605) 410 (207.5–892.75)

Miss 13 28
CK-MB 21 (13.5–36) 37 (20–71.75)

Miss 13 28
K 3.9 (3.6–4.2) 3.72 (3.325–4.195)

Miss 0 7
Na 138.6 (136–141) 139 (136–142.2)

Miss 0 7
Ca 2.16 (2.07–2.26) 2.1 (1.96–2.22)

Miss 0 7
FDP 40.4 (16.2–120) 120 (62.4–211.535)

Miss 43 71
D-Dimer 12.805 (4.3325–35.2) 35.2 (12.735–35.2)

Miss 10 27
PT 11.9 (11.3–12.5) 12.5 (11.5–13.9)

Miss 5 27
TT 17.5 (16.4–18.9) 18.7 (16.6–21.2)

Table 1

(Continued)

Variables Classification GOS> 3 GOS≤ 3

Miss 5 27
FIB 2.2 (1.67–3.15) 1.88 (1.2–2.955)

Miss 5 27
CRP 7.2 (7.2–30.95) 26.5 (7.2–73.6)

Miss 36 42
SDH High

(≥ 14.05)
139 (38.2%) 355 (81.4%)

Low (< 14.05) 225 (61.8%) 81 (18.6%)
Miss 0 0

Coagulopathy Yes 218 (59.9%) 358 (82.1%)
No 144 (39.6%) 68 (15.6%)
Miss 2 10

X1 1 point 88 (24.2%) 297 (68.1%)
2 points 50 (13.7%) 50 (11.5%)
3 points 130 (35.7%) 61 (14%)
4 points 94 (25.8%) 18 (4.1%)
Miss 2 10

ALB, albumin; APTT, activated partial thromboplastin time; CI, cerebral ischemic; CK, creatine kinase;
CK-MB, creatine kinase isoenzyme; Cr, creatinine; CRP, C-reactive protein; FDP, fibrin degradation
products; FIB, Fibrinogen; GLB, globulin; Glu, glucose; INR, International Normalized Ratio; LYM,
lymphocyte; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; MON, monocyte;
NEU, neutrophile; PT, Prothrombin time; SAH, subarachnoid hemorrhage; SDH, subdural hematoma;
TP, total protein; TT, thrombin time; WBC, white blood cell; X1 (1 point), patients with coagulopathy
and thick SDH thickness; X1 (2 points), patients with coagulopathy and thin SDH thickness; X1 (3
points), patients without coagulopathy and with thick SDH thickness; X1 (4 points), patients without
coagulopathy and with thin SDH thickness; X1, coagulopathy combined with subdural hematoma
thickness.
All data were analyzed using the chi-square test, rank-sum test, and Fisher’s precision probability test,
and P< 0.05 was considered to indicate statistically significant differences.
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transformed to ensure data quality and consistency. Then,
through feature selection, the feature variables that have
important influence on the prediction target are screened out.
Next, according to the different prediction targets, the
appropriate machine learning algorithm is selected for model
training, and the performance of the model is evaluated by
cross-validation and other methods. Finally, the model was
optimized according to its performance metrics and validated
on independent datasets to verify the generalization ability and
stability of the model.

In conclusion, machine learning plays an important role in
clinical prediction models, which can help doctors predict and
diagnose diseases more accurately and improve the treatment
effect and survival rate of patients.

Follow-up

All patients were followed up regularly by the professional
staff, and the prognostic function score was followed up
6 months after discharge using outpatient examinations, SMS,
and telephone interviews. The GOS was used to evaluate the
results. Under this scoring system, a score of 1 indicated death,
2 indicated a persistent vegetative state, 3 indicated severe
disability (conscious but disabled), 4 indicated a moderate
disability, and 5 indicated good recovery and return to base-
line functional status. According to the GOS score at 6 months
after discharge, the patients were divided into good prognosis
(GOS > 3) and poor prognosis groups (GOS ≤ 3). The work

has been reported in line with the strengthening the reporting
of cohort, cross-sectional, and case–control studies in surgery
(STROCSS) criteria[30].

Statistical analysis

Data analysis was performed using SPSS27.0 (SPSS). R Studio
(version 4.2.2) (R Foundation for Statistical Computing) was
used for nomogram drawing, C-index calculations, calibration
plots, and DCA drawing. The XGBoost package was used for
machine learning. Prism 9.5.0 (Graphpad) was used to draw
bar charts and ROC curves. The Kolmogorov–Smirnow test
was used to determine the normality of the data. Data con-
sistent with a normal distribution were expressed as the
mean ± SD and compared between groups using the t-test.
Measurement data not consistent with a normal distribution
were expressed as the median and quartile, and compared
between groups using the rank-sum test. Count data were
expressed as a percentage n (%), and the χ2 test or Fisher’s test
was used for comparison between groups. The ROC curve was
used to calculate the optimal cut-off values of the INR, APTT,
PLT, and SDH thickness, and the endpoint was based on the
patient’s GOS score at 6 months after discharge. Binary logistic
analysis was performed on factors that showed significance using
univariate analysis, to evaluate independent predictors of poor
outcomes in patients with severe TBI. All tests were bidirectional,
and P<0.05 was considered significant. Factors with P<0.05
using univariate analysis were included in multivariate analysis.

