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Abstract

Predator-prey system, as an essential element of ecological dynamics, has been recently studied experimentally with
synthetic biology. We developed a global probabilistic landscape and flux framework to explore a synthetic predator-prey
network constructed with two Escherichia coli populations. We developed a self consistent mean field method to solve
multidimensional problem and uncovered the potential landscape with Mexican hat ring valley shape for predator-prey
oscillations. The landscape attracts the system down to the closed oscillation ring. The probability flux drives the coherent
oscillations on the ring. Both the landscape and flux are essential for the stable and coherent oscillations. The landscape
topography characterized by the barrier height from the top of Mexican hat to the closed ring valley provides a quantitative
measure of global stability of system. The entropy production rate for the energy dissipation is less for smaller
environmental fluctuations or perturbations. The global sensitivity analysis based on the landscape topography gives
specific predictions for the effects of parameters on the stability and function of the system. This may provide some clues
for the global stability, robustness, function and synthetic network design.
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Introduction

Ecological systems exist in a self sustainable way within which

the elements are interacting with each other and with outside

environments there are constant energy, information and material

exchanges. To perform biological functions, the ecosystems need

to be stable. Therefore global stability is essential for ecosystems.

The challenge is how to quantify the global stability. There have

been increasing numbers of studies on the global topological

structures of the network systems, recently [1]. The underlying

nature of networks has been explored by many experimental

research [2]. However, there are very few studies about why the

networks are robust and perform their biological functions from

the physical point of view.

In the cell, statistical fluctuations from a finite number of

molecules provide the source of intrinsic noise, and highly

dynamical and inhomogeneous environments provide the source

of external noise for the networks. So, we should study the network

dynamics in fluctuating conditions in order to model realistically

the cellular inner and outer environments. The dynamics with

extrinsic fluctuations can be described by probability diffusion

equations. For dynamics with intrinsic fluctuations, master

equations [3] can provide the description.

The conventional methods of describing the networks according

to deterministic or stochastic chemical kinetics often explore only

the local properties of the networks [4,5]. Here, we will explore the

global nature of the network from physical perspectives,

formulating the problem in terms of probabilistic landscape and

flux framework. Networks have huge state space. Why seemingly

infinite number of state space (for example, genotypes in gene

regulation networks) can result in a finite of number of functional

states (for example, phenotypes from gene regulations)? Probabi-

listic description may provide an answer because every state has

different weight. Functional states may correspond to higher

probability ones and occupy lower potential valleys [6–16].

Furthermore, the dynamics of the network can be decomposed

of the gradient of the landscape and the curl flux flow [14–16].

Using this framework, the global stability and robustness of the

networks can be explored and further quantified in terms of the

topography of the underlying probabilistic landscape.

In this paper we employed a predator-prey network which is

constructed using two Escherichia coli populations [17]. As an

essential component of ecological dynamics, natural predator-prey

systems have been studied extensively by experiments and

modeling [18,19]. Compared with other types of ecological

interactions such as mutualism and competition, predation often

generates richer dynamics and so gives a greater challenge to

engineer de novo [17]. Recently there has been experimental

studies on interacting Escherichia coli populations, synthetic

ecosystems — using genetic regulatory networks and intercellular

communications systems to control and coordinate the behavior

[17,20,21]. The two E. coli populations of this system, commu-

nicate and control each others population density by producing

small-molecule signals (AHLs) that can diffuse across cell
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membranes into the medium and regulate gene expression. The

basic logic is similar to a predator-prey system: without the ‘prey’,

the ‘predator’ population decays at a high rate due to expression of

a lysis gene it carries. As the prey grows, it produces an AHL that

diffuses through the medium into the predator, where it rescues

the predator by inhibiting lysis gene expression. The predator

produces a second AHL that diffuses into the prey and initiates

synthesis of the lysis gene, effecting ‘predation’. The mathematical

model for the system can be reduced to four differential equations

of the average populations for the predator and prey as well as the

effects of the concentration and lethality of the lysis protein in the

corresponding cell.

