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Four-band non-Abelian topological insulator and its
experimental realization
Tianshu Jiang 1,3, Qinghua Guo1,3, Ruo-Yang Zhang 1, Zhao-Qing Zhang1, Biao Yang 1,2✉ & C. T. Chan 1✉

Very recently, increasing attention has been focused on non-Abelian topological charges,

e.g., the quaternion group Q8. Different from Abelian topological band insulators, these

systems involve multiple entangled bulk bandgaps and support nontrivial edge states that

manifest the non-Abelian topological features. Furthermore, a system with an even or odd

number of bands will exhibit a significant difference in non-Abelian topological classifi-

cation. To date, there has been scant research investigating even-band non-Abelian

topological insulators. Here, we both theoretically explore and experimentally realize a

four-band PT (inversion and time-reversal) symmetric system, where two new classes of

topological charges as well as edge states are comprehensively studied. We illustrate their

difference in the four-dimensional (4D) rotation sense on the stereographically projected

Clifford tori. We show the evolution of the bulk topology by extending the 1D Hamiltonian

onto a 2D plane and provide the accompanying edge state distributions following an

analytical method. Our work presents an exhaustive study of four-band non-Abelian

topological insulators and paves the way towards other even-band systems.
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In mathematics, Abelian operators are commutative, meaning
that the result of two successive operations does not depend on
the order in which they are written. If we focus on a single

bandgap, then topological physical systems1–6 are usually classified by
Abelian groups, with the prime example being the tenfold
classification7,8 of Hermitian topological insulators and super-
conductors. Once multiple bandgaps are collectively considered, their
coupling introduces richer physics that can make the classification
non-Abelian9–13. A classic example is the quaternion group Q8 ¼
þ1; ± i; ± j; ± k;�1
� �

with i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1, which has
been used to classify the topological line defects in biaxial nematic
liquid crystals14. Very recently, non-Abelian groups have been used
to describe the admissible nodal line configurations12,15,16, Dirac/
Weyl point braiding13,17,18, and intriguing triple nodal points19–21 in
PT (inversion and time-reversal) symmetric systems. When more
bands are involved, richer non-Abelian topological charges emerge9.
Especially for systems with an even number of bands, several new
classes of non-Abelian topological charges deserve special attention.
A simple argument for this is that the even-dimensional special
orthogonal groups, i.e., SOð2NÞ, with N indicating a positive integer,
contain inversion symmetry, i.e., �I2N (the negative 2N ´ 2N iden-
tity matrix).

Results
Non-Abelian topological charges in four-band models. Here,
for simplicity, we focus on a four-band PT symmetric system.
Choosing an appropriate basis, the Hamiltonian can take real
forms, i.e., H kð Þ ¼ H*ðkÞ. When simultaneously considering all
three bandgaps between any two adjacent bands, the configura-
tion space of the Hamiltonian is M4 ¼ Oð4Þ=Z4

2, with Oð4Þ being
the 4-dimensional (4D) orthogonal group. This implies that the
eigenstate frame remains intact under Oð4Þ rotation, while Z4

2
indicates that each eigenstate has a gauge freedom of ± 1. The
quantized charges that describe the underlying topology are
found to be the non-Abelian-based homotopy group9 π1 M4

� � ¼
Q16 ¼ Uni2f0;1gf± e

n1
1 en22 en33 g, where e1; e2; and e3 are the basis

vectors of real Clifford algebra Cl0;3 satisfying the relation

ei; ej
n o

¼ �2δij (see Supplementary Note 1). There are 16 ele-

ments in the group and 10 conjugacy classes in total (see Table 1,
as indicated by the curly braces). Group multiplication can be
simply carried out using the above relation, i.e.,
e1e2
� �

e1e3
� � ¼ �e1e1e2e3 ¼ e2e3. Although the labels with the

Clifford algebra basis (see the 1st column of Table 1) are con-
venient for group multiplication, decoding the underlying phy-
sical meaning is not straightforward. To relate the charges to
rotations of the eigenstates, we rename all the charges one-to-one,
as shown in the 2nd column of Table 1. For example, we will see
that ± q12 indicate that both the 1st and 2nd bands acquire Zak
phases of π due to the rotation of their respective eigenvectors.
Figure 1a shows the representative elements and their multi-
plication relations, and the corresponding full multiplications are
listed in Supplementary Tables 1 and 2. One may also note that
the paths (arrows) bridging two elements are not unique. This
means that the non-Abelian topological phase transitions are
multiple-path transitions, which is different from the single-path
transitions in Abelian systems22.