Figure 2. Relationships among coagulopathy, SDH thickness, X1 and GOS scores at 6 months after discharge in patients with severe TBI. (A) Patients with
coagulopathy had poorer GOS scores than patients without coagulopathy (P<0.001). (B) Patients with high SDH thickness ≥14.05 mm had poorer GOS scores
than patients with low SDH thickness <14.05 mm (P<0.001). (C) The proportion of patients with GOS score >3 was analyzed. X1 (4 points, 84%) > X1 (3 points,
68%) > X1 (2 points, 50%) > X1 (1 point, 23%) (P<0.001). X1 (1 point), patients with coagulopathy and thick SDH thickness; X1 (2 points), patients with
coagulopathy and thin SDH thickness; X1 (3 points), patients without coagulopathy and with thick SDH thickness; and X1 (4 points), patients without coagulopathy
but with a thin SDH thickness.

Table 2
The relationship between the Coagulopathy, SDH thickness and X1, and GOS score in severe TBI patients.

Coagulopathy SDH thickness X1

Yes No High (≥ 14.05) Low (< 14.05) 1 point 2 points 3 points 4 points
Variables n= 576 n= 212 P n= 494 n= 306 P n= 485 n= 100 n= 191 n= 112 P

GOS ＜0.001 ＜0.001 ＜0.001
＞3 218 144 139 225 88 50 130 94
≤ 3 358 68 355 81 297 50 61 18

X1 (1 point), patients with coagulopathy and thick SDH thickness; X1 (2 points), patients with coagulopathy and thin SDH thickness; X1 (3 points), patients without coagulopathy and with thick SDH thickness; X1 (4
points), patients without coagulopathy and with thin SDH thickness; X1, coagulopathy combined with subdural hematoma thickness.
All data were analyzed using the χ2 test, and P< 0.05 was considered to indicate statistically significant differences.
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All statistical analyses were performed using a two-sided test, and
P<0.05 was considered statistically significant. A small number
of missing data were deleted.

Results

Relationship between clinical characteristics and outcomes
in patients with severe TBI

A total of 1006 patients with severe TBI in three large hospitals
from June 2015 to June 2021 were collected in this study, of
which 206 patients did not meet the inclusion criteria and were
excluded from the study, and 800 patients were included for
analysis. The flow chart of patient selection is shown in Figure 1.
There were 169 females (21.1%) and 631males (78.9%), and the
age [interquartile range (IQR)] of the cohort was 50 years
(35–63 years). The follow-up time was 6 months after discharge.
The median GOS IQR was 3 (1–5), 344 patients (41.8%) died,
and 456 patients (58.2%) survived. The relationship between
clinical characteristics and outcomes in patients with severe TBI is
shown in Table 1.

Relationships among coagulopathy, SDH thickness, X1, and
GOS scores at 6 months after discharge in patients with
severe TBI

The GOS significantly differed from coagulopathy, SDH
thickness and X1 in patients with severe TBI (P< 0.001).
Patients with GOS ≤ 3 tended to have coagulopathy (83%),
high SDH thickness (81%), and X1 (1 point, 88%). Patients
with GOS > 3 showed opposite trends (Fig. 2 and Table 2).
CT images of SDH thickness with coagulopathy after TBI in
four patients were selected as representative. Figure 3A, B are
typical CT images of patients with GOS > 3, and Fig. 3C, D
are typical CT images of patients with GOS ≤ 3.

Figure 3. Typical CT images of coagulopathy with subdural hematoma after traumatic brain injury. (A, B) Prognosis of the patient was Glasgow Outcome Scale
score >3, and the widths of the final hematoma were 11.44 mm and 5.35 mm. (C, D) Prognosis of the patient was GOS score ≤3, and the widths of the final
hematoma was 18.88 mm and 16.32 mm.

Table 3
Univariate logistic regression models used to analyze the factors
influencing GOS in patients with severe traumatic brain injury.