We explore the corresponding probabilistic diffusion equation

and uncover the underlying landscape and flux with self consistent

mean field method. The theoretical studies can provide detailed

guidance for experimental implementation. They will highlight the

importance of controlling the expression, lethality, and stability of

the lysis proteins. The function of a genetic circuit could be

optimized by directed evolution [17,20,21], and will allow us to

efficiently explore circuit function in different regions of the

parameter space. Synchronization of intra-cellular behavior across

a population, achieved by inter-cellular communication

[17,20,21], may render the circuit more resistant to fluctuation

in individual cells.

By varying biologically feasible parameter values, we will

quantitatively predict whether and when the circuit will generate

stable oscillations in population densities and intracellular gene

expressions in fluctuating environments, which will be directly

tested from the experiments. In addition, the theoretical prediction

and experimental (test) validation will uncover the key design

features and topological structure of the underlying landscape

required to achieve the target circuit function in an experimental

system. Through the analysis on the underlying landscape, we can

also understand more clearly the sensitivity of the parameters on

the stability of the system.

Results and Discussion

Probabilistic Landscape and Flux
Figure 1 shows an illustration of the predator-prey synthetic

ecosystem. In this system, predator and prey communicate and

regulate each other’s density. When prey density is low, a suicide

gene(ccdB) is continuously expressed, making predator density

repressed. When prey density increases, an acyl-homoserine

lactone(AHL), 3OC6HSL, is activated in prey cell. When it

reaches sufficiently high concentrations, it is bound to the

transcriptional regulator LuxR in the predator cells, which leads

to the expression of an antidote gene(ccdA) and then rescue of

predator cells. In addition, when predators increase, they produce

another AHL, 3OC12HSL, which enters into the prey cells and

activates expression of ccdB gene, causing ‘predation’ [17].

For illustration purpose, we fix all other system parameters

except DD (dilution rate) and IPTG (isopropyl-b-thiogalactopyr-

anoside) which promote predator and prey interactions. Figure 2

shows the phase plane of system in terms of parameter IPTG and

DD from the analysis of the deterministic equations. We can see

that the system has two phase regions: an unstable limit cycle

oscillation phase and a mono-stable phase. When a set of

parameters are specified as: IPTG = 5, DD = 0.1125, the fixed

point is unstable and a limit cycle emerges.

Employing the self consistent mean field approximation,

after obtaining the solutions of the mean and variance for 4

variables, we can acquire the probability distribution P1(x1,t),
P2(x2,t),:::P4(x4,t) for every single variable by gaussian approx-

imation discussed in Methods part. Then we can solve the steady

state probability distribution P for the density of the predator-prey

network given diffusion coefficient D. From the steady state

distribution results, we can identify U(x)~{ ln P(x,t??)~

{ ln Pss ( when
LP

Lt
~0) [8–15]. In this way, we can map out the

potential energy landscape U. For predator-prey network with 4

variables, in order to visualize the results conveniently, we select two

Figure 1. A synthetic predator-prey ecosystem diagram. Outer boxes represent cell walls. Arrows represent activation or production, blunt
arrows represent inhibition or killing.
doi:10.1371/journal.pone.0017888.g001
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variables to illustrate the results by integrating out the other 2

variables. Here we choose two variables x3(3OC12HSL) and

x4(3OC6HSL) to compute their probability distribution. And the

corresponded probability distribution is: P(x3,x4,t)~P3(x3,t)�
P4(x4,t) �

Ð?
0

P1(x1,t)dx1 �
Ð?

0
P2(x2,t)dx2.

For nonequilibrium system, the driving force F can not be

written as the gradient of potential U, like the equilibrium case. In

general, F can be decomposed into a gradient of a potential and a

curl flow flux [14,15] F~zD=Pss
: L
Lx

PsszJss(x)=Pss~

�

{D
L
Lx

UzJss(x)=PssÞ. Pss represent steady state probability

distribution and potential U is defined as U~{lnPss. And the

probability flux vector J of the system in concentration space x is

defined as [3]: J(x,t)~FP{D:
L
Lx

P.