In the following, we study the topological properties of these
charges. After topological band flattening, the mentioned PT
symmetric four-band Hamiltonian can take the form of
HðkÞ ¼ R kð ÞI1234 kð ÞRT , with R kð Þ 2 SOð4Þ being the 4D special
orthogonal group, k 2 ½�π; π� being the first Brillouin zone (FBZ)
and I1234 ¼ diag 1; 2; 3; 4ð Þ. The Hamiltonian has four real
eigenvectors, as HðkÞ nj i ¼ njni with n ¼1, 2, 3, and 4. When k
runs across the FBZ ðk ¼ �π ! πÞ, rotation matrix RðkÞ
continuously acts on eigenvector jni, and one finally obtains
þor � jni corresponding to a Zak phase of 0 or π, respectively.
Without loss of generality, we assume R k ¼ �πð Þ ¼ I4. Because
detðRÞ ¼ λ1λ2λ3λ4 ¼ 1, with λi being the four eigenvalues of RðkÞ,
three exhaustive categories of possibilities at k ¼ π can be easily
found (see see Table 1) : (1) all four λi ¼ 1; (2) two λi ¼ 1, with
the other two λi ¼ �1; and (3) all four λi ¼ �1.

The first category corresponds to two conjugacy classes þ1f g
and �1f g. Although they are indistinguishable from the Zak
phase description, charge þ1 indicates that the trajectories of the
eigenstate frame are contractible, while charge �1 indicates a
noncontractible loop. Usually, charge �1 indicates that the
eigenstate frame rotates by 2π in a rotation plane (or topologically
equivalent configurations)9,22. We will see their difference more
explicitly by extending the 1D Hamiltonian onto a 2D plane
(Fig. 1d, e). The second category consists of six conjugacy classes
that can be distinguished using single-band Zak phase arguments
regarding which two of the four bands have Zak phases of π. In
the last category, all eigenstates flip their sign after k runs across
the 1D FBZ. This category originates from the inversion
symmetry ð�I4Þ mentioned above. The two group elements
(classes) also share the same Zak phase distribution and are
indistinguishable from the conventional Abelian arguments.
Their difference is reflected in the eigenstate rotation sense in
four dimensions.

With setting kð Þ ¼ expðϕ∑i<j¼1:4nijLijÞ, we obtain the explicit
form of the flat-band Hamiltonian, where six skew-symmetric

matrices Lij with entries Lij
� �

a;b¼1:4
¼ �δiaδjb þ δibδja span the

basis of Lie algebra soð4Þ, ϕðkÞ is the rotation angle and nijðkÞ
determines the rotation plane. For example, the Hamiltonian of
charge q12 can be given with R kð Þ ¼ exp kþπ

2 L12
� �

, while that of
charge �1 can be obtained with R kð Þ ¼ exp kþ πð ÞL12

� 	
. Except

for the charges ± q1234, the rest have counterparts in the three-
band systems22 studied previously. Thus, we mainly focus on the
charges ± q1234, which are unique in the four-band models.

While the non-Abelian topological charges are defined on 1D
periodic lattices, their topological characteristics would be more
straightforward to visualize after we generalize the 1D Hamilto-
nians onto a 2D extended plane, where each non-Abelian
topological charge characterizing the 1D loop is reflected by the
specific configuration of band degeneracies encircled by the 1D
loop in the 2D plane. After trigonometrically expanding the

Table 1 Categories of non-Abelian topological charges in
four-band models.