Variable B P OR 95% CI

Sex − 0.149 0.395 0.862 0.612 1.214
Age 0.020 < 0.001 1.020 1.012 1.027
Hypertension 0.698 < 0.001 2.010 1.439 2.805
Pupil 1.655 < 0.001 5.234 3.767 7.272
SAH 0.478 0.001 1.612 1.206 2.156
Brain herniation 2.995 < 0.001 19.983 13.106 30.467
CI 1.102 0.004 3.011 1.414 6.410
WBC 0.113 < 0.001 1.120 1.091 1.149
NEU 0.088 < 0.001 1.092 1.064 1.120
LYM 0.166 0.038 1.181 1.010 1.381
MON − 0.005 0.843 0.995 0.952 1.041
MCV 0.016 0.073 1.016 0.998 1.035
MCH − 0.008 0.282 0.992 0.977 1.007
CR 0.017 < 0.001 1.017 1.011 1.023
GLU 0.272 < 0.001 1.313 1.245 1.386
TP − 0.036 < 0.001 0.965 0.952 0.978
ALB − 0.070 < 0.001 0.932 0.911 0.954
GLB − 0.029 0.052 0.972 0.944 1.000
CK 0.000 0.058 1.000 1.000 1.000
CK-MB 0.016 < 0.001 1.016 1.011 1.021
K − 0.143 0.194 0.867 0.699 1.075
Na 0.044 0.002 1.045 1.016 1.074
Ca − 2.530 < 0.001 0.080 0.034 0.185
FDP 0.006 < 0.001 1.006 1.004 1.007
D-Dimer 0.052 < 0.001 1.053 1.041 1.065
PT 0.051 0.111 1.052 0.988 1.120
TT 0.102 < 0.001 1.108 1.058 1.159
FIB − 0.211 < 0.001 0.810 0.725 0.905
CRP 0.011 < 0.001 1.011 1.007 1.015
SDH 1.959 < 0.001 7.094 5.147 9.778
Coagulopathy 1.246 < 0.001 3.478 2.490 4.856
X1 (1point) 2.869 < 0.001 17.625 10.092 30.780
X1 (2point) 1.653 < 0.001 5.222 2.757 9.891
X1 (3point) 0.896 0.003 2.450 1.360 4.416

ALB, albumin; APTT, activated partial thromboplastin time; CI, cerebral ischemic; CK, creatine kinase;
CK-MB, creatine kinase isoenzyme; Cr, creatinine; CRP, C-reactive protein; FDP, fibrin degradation
products; FIB, Fibrinogen; GLB, globulin; Glu, glucose; INR, international normalized ratio; LYM,
lymphocyte; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; MON, monocyte;
NEU, neutrophile; PT, Prothrombin time; SAH, subarachnoid hemorrhage; SDH, subdural hematoma;
TP, total protein; TT, thrombin time; WBC, white blood cell; X1, coagulopathy combined with subdural
hematoma thickness.
P< 0.05 was considered to indicate statistically significant differences.

Table 4
Multivariate logistic regressionmodels used to analyze the factors
influencing GOS in patients with severe traumatic brain injury.

Variable B P OR 95% CI

Age 0.037 < 0.001 1.038 1.020 1.056
Pupil 0.752 0.010 2.122 1.194 3.770
Brain herniation 2.086 < 0.001 8.053 4.183 15.506
WBC 0.097 0.008 1.102 1.026 1.185
CRP 0.009 0.003 1.009 1.003 1.014
SDH 1.423 < 0.001 4.151 2.465 6.991
Coagulopathy 0.973 0.001 2.647 1.488 4.709

CRP, C-reactive protein; WBC, white blood cell.
P< 0.05 was considered to indicate statistically significant differences.
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Univariate and multivariate analysis of factors influencing
GOS scores in patients with severe TBI

Univariate logistic regression analysis showed that age, hyper-
tension, pupil size, SAH, brain herniation, CI, WBC, NEU, LYM,
CR, Glu, TP, ALB, CK-MB, Na, Ca, FDP, D-Dimer, TT, FIB,
CRP, SDH, coagulopathy, X1 (1 point), X1 (2 points), and X1 (3
points) were important prognostic factors affecting GOS scores in
patients with severe TBI (Table 3).

Before the X1 index was established, multivariate logistic
regression analysis showed that age [odds ratio (OR) =
1.038, 95% CI: 1.020 − 1.056, P< 0.001), pupil size (OR:
2.122, 95% CI: 1.194 − 3.770, P= 0.010), brain herniation
(OR: 8.035, 95% CI: 4.183 − 15.506, P< 0.001), WBC (OR:
1.012, 95% CI: 1.026 − 1.185, P= 0.008), CRP (OR: 1.009,
95% CI: 1.003 − 1.014, P= 0.003), SDH (OR: 4.151, 95% CI:
2.465 − 6.991, P< 0.001), and coagulopathy (OR: 2.647,
95% CI: 1.488 − 4.709, P= 0.001) were independent prog-
nostic factors for severe TBI (Table 4).