The diffusion equation with constant diffusion coefficient D can

be written as
LP

Lt
z+:J(x,t)~0. In steady state,

LP

Lt
~0, then

+:J(x,t)~0. The divergent free flux implies the rotational nature

of the steady state flux field Jss. Here, something needs to be noted.

The divergence of Jss is zero, however the divergence of Jss/Pss is

in general not zero with finite noise strength. Only in the situation

when the Jss is perpendicular to the landscape gradient +U
(U~{ ln Pss), the divergence of Jss/Pss is equal to zero. This

happens when the noise strength is approaching zero. So in the

low noise, our decomposition is equivalent to Helmhotz

decomposition.

When parameters are specified as: IPTG = 5, DD = 0.02, from the

phase plane we can see that system is in the monostable state.

Figure 3(A) shows 3 dimensional landscape for monostable state using

the last parameters at small fluctuations D = 0.001. From the figure,

we can see that there is one stable local minimum or attraction of

basin, corresponding to the coexistence state of predator and prey.

This shows that system is attracted to one stable point and the

monostable state is stable in small external fluctuations.

Figure 4 shows 2 and 3 dimensional landscape for oscillation

state at D = 0.001 when parameters are given by IPTG = 5,

DD = 0.1125. From Figure 4 we can see that the closed ring is

around the deterministic oscillation trajectory. This means the

potential is lower (corresponded to higher probability) along the

oscillation path or on the closed ring. Inside the closed ring, the

potential is higher forming a mountain or hat. Outside the closed

ring, the potential is also higher. The system is therefore attracted

to the closed ring rather than a particular stable basin.

Furthermore, the probability flux is plotted. We can see that

outside the ring valley, the dynamics is determined by mostly the

gradient of the potential landscape. But on the ring, the dynamics

is mostly controlled by the curl probability flux to maintain the

coherence of the oscillations [14,15]. Both probability landscape

and flux vector are paramount in determining the stable

oscillation. The potential landscape attracts the system down to

the closed oscillation ring, while the probability flux drives the

system move periodically along the oscillation ring.

Robustness Ratio, Global Stability, Barrier Height, and
Entropy Production Rate

Having the underlying potential landscape, we can further study

the global stability and robustness of system at different fluctuation

strengths characterized by the diffusion coefficient D through

computing the barrier height for oscillation and robustness ratio

RR for monostability.

For monostability, we define robustness ratio RR for the

network as RR~dU=DU to quantify global stability. Here the dU

is the difference between the global minimum of U and the

average of U, SUT, and DU is the variance or half width of the

distribution of U. The dU characterizes the bias or the slope

toward the global minimum of the potential landscape, while DU is

a measure of the averaged roughness or the local trapping of the

potential landscape. Figure 3(B) shows that the global stability

Figure 2. The phase plane portrait for the predator-prey network in terms of parameter IPTG and DD.
doi:10.1371/journal.pone.0017888.g002
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measured by RR decreases when external noise increases. This

means under fluctuations the monostable system will become less

stable. Less fluctuations lead more robust networks.

For oscillation state, we define the barrier heights Umax-Umin as

the global stability measure. Umin is the potential minimum along

the limit cycle attractor. Umax is the potential at the local maximum

point inside the limit cycle circle (the top of the Mexican hat). In

Figure 5A, as the diffusion coefficient characterizing the fluctuations

decreases, the barrier heights related with escaping from the limit

cycle attractor increases. The resulting limit cycle attractor becomes

more stable. Therefore, small fluctuations and large barrier heights

lead to robustness and stability in the oscillatory network [14,15].

Additionally, we compute entropy production rate or dissipation

cost for different fluctuations [22]. Figure 5B shows that entropy

Figure 3. Landscape for monostable state. (A) shows 3-dimensional Landscape for monostable state at D = 0.001, IPTG = 5, DD = 0.02 using
variables Ae1 and Ae2. (B) shows RR (robustness ratio) versus external noise D for monostable state using the same parameters values.
doi:10.1371/journal.pone.0017888.g003

 

Figure 4. Landscape and probabilistic flux for oscillation state. (A) shows the 2-dimensional landscape and probabilistic flux for oscillation
state at D = 0.001, IPTG = 5, DD = 0.1125. Magenta arrows represent the flux flow vector, green arrows represent the negative gradient of potential
energy. (B) shows the 3-dimensional landscape for predator prey network.
doi:10.1371/journal.pone.0017888.g004
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production rate increases as diffusion coefficient D characterizing

the fluctuations increases. This implies that nature might evolve

such that the network is robust against environmental perturba-

tions, and performs specific biological functions with minimum

dissipation cost. In our study, this is also the equivalent of

optimizing the global stability and robustness of the network [16].