Q16: Clifford-basis label Q16: Band index label Eigenvalues:
λ1; λ2; λ3; λ4
� �

þ1f g; �1f g þ1f g; �1f g 1; 1; 1; 1ð Þ
± e1
� �

± q12
� � �1;�1; 1; 1ð Þ

± e2
� �

± q13
� � �1; 1;�1; 1ð Þ

± e3
� �

± q14
� � �1; 1; 1;�1ð Þ

± e1e2
� �

± q23
� �

1;�1;�1; 1ð Þ
± e1e3
� �

± q24
� �

1;�1; 1;�1ð Þ
± e2e3
� �

± q34
� �

1; 1;�1;�1ð Þ
þe1e2e3
� �

; �e1e2e3
� � þq1234

� �
; �q1234
� � �1;�1;�1;�1ð Þ

The three categories can be further decomposed into 10 conjugacy classes forming the
generalized quaternion group Q16. For the four-band system separated by three bandgaps, if we
label each band with Zak phases of 0 or π, then there are 23 ¼ 8 possibilities, corresponding to
the eight different eigenvalue sets. There are two classes that go beyond the Zak phase
description9.
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Hamiltonian HðkÞ, we make substitutions such as cosk !
ρcosk ¼ k1 and sink ! ρsink ¼ k2 and show the corresponding
2D bands in Fig. 1b–e. The original 1D Hamiltonian in k space is
a unit circle (white circles in Fig. 1b–e) in the 2D extended plane
that encircles nonremovable degeneracies explicitly exhibiting the
underlying topological obstacles. For the charge þ1 (Fig. 1e), the
topology is trivial, as there is no degeneracy enclosed by the white
circles, while for charges ± qmn (Fig. 1b) and �1 (Fig. 1d), the 1D
unit circles enclose linear and quadratic degeneracies, respec-
tively. These 2D degeneracies topologically contribute to edge/
domain-wall states of the 1D systems; i.e., the linear/quadratic
degeneracy implies one/two topologically protected edge states.

The charge q1234 can be factorized as q1234 ¼ q12q34,
q1234 ¼ q14q23, and q1234 ¼ �q13q24 (the minus sign is induced
by the odd permutation of subscripts). Note that the two factors
in nodal links are commutative, i.e., q12q34 ¼ q34q12, which means
that all nodes formed by more distant (i.e., sharing no common
band) pairs of bands commute9. In Fig. 1c, we show the
corresponding extended 2D band degeneracies of the three cases.
They all belong to the same charge and can thus be continuously
transformed into each other without closing the bandgap (see

below). The charge �q1234 shares the same 2D band degeneracies
with q1234. Note that ± q1234 belong to two different conjugacy
classes, which is one of the key points that fundamentally
distinguishes them from the charges ± qmn. We will show their
topological differences in the following section from the
eigenstate rotation perspective.

We note that the nodal ring degeneracies in Fig. 1b ( ± q14) and
c (�q13q24) are accidental in the flat-band models, and each will
be split into linear Dirac cones in more general situations (see
below). Other triple degeneracies are similar to charges ± j in
three-band models22, where three bands are involved. The
fourfold degeneracy in Fig. 1c (q14q23) is also admissible rather
than stable here.

Eigenstates on the three-sphere -S3. Here, we illustrate rotation
configurations pertaining to different charges of the generalized
quaternion group Q16. The normalized eigenstates of HðkÞ are all
real and can be parametrized by Hopf coordinates ðα; η; βÞ on the
three-sphere - S3. Their four components can be written as
u ¼ cosαsinη; x ¼ sinαsinη; y ¼ cosβcosη; z ¼ sinβcosη
� �

, where

-1

-1

-q1234

-q1234

1

11

1

q1234

q1234q1234

q1234

q12

q24

q23

q13

q34q14

ba

c d e

Fig. 1 Non-Abelian topological charges in four-band models. a Elements of the Q16 group indicated by colored spheres sitting on an outstretched regular
octahedron and their mutual multiplications represented by the corresponding colored arrows. For example, a red arrow q12 brings a blue sphere q23 to a
cyan sphere q13, indicating that q23q12 ¼ q13. Full multiplication tables are provided in Supplementary Tables 1 and 2. b–e Extended 2D bands corresponding
to three different categories of the non-Abelian topological charges: ± qmn, q1234, and ± 1. White circles indicate the corresponding 1D bands. The charge
q1234 can be decomposed in three ways in c, which are all topologically equivalent. For charge �1, we take �1 ¼ q212 as an example, and the other cases can
be simply obtained by changing the linear Dirac cone degeneracies in panel b to quadratic degeneracies without any position shifting.
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α and β correspond to the two rotation angles in the two
orthogonal invariant planes, as shown in Fig. 2a (also see Sup-
plementary Note 2: Rotations in four dimensions23–25), while η
determines the proportions projected onto the two planes. When
α≠0 and β ¼ 0 (or α ¼ 0 and β≠0), the rotations are called single
rotations. For example, all ideal rotations RðkÞ with k ¼ �π ! π
enabling charge q12 belong to the case with the settings η ¼ π

2 and

α ¼ kþπ
2 , where “ideal” indicates the flat-band model given above.