After the X1 indexwas established, factors significantly related
to the prognoses of severe TBI patients were included in the
multiple regression analyses. The results showed that age (OR:
1.039, 95%CI: 1.021 −1.057, P<0.001), pupil size (OR: 2.071,
95% CI: 1.156− 3.710, P= 0.014), brain herniation (OR: 7.905,
95% CI: 4.084 −15.300, P<0.001), WBC (OR: 1.099, 95% CI:
1.024 −1.180, P=0.009), CRP (OR: 1.009, 95% CI:
1.003 −1.015, P= 0.002), X1 (1 point) (OR: 8.807, 95% CI:
3.989 −19.444, P<0.001) were independent prognostic factors
in patients with severe TBI (Table 5). We found that X1: coa-
gulopathy combined with subdural hematoma thickness was an
independent prognostic factor affecting GOS in patients with
severe TBI.

The predictive value of X1 in patients with severe TBI, and
determination of the best cut-off value

The ROC curve was constructed with the PLT, INR, APTT, and
SDH thickness, with coagulopathy and X1 as the independent
variables and GOS score at 6 months after discharge as the
dependent variable. The results showed that the optimal cut-off
values of PLT, INR, APTT, and SDH thickness were 182.5,
1.105, 30.05, and 14.05, respectively. In addition, the area under
the curve (AUC) of PLT was 0.573 (95% CI: 0.534 −0.613),
APTT 0.614 (95% CI: 0.575− 0.654), INR 0.718 (95% CI:
0.682 −0.755), SDH 0.737 (95% CI: 0.682 −0.755),
0.702 −0.773), coagulopathy 0.619 (95% CI: 0.579 −0.659),

and X1 0.761 (95% CI: 0.727 −0.796). The results showed that
X1 had the highest AUC value, indicating that X1 was more
accurate than the other independent indicators, which was ben-
eficial to the prognostic evaluation of severe TBI. The AUC of the
coagulopathy model was 0.803, and that of the X1 model 0.902.
The coagulopathy model included age, pupil size, cerebral hernia,
WBC, CRP, and coagulopathy. The X1model included age, pupil
size, cerebral hernia, WBC, CRP, and X1, which indicated that in
the prediction model, the joint prediction model of X1 con-
structed by our group was better than the traditional coagulo-
pathy model (Fig. 4).

In the prediction of GOS prognoses in patients with severe TBI,
the prediction accuracy and predictive value of the X1 model
were higher than those of the traditional coagulopathy model.

The basic clinical characteristics of the training and
validation groups were compared

The three hospitals had long discussed the treatment and care
of patients, and formulated consistent nursing principles. A
total of 619 patients from our hospital (the 900th Hospital)
who met the criteria were used as the training group (n= 619),
and 181 patients from two centers of Guilin Medical
University Affiliated Hospital and Ganzhou People’s Hospital
of Jiangxi Province who met the criteria, were used as the
external validation group (n= 181). The baseline characteristic
data of the patients in the training group were basically the
same as those in the validation group, and there was no sig-
nificant difference between the two groups (P> 0.05), which
indirectly proved that the clinical characteristics data of this
study were not affected by different central sources (Table 6).

Comparison of the predictive performance of the nomogram
based on the coagulopathy model and the nomogram based
on the coagulopathy-hematoma thickness (X1) model

To predict the GOS score of severe TBI patients at 6 months after
discharge, based on the results of the multivariate analysis
regression model, the coagulopathy, age, pupil size abnormality,
cerebral hernia, WBC, and CRP were used to construct the
nomogram in Figure 5A, B for the training group and Figure 5C,
D for the validation group. In the training group, the C-index of
the nomogram based on the coagulopathy model (including age,
pupil size, brain herniation, WBC, CRP, and coagulopathy) was
0.900. The C-index of the nomogram based on the X1 model
(including age, pupil size, brain herniation, WBC, CRP, and X1)
was 0.912 (Fig. 6A). In the validation group, the C-index of the
nomogram based on the coagulopathy model (including age,
pupil size, brain herniation, WBC, CRP, and coagulopathy) was
0.858. The C-index of the nomogram based on the X1 model
(including age, pupil size, brain herniation, WBC, CRP, and X1)
was 0.877 (Fig. 6B).