Amplitude, Period and Coherence
In addition, we also used method of the stochastic dynamics to

learn more of the global stability and robustness of the oscillations

under different fluctuations. We followed the stochastic Brownian

dynamics rather than the deterministic average dynamics. Figure 6

shows the distributions of the period and amplitude of oscillations

for variable x3(3OC12HSL) at different diffusion coefficient D. We

can see that the distribution for amplitude and period become

more spread out when the fluctuations increase. The standard

deviation s from the mean increases and more other possible

values of the amplitude and period of oscillations can appear when

the fluctuations increase [23]. This implies that less fluctuations

produce more stable network and make more coherent oscillations

with less number of possible value of amplitudes and period.

We also obtained the coherence j, which measures the degree

of periodicity of the time evolution of a given variable [24], at

different diffusion coefficient D. In the presence of fluctuations, the

more periodic the evolution is, and the larger value of j appears.

In Figure 5C, j decreases when the diffusion coefficient increases.

This means larger fluctuations tend to destroy the coherence of the

oscillations and also the robustness of the system.

Sensitivity Analysis
For oscillation state we also explore the effects of parameters on

the stability and robustness of system by measuring the changes of

barrier heights after giving parameters a perturbation level lp.

From Figure 7, we can see that barrier height increase, the entropy

Figure 5. Barrier height, entropy production rate and phase coherence at different diffusion coefficient D. (A), (B), (C) show barrier
height, entropy production rate and coherence versus diffusion coefficient D separately.
doi:10.1371/journal.pone.0017888.g005

 

 

 

 

Figure 6. Distribution of amplitude and period. (A), (B) show the distribution of amplitude and period at different diffusion coefficient D
separately.
doi:10.1371/journal.pone.0017888.g006
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production rate decrease, and coherence increase as the

perturbation level(lp) of the chemical reaction rates constants

increase. This shows that the current parameters are not the ones

which make system most stable.

Therefore, we further did the sensitivity analysis of different

parameters by giving a percentage Dk/k as the degree for change.

Figure 8(A) shows the effects of some parameters on the barrier

heights measuring stability of system. We selected some top

important parameters and then studied the effects of them on

robustness of the oscillation system as shown in Figure 8(B). We

can see that the parameter kA2,kc1,dc2 give the positive

contribution to the stability of the system. It means when these

parameters increase, the system becomes more stable. However,

the parameter dc1,kc2 give the negative effects on the stability of

system. It means when these parameters increase, the system

becomes less stable. Here kc1,kc2 are growth rates of predator and

prey, and dc1, dc2 are cell death rates of predator and prey

separately. kA1 is the synthesis rate of AHL(acyl-homoserine

lactone) by predator(3OC12HSL), kA2 is the synthesis rate of AHL

by prey(3OC6HSL). kA2 gives the positive contribution to the

stability of system could be well explained because 3OC6HSL is to

rescue predator by initiating ccdA expression, and its activity

promotes the mutual regulation of predator and prey. Therefore

this makes the predator prey oscillation dynamics more stable,

which is consistent with the experimental conclusions about the

effects of AHL on the system [17].