Note that all general models can be continuously transformed
into the ideal flat-band model, and they are topologically
equivalent. Other charges, including ± qmn and �1, can be rea-
lized in a similar manner. Clearly, the eigenstates in one plane
(i.e., oyz plane when η ¼ π

2) can be fixed for these cases, while
they rotate on the other orthogonal plane (i.e., oux plane). In

-1 0 1
k ( /a)

-q1234|wAB=-0.25

-1 0 1
k ( /a)

-q1234|wAB=-0.125

-1 0 1
k ( /a)

Gapless|wAB=0

-1 0 1
k ( /a)

q1234|wAB=0.125

-1 0 1
k ( /a)

1

2
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Fig. 2 Non-Abelian topological charges ±q1234 specific to four-band models. a Rotations in four dimensions. For each rotation R, there is at least one pair
of two orthogonal rotation-invariant planes, e.g., A ¼ oux and B ¼ oyz, that span the 4D space. For any~a 2 A and~b 2 B, we have~a ?~b, R~a 2 A, and R~b 2 B.
We define the angle between ~a and R~a (~b and R~b) in the plane AðBÞ as αðβÞ. b 4D Clifford tori ðu; x; y; zÞ stereographically projected into R3 as the
conventional tori x

1�u ;
y

1�u ;
z

1�u

� �
. The two linked circles represent the trajectory of one eigenstate (with applying all the 4D D2 rotations), and the other three

eigenstate trajectories overlap with this trajectory (see other cases in Supplementary Fig. 5). c, d Orthographic projections of the four eigenstate
trajectories (shown in different colors) onto four 3D solid spheres, where one component is hidden by projection in each sphere. e Topological phase
transition between charges ± q1234; other parameters are listed in Supplementary Table 4.
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other words, the ideal rotations can be carried out in a 2D sub-
space. Notably, in contrast to on which plane the eigenstates
rotate, the crucial property of these topological charges is that the
eigenstate trajectories cannot contract to isolated points. The
difference in charges ± qmn is reflected by which two bands (the
mth and nth) are noncontractible, while charge �1 requires that
all four trajectories cannot contract simultaneously.

When both α≠0 and β≠0, the rotations are dubbed double
rotations (Fig. 2a), where there are two possibilities: rotating on
the two planes in the same (αβ>0) or opposite ðαβ<0Þ sense. The
charges ± q1234 have to be realized with continuous double
rotations, which means that RðkÞ at each k point is a double
rotation. Interestingly, when η ¼ π

4, the parametric set ðu; x; y; zÞ
constructs a Clifford torus26, which is the Cartesian product of
two circles in R4 (e.g., S1A 2 oux; S1B 2 oyz and S1A ´ S

1
B 2 R4). The

Clifford torus can be stereographically projected26 into R3 as a
conventional torus, i.e., x

1�u ;
y

1�u ;
z

1�u

� �
, on which we can

pictorially illustrate the difference between charges ± q1234 in
the rotation sense of eigenstate trajectories, as shown in Fig. 2b.
The two panels correspond to α ¼ β ¼ kþπ

2 (left, q1234) and α ¼
�β ¼ kþπ

2 (right, �q1234).
We further propose another orthographic projection method,

which projects each 4D trajectory into 3D space from four
orthogonal views. This is similar to the three-view drawing, which
is the orthographic projection from 3D space to 2D plane. Taking
the first panel of Fig. 2c as an example, we plot the trajectories in
the xyz subspace to obtain an orthographic projection from the
view of the u direction. Figure 2c, d correspond to þq1234 and
�q1234, respectively, where eigenstate trajectories are mapped
onto four solid spheres in R3. One can see that their main
difference is that the rotation directions in the oux plane are
opposite. Orthographic projections for other charges are listed in
Supplementary Figs. 1–4. In Fig. 2e, we show the topological
phase transition between them, where there are inevitably two
linear crossings between the first and second bands as system
parameter wAB changes (without relying on a joint basepoint, as
they belong to different classes).