DCA showed that both in the training and validation
groups, the clinical net benefit of GOS at 6 months after dis-
charge of the nomogram based on the X1 model was better
than that based on the coagulopathy model in most cases
(Fig. 7). In addition, compared with the calibration curve of
the nomogram based on the coagulopathy model, prediction of
the nomogram calibration curve based on the X1 model for
the probability of GOS at 6 months after discharge showed
better consistency with the actual observation results (Fig. 8).
Based on the above results, the C-index, DCA, and calibration

Table 5
Multivariate logistic regressionmodels used to analyze the factors
influencing GOS in patients with severe traumatic brain injury.

Variable B P OR 95% CI

Age 0.038 < 0.001 1.039 1.021 1.057
Pupil 0.728 0.014 2.071 1.156 3.710
Brain herniation 2.067 < 0.001 7.905 4.084 15.300
WBC 0.094 0.009 1.099 1.024 1.180
CRP 0.009 0.002 1.009 1.003 1.015
X1(1point) 2.176 < 0.001 8.807 3.989 19.444

CRP, C-reactive protein; WBC, white blood cell; X1 (1 point), patients with coagulopathy and thick SDH;
X1, coagulopathy combined with subdural hematoma thickness.
P< 0.05 was considered to indicate statistically significant differences.
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curve of the nomogram based on the X1 model were more
accurate than the nomogram based on the coagulopathy model
in both the training and validation groups, which indicated
that the X1 model constructed by our group was a reliable
indicator for predicting the GOS at 6 months after discharge,
and could be used as a clinical tool to predict the outcome of
severe TBI.

Machine learning was used to compare the importance of
each independent factor in predicting the prognoses of TBI
patients.

The independent prognostic factors (age, pupil size, brain hernia-
tion, WBC, CRP, coagulopathy, and X1), which were screened
based on the multivariate risk regression model, were ranked by

Figure 4. Area under the curve (AUC) of the PLT, INR, APTT, SDH thickness, coagulopathy, and X1. (A) The AUC of the PLT was 0.573. (B) The AUC of APTT was
0.614. (C) The AUC of INR was 0.718. (D) The AUC of SDH was 0.737. (E) The AUC of coagulopathy was 0.619. (F) The AUC of X1 was 0.761. (G) The AUC of the
coagulopathy model was 0.803. (H) The AUC the curve of the X1 Model was 0.902.
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machine learning using R language in both the training or vali-
dation groups. The importance of ranking the coagulopathy and
X1 models was determined. In the coagulopathy model, coagulo-
pathy occupied the fourth level, while in the X1 model, X1 occu-
pied the second level. The importance of the X1 model was
significantly higher than that of the coagulopathy prediction model
alone (Fig. 9). In the training groups, the AUCs of the coagulo-
pathy prediction and X1 prediction models were 0.929 and 0.946,
respectively (Fig. 10A, B), and the AUCs of the validation groups
was 0.928 and 0.911, respectively (Fig. 10C, D).

Comparison of the performances of the X1 model with the
classical CRASH and IMPACT models using machine
learning

The CRASH[31] model and IMPACT[7] models were selected
for comparisons with the coagulopathy model and X1 model
in this study. The role of machine learning in clinical research
is increasingly widespread, especially in building new classi-
fiers and clinical predictors[32–35]. Different machine learning
algorithms were selected as deep learning (fully connected deep
neural networks), DRF (distributed random forest), GBM
(gradient boosting machine), and GLM (generalized linear
model) algorithms, and were used to evaluate the predictive

Table 6
The baseline characteristics of the patients in the training and
validation groups were compared.

Variable Classification Training Validation P

Sex Male 497 (80.3%) 134 (74%) 0.07
Female 122 (19.7%) 47 (26%)
Miss 0 0

Age 48.47± 19.676 49.51± 18.5 0.527
Miss 0 0

Hypertension Y 156 (25.2%) 47 (26%) 0.835
N 463 (74.8%) 134 (74%)

Miss 0 0
Pupil Unequal 221 (35.7%) 73 (40.3%) 0.256

Equal 398 (64.3%) 108 (59.7%)
Miss 0 0

SAH Y 392 (63.3%) 117 (64.6%) 0.766
N 226 (36.5%) 64 (35.4%)

Miss 1 0
Brain
herniation

Y 239 (38.6%) 71 (39.2%) 0.881

N 380 (61.4%) 110 (60.8%)
Miss 0 0

CI Y 34 (5.5%) 6 (3.3%) 0.235
N 584 (94.3%) 175 (96.7%)