For dc2, from the Figure 1, we can see dc2 characterize the

ability of predation, so, dc29 effects on the stability of system could

be explained. For the oscillation system based on current

parameters, prey is a little dominant, increasing dc2 means

Figure 7. Barrier height, entropy production rate and phase coherence at different perturbation of parameters. (A), (B), (C) show
barrier height, entropy production rate and coherence versus perturbation level(lp) separately.
doi:10.1371/journal.pone.0017888.g007

 

 

Figure 8. Sensitivity analysis. (A) shows the effects of parameters on the barrier height at the same perturbation. x axis represent: 1:kc1, 2:kc2,
3:dc1, 4:dc2, 5:K1, 6:K2, 7:kA1, 8:kA2, 9:dAe1, 10:dAe2. (B) shows respectively the effect of 6 parameters on barrier height. Dk/k represents the percent
of parameters increased.
doi:10.1371/journal.pone.0017888.g008
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increasing the repression of predator to prey. In this way, the

system is more inclined to equilibrium for two species, and so

becomes more stable. However, when dc2 increases to some

extent, predator and prey have been in equilibrium, and at this

time increasing it further more will destroy the oscillation state.

Figure 8(B) shows that the stability of the system increases first and

then decreases as dc2 increases, which is consistent with the above

analysis.

For the parameter kc1 and dc1, they have opposite effects on

predator density. kc1 strengthens predator, and dc1 weakens

predator. In the similar way, the effects of these two parameters on

the stability of system could be explained. Since in the system with

the current parameters prey are more dominant, increasing kc1

will activate predator by repressing ccdB, and promote the

equilibrium of density for two species, which is reflected by the

more stable oscillation dynamics. Therefore, the increase of kc1

increases the stability of the system quantified by the barrier

heights of oscillation system. For dc1 and kc2, these two parameters

promote the prey and inactivate predator, so activation of dc1 and

kc2 decrease the stability of system. The sensitivity analysis results

give specific predictions on the parameter changes on global

stability and can provide some clues for the experimental

validation and test. It will also give some insights for the de novo

design of synthetic predator-prey network.

Conclusions
We explored the global nature of a predator-prey network in

terms of the potential landscape with a self consistent mean field

approximation method. We used the experimentally inferred rate

parameters to explore the system by computing the landscape

topography characterized by barrier heights. This provides a

quantitative measure for the stability of oscillation system. The

entropy production rate results imply that nature might evolve

such that the network is robust against internal and environmental

perturbations, and performs specific biological functions with

minimum dissipation cost.

The landscape of the oscillation network has a closed ring valley

shape attracting the system down. The landscape and the

probabilistic flux determine the dynamics of the nonequilibrium

oscillation system together. The landscape drives the system

toward the ring valley, and the flux vector makes the system move

along the oscillation ring. Therefore, Mexican hat like landscape

topography provides an optimal criterion to select the suitable

parameter subspace of network, guarantee the stability and

robustness with less dissipation cost and perform specific biological

functions, which is useful for the network design. Our approach is

general and can be applied to other complicated protein networks

and gene regulatory networks, to explore the underlying global

potential landscape.

By the sensitivity analysis of biologically feasible parameter, we

quantitatively predict the effects of parameters on the stability of

the oscillation system in population densities and intracellular gene

expressions in fluctuating environments, which will be directly

tested from the experiments. Additionally, the theoretical

prediction and experimental validation will uncover the key

design features and topological structure of the underlying

landscape required to achieve the target circuit function in an

experimental system. The synthetic ecosystems will serve as well-

defined systems for exploring evolutionary and ecological

questions like the generation and maintenance of biodiversity

and the role of programmed cell death in bacteria [17,20,21]. This

will allow us to explore the interplay between environment, gene

regulation and population dynamics, the central issue of ecology.

Methods

In order to uncover the probability landscape, we begin from

the chemical reaction network involved in predator-prey network.

The statistical nature of the chemical reactions can be captured by

the corresponding diffusion equation, which describe the evolution

of the networks probabilistically. The diffusion equation is hard to

solve due to its inherent huge dimensions. We therefore used the

self consistent mean field approximation to reduce the dimen-

sionality [8,13]. In this way, we could follow the time evolution

and steady state probability of the protein concentrations. From

the steady state probability we can get the potential energy

landscape.