Zak phases and evolution of edge states. After understanding
the non-Abelian topological charges from the perspective of
eigenstate frame rotations, we now show their relations to the Zak
phases of each band as well as edge/domain-wall states. In a PT-
symmetric system, the Zak phases of each band take a quantized
value of 0 or π, and the values are shown in Table 1; i.e., λi ¼ �1
indicates a Zak phase of π. We further refine the Zak phase of π
to be ± π, where “± ” is used to differentiate between charges
± qmn (two elements in the same conjugacy class). All of the
corresponding single-band Zak phases are exhaustively sum-
marized in Fig. 3a. For charges ± qmn, two corresponding bands
with noncontractible eigenstate trajectories carry Zak phases of
± π, and the bandgap sandwiched by them supports edge states at
hard boundaries of a finite lattice. We take the case of ± q12 as an
example, as shown in Fig. 3b. The edge states of other ± qmn
charges are shown in Supplementary Fig. 6. We label charge �1
with 2π, which indicates noncontractible 2π rotation here22.

For charges ± q1234, two eigenstates rotate by π, while the
other two rotate by ± π when k ¼ �π ! π. As shown in Fig. 1c,
there are three ways of factorization. We further schematically
show them in Fig. 3c, where each double-headed arrow
represents one factorization. The commutative property between
two factor charges, i.e., q12q34 ¼ q34q12, is implied by the double-
headed arrows. The fact that q12q34 (type-I), �q13q24 (type-II)
and q14q23 (type-III) are the same element in the group can be
visualized by constructing a transformation between them

without gap closing. The continuous transition between different
factorizations can be explicitly parameterized. For example,
from q12q34 ! �q13q24, we have H kð Þ ¼ R2R1I1234R

�1
1 R�1

2 ,
with R1 kð Þ ¼ exp kþ πð Þ=2 cosθI!IIL12 � sinθI!IIL13

� �� 	
and

R2ðkÞ ¼ exp kþ πð Þ=2 cosθI!IIL34 þ sinθI!IIL24
� �� 	

, as shown
in Fig. 3c (see the evolution of eigenstate trajectories in
Supplementary Fig. 3). In other words, the pair of two
orthogonal invariant planes rotates with θI!II . We further
study the accompanying evolution of edge states at hard
boundaries, as shown in Fig. 3d–f. The analytical results are

E ± ¼ 5
2 ±

ffiffi
2

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 3cos2θI!II

p
, E ± ¼ 5

2 ±
1
2 cosθII!III , and

E ± ¼ 5
2 ± sinθIII!I . Detailed analytical methods are provided in

Supplementary Note 3 and 4. There are a total of two edge states
pumping between different bandgaps. Their field distributions
are given in Supplementary Figs. 7–9. The existence of these edge
modes can be heuristically inferred by examining the band
degeneracies of the extended 2D model. In Fig. 3g–i, we show the
radial cuts of their extended 2D bands, where one can easily find
that each linear degeneracy point at kr ¼ 0 implies the position
of each edge state in Fig. 3d–f, respectively. Note that in these
flat-band cases, only the degeneracies at kr ¼ 0 imply topological
edge states, while other degeneracies ðkr≠0Þ accidentally emerge
from the 2D nodal rings (e.g., see Fig. 1c), which have no
topological implication.

We also show the edge state evolution for charge �1 in
Supplementary Figs. 10 and 11 (see the analytical solutions in
Supplementary Note 4). Along the 12 edges of the charge �1
octahedron (Supplementary Fig. 10a), the evolution shows strong
resemblance to the three-band models22. This occurs because
only three bands participate in the edge state pumping. As such,
all these transitions can be understood via the rotations of
eigenstates in the subgroup SOð3Þ, while the fourth band is fully
fixed and decoupled. One other important note is that there are
12 possible routes rather than 15 (naively from C 6; 2ð Þ ¼ 15)
because direct evolution between two orthogonal planes (or
between the diagonal points linked by the dashed lines in
Supplementary Fig. 10a, b), e.g., between q212 and q234, is
impossible. We also find that the transition can take arbitrary
routes on the 8 faces of the charge �1 octahedron (see an
example in Supplementary Figs. 10d and 11). Supplementary
Fig. 12 shows the evolution of 2D extended band degeneracies,
which help us understand the pumping of edge states accordingly,
e.g., the double quadratic or triple linear degeneracies at kr ¼ 0
predict the emergence of topological edge states22.