Miss 1 0
WBC 16.135

(12.015–20.5275)
16.205

(11.99–20.945)
0.974

Miss 5 1
NEU 13.715

(9.8175–18.145)
13.66

(10.155–18.1025)
0.93

Miss 5 1
LYM 1.21 (0.85–1.84) 1.14 (0.82–1.7975) 0.451

Miss 5 1
MON 0.63 (0.38–0.92) 0.63 (0.4–0.9475) 0.593

Miss 5 1
MCV 89.4 (86.4–92.5) 89.3 (86.6–92.05) 0.697

Miss 5 1
MCH 30.3 (29.2–31.6) 30.4 (29.4–31.375) 0.741

Miss 5 1
CR 72 (59.5–90) 74 (61.25–87) 0.779

Miss 6 1
GLU 8.8 (6.98–11.45) 9.17

(7.125–12.1075)
0.219

Miss 6 1
TP 67 (59.9–73) 66.15 (58.525–73) 0.494

Miss 8 3
ALB 40 (36–43.6) 39.9 (34.825–44) 0.352

Miss 8 3
GLB 24.5 (20.8–29.075) 24.1

(20.375–28.825)
0.387

Miss 255 77
CK 367 (174–756) 348.5 (191.5–803) 0.682

Miss 30 11
CK-MB 27 (17–51) 33.4 (17–59.25) 0.082

Miss 30 11
K 3.81 (3.5–4.2) 3.8 (3.343–4.1) 0.127

Miss 6 1
Na 138.8 (136–142) 139

(136.525–141.1)
0.697

Miss 6 1
Ca 2.13 (2.02–2.24) 2.14 (2.01–2.2375) 0.916

Miss 6 1
FDP 86.7

(27.25–152.0425)
119.8

(26.225–154.425)
0.596

Miss 87 27

Table 6

(Continued)

Variable Classification Training Validation P

D-Dimer 24.14 (7.48–35.2) 25.855 (6.67–35.2) 0.728
Miss 28 9

PT 12.1 (11.4–13.2) 12 (11.4–13.1) 0.799
Miss 25 7

TT 18 (16.5–19.9) 18.15 (16.4–20.125) 0.584
Miss 25 7

FIB 2.04 (1.46–2.995) 1.995
(1.5075–3.095)

0.944

Miss 25 7
CRP 12.85 (7.2–47.325) 18.75 (7.2–62.775) 0.094

Miss 65 13
Miss 25 7

SDH High
(≥ 14.05)

387 (62.5%) 107 (59.1%) 0.407

Low (< 14.05) 226 (36.5%) 74 (40.9%)
Miss 0 0

Coagulopathy Y 438 (70.8%) 138 (76.2%) 0.17
N 171 (27.6%) 41 (22.7%)

Miss 10 2
X1 1point 298 (48.1%) 87 (48.1%) 0.347

2 points 82 (13.2%) 18 (9.9%)
3 points 140 (22.6%) 51 (28.2%)
4 points 89 (14.4%) 23 (12.7%)
Miss 10 2

ALB, albumin; APTT, activated partial thromboplastin time; CI, cerebral ischemic; CK, creatine kinase;
CK-MB, creatine kinase isoenzyme; Cr, creatinine; CRP, C-reactive protein; FDP, fibrin degradation
products; FIB, Fibrinogen; GLB, globulin; Glu, glucose; INR, International Normalized Ratio; LYM,
lymphocyte; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; MON, monocyte;
NEU, neutrophile; PT, Prothrombin time; SAH, subarachnoid hemorrhage; SDH, subdural hematoma;
TP, total protein; TT, thrombin time; WBC, white blood cell; X1 (1 point), patients with coagulopathy
and thick SDH thickness; X1 (2 points), patients with coagulopathy and thin SDH thickness; X1
(3 points), patients without coagulopathy and with thick SDH thickness; X1 (4 points), patients without
coagulopathy and with thin SDH thickness; X1, coagulopathy combined with subdural hematoma
thickness.
All data were analyzed using the chi-square test, rank-sum test, and Fisher’s precision probability test,
and P< 0.05 was considered to indicate statistically significant differences.
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Figure 5. Nomograms based on the coagulopathy and coagulopathy-hematoma thickness (X1) models were compared in the training and validation groups. (A)
Coagulopathy-based nomograms in the training group (B) X1-based nomograms in the training group. (C) Coagulopathy-based nomograms in the validation
group. (D) X1-based nomograms in the validation group.

Figure 6. The C-index based on the coagulopathy and coagulopathy-hematoma thickness (X1) models were compared in the training and validation groups. (A)
The C-index of coagulopathy was compared with the C-index of X1 in the training group. (B) The C-index of coagulopathy was compared with the C-index of X1 in
the validation group.
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performances of the four models in the training group (Fig. 11)
and the validation group (Fig. 12). The results showed that the
AUC values of the X1 model-based on four different machine
learning algorithms were better than those of the classic
CRASH and IMPACT models in both the training group and
the validation group. Based on the data of this study, the
prediction performance of the X1 model established by our
research group was better than that of the CRASH and
IMPACT models. Therefore, in the process of treating patients
with severe TBI, the X1 model can be used as a more reliable
model to predict the prognoses of patients. Clinicians can
intervene and correct the prognoses of patients at an earlier
time, according to the prediction results of the X1 model, to
obtain a better quality of life.