The Predator Prey Network of 4 Variables
The ordinary differential equations for the predator prey system

can be written as follows [17]:

dX1

dt
~kc1 � X1 � (1{

X1zX2

Cmax
){

dc1 � X1 � K1

K1zX
b
4

{DD � X1

dX2

dt
~kc2 � X2 � (1{

X1zX2

Cmax
){

dc2 � X2 � X
b
3

K2zX
b
3

{DD � X2

dX3

dt
~kA1 � X1{(dAe1zDD) � X3

dX4

dt
~kA2 � X2{(dAe2zDD) � X4

Here X1, X2 represent separately density of predator and prey,

X3 is the concentration of 3OC12HSL, X4 is the concentration of

3OC6HSL. The first two equations describe the cell populations,

and the last two equations describe the levels of the AHLs in the

medium. And the the meaning and range of parameters are

described in Table 1.

Self Consistent Mean Field Approximation
The diffusion equations are the equations for the time evolution

of the probability of some specific state P : P(X1,X2,:::,Xn,t),
where X1,X2,:::Xn is the concentration or populations of

molecules or species. We expected to have N-coupled differential

equations, which are not feasible to solve. Following a self

consistent mean field approach [8,13,16], we split the probability

into the products of individual ones: P(X1,X2,:::,Xn,t)*
Pn

i P(Xi,t) and solve the probability self-consistently. This

effectively reduces the dimensionality from MN to M|N, and

therefore the problem is computationally tractable.

Although self consistent approximation reduces the dimension-

ality of the system, for the multi-dimension conditions, it is still

hard to solve diffusion equations directly. We first consider

moment equations. We can start from moment equations and then

simply assume specific probability distribution based on physical

argument, which means we give some specific relations between

moments [16,25]. In principle, once we know all moments, then

we can construct the probability distribution. For example,

Poisson distribution has only one parameter, so we may calculate

all other moments from the first moment, mean. Here we use

Landscape and Flux of Predator-Prey Eco-Networks
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gaussian distribution as approximation, and then we need two

moments, mean and variance.

When diffusion coefficient D is small, the moment equations can

be approximated to [3,6]:

_xx(t)~C½x(t)� ð1Þ

_ss(t)~s(t)AT(t)zA(t)s(t)z2D½x(t)�: ð2Þ

Here, x, s(t), and A(t) are vectors and tensors, and AT(t) is the

transpose of A(t). The matrix elements of A is Aij~
LCi½X (t)�

Lxj(t)
.

According to this equations, we can solve x(t) and s(t). We

consider here only diagonal element of s(t) from mean field

splitting approximation. Therefore, the evolution of distribution

for one variable could be obtained using the mean and variance by

gaussian approximation:

P(x,t)~
1ffiffiffiffiffiffi

2p
p

s(t)
exp {

½x{�xx(t)�2

2s(t)
ð3Þ

We can expand the results to the multi-dimensional system

using the same method.

The probability obtained above corresponds to one fixed point

or basin of attraction. One solution of the equations determines

one of the fixed points and also gives the variation around the

basin of attraction, so it is intrinsic. If the system allows

multistability, then there are several probability distributions

localized at every basin of attraction, but with different variations.

Therefore, the total probability is the weighted sum of all these

probability distributions. The weighting factors (w1,w2) are the

size of the basin, which represent the relative size of different basin

of attraction. For example, for bistability P(x,t)~w1Pa(x)z
w2Pb(x), here w1zw2~1.

While for oscillation, it is different from multistable states for

obtaining the probability distribution. The mean and variance x(t)

and s(t), for oscillation are not constants even in steady state, they

are functions of time. Here we obtained results by integration of

the probability in time for one period and divide by the period :

Poscillation~(

ðstzz

st

Po(x,t)dt)=z.

Here, z is period of oscillation, and st is starting point for

integration.

Finally, once we have the total probability, we can construct the

potential landscape by the relationship with the steady state

probability: U(x)~{lnPss(x). In the network system, every

chemical parameter, such as synthesis and decay rates, will

contribute to the structure and dynamics of the system. All these

effects are encoded in the total probability distribution, and,

consequently, the underlying potential landscape [13].

In the 4-dimensional protein concentration space, it’s hard to

visualize 4-dimensional probabilistic flux. However, the associated

2-dimensional flux vector for variable x3 and x4 can be acquired:

J3(x3,x4,t)~F3(x3,x4)P{D
L

Lx3
P and J4(x3,x4,t)~F4(x3,x4)

P{D
L

Lx4
P.