Observation of charges ± q1234 in a transmission line network.
To realize and characterize charges ± q1234, we designed a
transmission line network22,27,28 (see the sample photo in Sup-
plementary Fig. 13) consisting of 11 unit cells. There are four
meta-atoms A, B, C, and D in one unit cell. The real-space
Hamiltonian reads (see details in Supplementary Note 3)

H ¼ ∑
n

∑
X¼A;B;C;D
Y¼A;B;C;D

sXYc
y
X;ncY ;n þ ∑

X¼A;B;C;D
Y¼A;B;C;D

vXYc
y
X;ncY;nþ1 þ h:c:

 !

where cyX;n and cX;n are creation and annihilation operators on the
sublattice ‘X/Y ’ and site ‘n’, respectively. To realize an explicitly
real Hamiltonian in momentum space, we introduce imaginary
hoppings22. More details on the experimental realization are
provided in Methods section and Guo et al.22.

The left two panels (BulkS) in Fig. 4a show the numerically
calculated and experimentally measured energy bands. We plot the
corresponding eigenstate trajectories of the four bands in Fig. 4c, d.
In the experimental model, at each k, we can see that one rotation
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plane is spanned by the eigenvectors of the first and second bands
and the other rotation plane is spanned by those of the third and
fourth bands. We can expect two topological edge states in total:
one is located in the first bandgap (sandwiched by the first and
second bands), while the other is located in the third bandgap
(formed by the third and fourth bands). The rightmost panels
(EdgeS) of Fig. 4a confirm our expectation. The detailed field
distribution is provided in Supplementary Fig. 14b. The distribution
of edge states can also be directly inferred from the 2D extended
energy bands, as shown in Fig. 4b, where there is one linear Dirac
cone between the first/third and second/fourth bands.

Domain-wall states between charges þq1234 and�q1234. If two
samples with different non-Abelian topological charges meet at a
domain wall22, then some domain-wall states (DWSs) will
emerge, and their existence can be predicted by defining a
“domain-wall charge” ΔQ ¼ QL=QR. Here, QL and QR are the
non-Abelian topological charges of the left and right samples,
respectively. The quotient charge ΔQ is also an element of the
non-Abelian group and governs the properties (including both

location and number) of the DWSs. We note that the appearance
of the domain-wall charge −1 in the three-band system can only
be well defined by assuming a joint k-space basepoint between the
left and right samples22. Otherwise, one cannot distinguish two
non-Abelian topological charges (e.g., þi and �i) in the same
conjugacy class of the three-band system, and thus, the domain-
wall charge becomes ill-defined. In the four-band system, how-
ever, there exists a basepoint-free domain-wall charge taking a
value of �1 between charges þq1234 and �q1234. This occurs
because they belong to two different conjugacy classes.

In the experiment, we construct a domain wall (blue spheres in
Fig. 4e) between charges ± q1234, as shown in Fig. 4e, where we
flip the directions of imaginary hoppings between meta-atoms C
and D, as denoted by the blue arrows, to realize the charge þq1234
on the righthand side of the domain wall. Figure 4f shows the
DWSs between them, where the left inset is the simulated energy
levels and the right two insets indicate the measured spectra on
the domain wall for two different excitation/probe locations
accordingly. These results indicate that there are two nearly
degenerate topological DWSs in the third bandgap. This is the
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same as the hard boundary edge states of charge �1 and thus
confirms our prediction. The detailed field distribution is
provided in Supplementary Fig. 15.