Discussion

In the present study, we determined the prognostic values of
coagulopathy indicators and subdural hematoma thickness in
800 patients with severe TBI. The prediction performance was
evaluated by the corresponding ROC, nomogram, DCA,
C-index, andmachine learning importance ranking. Patients with
severe TBI with coagulopathy and subdural hematoma thickness
more than 14.05 mm at admission had a worse prognostic GOS
score. In addition, X1 and coagulopathy were shown to be
independent prognostic factors for GOS at 6 months in patients
with severe TBI.

Coagulopathy induced by TBI is one of the common risk fac-
tors for poor clinical outcomes, but its pathogenesis remains
unknown, and treatment options are limited and ineffective[36].
Coagulopathy has been reported to occur in up to two-thirds of
patients after severe TBI, and TBI-related factors may alter the
complex balance between bleeding and thrombosis, resulting in

coagulopathy and associated with increased mortality[14,18,37–40].
The clinical course of coagulopathy and bleeding progression
after TBI typically reflects a rapid progression from a hypercoa-
gulable to a hypocoagulable state, whereby coagulopathy devel-
ops due to the early release of procoagulant tissue factor from the
injured brain, which is then continuously consumed, leading to
coagulopathy[15,41]. In addition, soon after TBI, due to the for-
mation of multiple clots, systemic depletion of coagulation factors
and platelets leads to a decrease in fibrinogen concentrations and
platelet counts, which is also an important factor leading to
increased bleeding[42]. In patients with severe TBI, the imbalance
between coagulation and anticoagulation systems caused by
various factors often leads to coagulopathy, and further aggra-
vates bleeding, including the occurrence and progressive expan-
sion of dural or intracranial hematomas.

The presence of coagulopathy in TBI patients at presentation is
an independent risk factor for poor clinical outcomes, several
times increasing the risk of adverse outcomes and death[9,43].
Hypocoagulable coagulopathy has been reported to appear early
after severe TBI, occurring in up to 67% of patients, which is close
to the 72% incidence of coagulopathy in patients with severe TBI
in our study, and is associated with increased mortality[20].
Approximately 50% of TBI patients with coagulopathy experi-
ence hemorrhagic progression of initial brain contusion or intra-
cerebral hematoma within hours of TBI[44,45]. Juratli et al.[44], in a
prospective study of patients with TBI, reported a 47.1% inci-
dence of coagulopathy, with 43.5% of these patients showing
early hemorrhagic progression of brain contuses within the first
6 h . Previous studies have also confirmed that coagulopathy,
epidural hematoma, subdural hematoma, and intracranial
hemorrhage enlargement were closely related to the prognosis of
TBI[12,43,46]. Subdural hematoma is a major determinant of short-
term outcomes in TBI patients. TBI patients with SDH have a

Figure 7. The decision curve analysis (DCA) based on the coagulopathy model and coagulopathy-hematoma thickness (X1) models were compared in the training
and validation groups. (A) DCA of the X1 model was compared with DCA of the coagulopathy model in the training group. (B) DCA of the X1 model was compared
with DCA of the coagulopathy model in the validation group.

Chen et al. International Journal of Surgery (2024)

5555



lower discharge mortality but a higher in-hospital mortality[21].
Local consumptive coagulopathy and excessive fibrinolysis after
TBI can lead to recurrent hemorrhage and progressive expansion
of subdural hematomas. The mass effects of hematomas can lead
to a series of fatal complications such as increased intracranial
pressure, brain herniation, and respiratory depression.
Coagulopathy is a poor prognostic factor for patients with TBI,
but also aggravates the progression and mass effect of subdural
hematomas. The effects of coagulopathy after TBI on the prog-
noses of patients with TBI may therefore be multidirectional.
Traditional studies generally use coagulopathy alone to predict
the prognosis of TBI patients, but do not pay attention to the
further pathological phenomenon caused by coagulopathy. Our

research group believes that severe coagulopathy can partly pro-
mote the formation of SDH, and the severity of SDH directly
affects the prognosis of patients with GOS score, coagulopathy
can affect the prognosis of TBI patients and the formation of
SDH. We determined the best cut-off value of SDH thickness
(14.05 mm) in patients with severe TBI and classified it into high
and low levels, and found that the prognosis of patients with
coagulopathy combined with SDH thickness ≥14.05 mm was
worse. For the first time, we combined coagulopathy with SDH
thickness and developed a new prediction model, which was
validated by the latest machine learning technology. The data of
this study were applied to the IMPACT[7] and CRASH[31] pre-
diction models, which are widely used in the world, and compared