Here, to compute 2-dimensional flux J3, J4 from 4-dimensional

space, we adopted some approximation method in computation of

the force F3 and F4, because generally F is the function of 4

variables(x1, x2, x3, x4). We project the 4-dimensional force F to 2-

dimensional space(x3, x4). In this way, the force F can be

transformed to the function of only two variables x3 and x4.

Therefore, like the computation of probability distribution P,

the probabilistic flux vector also can be acquired by integration in

one period:

J3(x3,x4)~(

ðstzz

st

J3(x3,x4,t)dt)=z

J4(x3,x4)~(

ðstzz

st

J4(x3,x4,t)dt)=z ð4Þ

Entropy Production Rate
For an non-equilibrium open system, there are constant

exchanges in energy and information which result dissipations.

The energy dissipation is a global physical characterization of the

non-equilibrium system, and is closely related to the entropy

production rate in the steady state. The entropy formula for the

system is [22],

S~{kB

ð
P(x,t) ln P(x,t)dx: ð5Þ

By differentiating the above equation, the increase of the

entropy at constant temperature T can be acquired as follows:

T _SS~kB � T

ð
( ln Pz1)+:Jdx

~{

ð
(kBT+ ln P{F):Jdx{

ð
F:Jdx

ð6Þ

Table 1. Parameter values of predator prey model.

Parameter Description Base value

kc1 Predator cell(MG1655) growth
rate constant

0.8 hr

kc2 Prey cell(Top10F9) growth
rate constant

0.4 hr

Cmax Carrying capacity for cell
growth

1006103 cells nL21

b Cooperativity of AHL effect 2

dc2 Prey cell death rate constant 0.3 hr21

dc1 Predator cell death rate constant 0.5+16IPTG2/(52+IPTG2)

K1,K2 Concentration of AHL
necessary to half-maximally
active PluxI promoter

10 nM

kA1 Synthesis rate constant of AHL
by the predator cell

0.1 nM ml hr21

kA2 Synthesis rate constant of AHL by
the prey cell

0.02+0.036IPTG2/
(52+IPTG2)

dAe1 Decay rate constant of 3OC12HSL
in the cell

0.017 hr

dAe2 Decay rate constant of 3OC6HSL
in the cell

0.11 hr

DD Dilution rate 0–0.3 hr21

DD is a dilution rate and calculated with the relation DD~{ln(1{F )=T where
F is a fraction of dilution and T is the time between each dilution event [27].
doi:10.1371/journal.pone.0017888.t001
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where {
Ð

(kBT+ ln P{F):Jdx~ep is the entropy production

rate [22], and
Ð

F:J dx~hd is the mean rate of the heat

dissipation. In steady state _SS~0, and the entropy production ep is

equal to the heat dissipation hd. In this paper, we computed the

heat dissipation rate and entropy production rate at steady state

respectively and also validfied that they are the same numerically.

Phase Coherence
The robustness and stability of the oscillation at different

diffusion coefficient D can also be quantified by the phase

coherence j, a measure of the degree of periodicity of the time

evolution for a given variable [26]. The phase coherence j is

defined as follows: First, the vector N(t)~n1(t)e1zn2(t)e2 is

shown in Figure 9. The unit vectors are e1~(1,0) and e2~(0,1),
n1(t) and n2(t) are the concentration of the two kinds of protein

molecules or two species at time t. Then w(t) is the phase angle

between N(t) and N(t+t ), where t should be smaller than the

deterministic period and larger than the fast fluctuations. Here we

choose t= 2 h. w(t)w0 represents that the oscillation goes on

the positive orientation (counterclockwise). The formula of j

is: j~

2
P

i

h(w(t))w(t)

P
i

jw(t)j {1, where h(w)~1 when w(t)w0, and

h(w)~0 when w(t)ƒ0, and sums are taken over every time steps

for the simulation trajectories. j&0 implies the system moves

stochastically and has no coherence. The oscillation is most

coherent when j is close to 1. In the presence of fluctuations, the

more is j, the more periodic the evolution is.
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