Observation of charges ± q14 in a transmission line network. In
addition, we experimentally studied charges ± q14, which are also
interesting in the four-band models, as they exhibit three edge
states in the three bandgaps. As shown in Fig. 5, from the bulk
bands (Fig. 5a-BulkS), edge state distributions (Fig. 5a-EdgeS) and
eigenstate trajectories (Fig. 5c, d), the numerical calculations
correctly predict the experimental results. Different from Fig. 1b

( ± q14) of the flat-band model, the 2D extended energy bands in
Fig. 5b are bridged by three linear Dirac cones. As mentioned
above, each implies one edge state (per edge), as verified in
Fig. 5a-EdgeS. For charges ± q14, there is no complete bandgap in
the 2D extended bands. They can be regarded as the general-
ization of charges ± j in three-band models9,22.

Discussion
Other general configurations of charges ± q1234 are shown in
Supplementary Figs. 16 and 17, corresponding to the factoriza-
tions of �q13q24 and �q14q23, respectively. As mentioned above,
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Fig. 4 Experimental observation of the charge −q1234 and edge/domain-wall states. a The left panels show the numerically calculated and experimentally
measured energy bands of bulk states (BulkS). The right panels display the energy spectra probed at the hard boundary, where the red lines and the peaks
marked by red circles represent the simulation and experimental results of edge states (EdgeS), respectively. b Extended energy bands on a 2D plane; there is
one linear Dirac cone between the first/third and second/fourth bands. White circles indicate the 1D energy bands. c, d Calculated/measured orthographic
projections of eigenstate trajectories. The colors of trajectories correspond to different bands in a. The direction of decreasing linewidth indicates k running from
�π to π. e Construction of the domain wall (marked by blue spheres) between charges �q1234 and þq1234. The gray and yellow arrows/triangles denote two
different excitation/probe positions. f Calculated and measured energy spectra for the two different pairs of excitation and probe positions. The two domain-
wall states are nearly degenerate. The detailed distribution of edge/domain-wall states is shown in Supplementary Figs. 14 and 15.
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the ring degeneracy formed by the second and third bands in
Fig. 1c (�q13q24) splits into two Dirac cones, as shown in Sup-
plementary Fig. 16c, which further implies two edge states (per
edge) in Supplementary Fig. 16d. The general model of charge �1
in Supplementary Fig. 18 shows one triple linear degeneracy,
which is similar to what we have observed in the three-band
models, such as the edge state distributions22.

In the classic context, the transmission line network is
extremely versatile and can be used to realize various lattice
models, including path-dependent annihilation of Dirac points
in 2D, braiding of Weyl points in 3D13, accompanying
dynamics of wave-packet propagation, etc. In the quantum
context, all of the single-particle topological phenomena can be
well transferred. Furthermore, with introducing extra interac-
tion and correlation physics, much more exotic topological
braiding features are expected. Currently, the non-Abelian
topological charges are limited to PT symmetry, it is very
desirable to extend to other symmetry protections as well as
non-Hermitian systems29.

Our exhaustive study of all non-Abelian topological charges of
PT symmetric four-band Hamiltonians will constructively sti-
mulate related research on 2D twisted bilayer graphene10,30,31.
The PT symmetric system also contributes to exotic fragile
topological states32 and even topological effective gravitational
theory33. The studies can be easily transferred to other artificial
platforms, including optical lattices34, photonics35–37, and
phononics38.

Methods
Experimental measurements. There are four meta-atoms A, B, C, and D in one
unit-cell. The hoppings between two meta-atoms are realized by connecting 2-m-
long coaxial cables (model: RG58C/U). To achieve the complex hoppings, we create
a hidden dimension by placing four nodes in each meta-atom so that four sub-
spaces are allowed. Due to periodic connections in this hidden dimension, the four
subspaces correspond to four pseudo angular momenta that are expði4φnÞ ¼ 1,
with φ1 ¼ 0; φ2 ¼ π

2 ; φ3 ¼ π and φ4 ¼ �π=2. Through the specific excitation
from a 4-channel signal generator (Keysight M3201A), we carried out our
experiments in the φ2 ¼ π=2 subspace. The amplitude and phase of voltage of each
meta-atom are probed by an oscilloscope (Keysight DSOX2002A). After sub-
sequent Fourier transformation, we obtain the energy bands and eigenstates in the
momentum space. Supplementary Fig. 13 shows the specific transmission line
network corresponding to charges ± q14.

Data availability
The experimental data that support the findings of this study are available in
DataSpace@HKUST with the identifier “https://doi.org/10.14711/dataset/VNMSFX”39.
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