Figure 8. The decision curve analysis based on the coagulopathy and coagulopathy-hematoma thickness (X1) models were compared in the training and validation
groups. (A) Calibration curve analysis of the coagulopathy model in the training group. (B) Calibration curve analysis of the X1 model in the training group. (C)
Calibration curve analysis of the coagulopathy model in the validation group. (D) Calibration curve analysis of the X1 model in the validation group.
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with the performance of our prediction model. It was found that
the AUC values of the X1model established by us in four different
machine learning algorithms were higher than those of the
IMPACT and CRASH models. This further illustrates the
importance of coagulopathy combined with SDH thickness. Of
course, IMPACT and CRASH are international standard pre-
diction models, while our data is based on national research,
which may be affected by differences in patients from different
countries and regions.

The prevalence of coagulopathy in TBI varies considerably
among studies and proportions between 10 and 90% have been
reported. This variation may be ascribed to various reasons,

including inconsistency in the definition of coagulopathy, diver-
sity in the level of injury severity among studies, and the mixture
of early and delayed hemostatic disorders to calculate the pre-
valence of TBI-associated coagulopathy. Most studies rely on
classical laboratory parameters like the activated partial throm-
boplastin time (aPTT), the prothrombin time (PT), the interna-
tional normalized ratio (INR) in the PT, fibrinogen levels and
platelet count. Olson et al.[47] earlier reported that mild altera-
tions in the aPTT (>34 s) and platelet count (<150× 109/μl)
may already be indicative for early coagulopathy in isolated head
injury. Others reported aPTT and PT values ranging from 34 to
60 and 13 to 18 s, respectively, and an INR of >1.1 to 1.5 and

Figure 9. Machine learning was used to compare the importance ranking of each independent influencing factor in predicting the Glasgow Outcome Scale in
traumatic brain injury patients. (A) The importance ranking based on the coagulopathy model was obtained by machine learning in the training group. (B) The
importance ranking based on the X1 model was obtained by machine learning in the training group. (C) The importance ranking based on the coagulopathy model
was obtained by machine learning in the validation group. (D) The importance ranking based on the X1 model was obtained by machine learning in the
validation group.
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platelet counts of 100 to 150×109/μl as definition for coagulo-
pathy associated with TBI[47–49]. The definition of coagulopathy
used in this study is consistent with the above range. However,
because the prediction of outcomes associated with coagulopathy
in TBI depends on the definition of coagulopathy, there is
an international need to develop a standard evidence-based
guideline.

In conclusion, determining the occurrence of coagulopathy
and the progression of subdural hematoma after severe TBI was
valuable for the prognoses of patients and the planning of

treatments. Clinicians can use the thickness of coagulopathy and
subdural hematoma on admission to calculate the nomogram
score and evaluate the short-term poor prognosis in advance.

Despite demonstrating the predictive prognostic value of
coagulopathy and SDH thickness in patients with severe TBI, this
study had some limitations. First, this was a retrospective ana-
lysis, and some potential factorsmay have influenced the findings.
Second, although the data source of this study was multicenter,
the number of patients was not large enough, and this study only
calculated coagulation indexes and SDH thickness at admission,

Figure 10. Machine learning was used to evaluate the accuracy of the coagulopathy model and X1 models in the training and validation groups. (A) The receiver
operating characteristic (ROC) curve based on the coagulopathy model in the training group. (B) The ROC curve based on the X1 model in the training group. (C)
The ROC curve based on the coagulopathy model in the validation group. (D) The ROC curve based on the X1 model in the validation group.
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without dynamic monitoring. Dynamic monitoring of changes in
coagulation indexes and hematoma thickness may provide more
reliable results. Finally, the conclusions of this paper still need to
be verified by prospective studies.

Conclusions

In conclusion, our study showed that coagulopathy combined
with SDH thickness (X1) had better predictive performance than
coagulopathy alone. The X1 model constructed by combining
coagulopathy with SDH thickness could therefore be used to

improve the accuracy of GOS score predictions in severe TBI
patients at 6 months after discharge, to carry out early planned
interventions for patients with a poor prognosis.
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Figure 11. ROC curves derived from different machine learning algorithms for the four models in the training group. (A) The area under the curve (AUC) values of
different algorithms were obtained based on the coagulopathy model. (B) The AUC values of different algorithms were obtained based on the X1 model. (C) The
AUC values of different algorithms were obtained based on the CRASH model. (D) The AUC values of different algorithms were obtained based on the
IMPACT model.
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