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A larger number of patients with stages I–III hepatocellular carcinoma (HCC) experience
late recurrence (LR) after surgery. We sought to develop a novel tool to stratify patients
with different LR risk for tailoring decision-making for postoperative recurrence
surveillance and therapy modalities. We retrospectively enrolled two independent public
cohorts and 103 HCC tissues. Using LASSO logical analysis, a six-gene model was
developed in the The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC)
and independently validated in GSE76427. Further experimental validation using qRT-
PCR assays was performed to ensure the robustness and clinical feasible of this
signature. We developed a novel LR-related signature consisting of six genes. This
signature was validated to be significantly associated with dismal recurrence-free
survival in three cohorts TCGA-LIHC, GSE76427, and qPCR assays [HR: 2.007
(1.200–3.357), p = 0.008; HR: 2.171 (1.068, 4.412), p-value = 0.032; HR: 3.383
(2.100, 5.450), p-value <0.001]. More importantly, this signature displayed robust
discrimination in predicting the LR risk, with AUCs being 0.73 (TCGA-LIHC), 0.93
(GSE76427), and 0.85 (in-house cohort). Furthermore, we deciphered the specific
landscape of molecular alterations among patients in nonrecurrence (NR) and LR group
to analyze the mechanism contributing to LR. For high-risk group, we also identified
several potential drugs with specific sensitivity to high- and low-risk groups, which is vital
to improve prognosis of LR-HCC after surgery. We discovered and experimentally
validated a novel gene signature with powerful performance for identifying patients at
high LR risk in stages I–III HCC.

Keywords: stages I–III hepatocellular carcinoma, LASSO, gene signaling, genomic alterations, late recurrence
September 2021 | Volume 11 | Article 7324471

https://www.frontiersin.org/articles/10.3389/fonc.2021.732447/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.732447/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.732447/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.732447/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Lzlyct620@163.com
mailto:fcchanxw@zzu.edu.cn
https://doi.org/10.3389/fonc.2021.732447
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.732447
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.732447&domain=pdf&date_stamp=2021-09-09


Zhang et al. Late Recurrence of Hepatocellular Carcinoma
INTRODUCTION

Hepatocellular carcinoma (HCC) is a highly malignant cancer
with a poor prognosis (1). Currently, liver resection and
interventional treatment have been the mainstream curative
treatment of stages I–III patients with HCC, while the high
recurrence rate remains the major obstacle to improve long-term
survival, with almost 70% of the patients experiencing recurrence
after surgery within 5 years (2, 3). Relative to the time from
surgery to initial recurrence, HCC recurrence is typically divided
into early and late recurrence (LR), which has generally been
defined using 2 years as a cutoff value (4). In clinical practice,
many patients who were alive and free of tumor recurrence at
2 years after curative liver resection of HCC do not take
surveillance regularly, and therefore may lose the chance to
undergo curative treatment when symptoms develop.
Therefore, it is necessary to predict patients who may be
susceptible to LR and further provide optimized strategies of
recurrence surveillance and treatment.

As reported, patterns and extent of initial recurrence were
different among patients with early and late recurrence (5). The
LR is probably related to the evolution of the underlying chronic
liver diseases, which was generally considered a de novo tumor
with different biologic behaviors compared with early recurrence
(6). It is researched that the relationship between cirrhosis and
LR has clinical “face validity,” as chronic hepatitis inflammation
and fibrosis accelerated HCC development by generating a
carcinogenic microenvironment in the liver, known as the
“field effect” (7). Hence, it is necessary to decipher the genomic
landscape among the patients with LR which may contribute to
tumor development and progression. Furthermore, we hope to
translate this knowledge into new biomarkers and targets in
order to have an impact on decision-making of surveillance and
treatment, and ultimately improve the clinical outcomes of
HCC patients.

At present, clinicians generally choose a rational treatment
strategy based on the Tumor-Node-Metastasis (TNM) staging
system. However, HCC patients with the same TNM stage tend to
have distinct prognosis and thus need more individualized
management strategies. Until recently, there have been a few
published studies on LR of HCC and are mostly limited in the
clinical characteristics. For example, a study from the Eastern
Hepatobiliary Surgery Hospital investigated the risk factors of LR
after liver resection for hepatitis B virus (HBV)-associated HCC.
In this study, Wang et al. found that the rate of recurrence
increased with a peak at 1–2 and 4–5 years after surgery
(approximately 23% and 35%/year, respectively) and concluded
that male, liver cirrhosis, and a high preoperative HBV-DNA load
were associated with LR (8). Most past studies did not, however,
elucidate details regarding the accurate prediction of LR, as well as
the rational intervention for the high-risk patients for LR (4, 7, 8).
Nowadays, we can easily obtain a large scale of genes for
downstream analysis. With the help of machine learning, such
as the least absolute shrinkage and selection operator (LASSO)
algorithm (9), it is possible to identify the most important
elements based on the expression profiles of global genes and fit
a model with strong generalization performance.
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To the best of our knowledge, we firstly explored and
delineated the genomic landscape of LR-HCC and performed a
comprehensive biomarker discovery, as well as validation work
to develop a LR-related signature for predicting the LR of
patients with stages I–III HCC. Furthermore, we used 103
frozen tissue samples with qRT-PCR data for experimental
verification to prove the stability and reliability of the model.
Herein, we reported a novel six-gene signature, which not only
offered stable and excellent accuracy in identifying patients at
high LR risk but also can be readily translated into clinical
practice due to the simplicity and inexpensiveness of PCR-based
assays. Overall, we believe the LR-related signature offers an
attractive platform for evaluating LR risk of patients with stage
I-III HCC and is helpful to inform rational strategies of
surveillance after liver resection, as well as decision making
about treatment options for LR-HCC.
METHODS

Data Acquisition and Arrangement
The liver hepatocellular carcinoma (LIHC) transcriptome
profiles with clinical data were obtained from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and the
chip-array profiles with clinical data were downloaded from
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/). Samples were enrolled using the following criteria
for further analysis: (1) primary hepatocellular carcinoma;
(2) AJCC stages I–III; and (3) with recurrence data. Eventually,
73 patients met the criteria in the TCGA-LIHC, including 26 LR
patients and 47 NR patients, and 21 patients met the criteria in
the GSE76427, including nine LR patients and 12 NR patients.
RNA-seq data (FPKM normalized) of TCGA-LIHC were
transformed to log2 (transcripts per kilobase of exon model per
million mapped reads (TPM) +1). Subsequently, we prepared the
corresponding somatic mutation data from the datasets and
implemented the maftools package which provides various
functions to perform feature-rich customizable visualizations.
The corresponding copy number variation (CNV) data of the
TCGA was analyzed and downloaded from the cBioPortal
datasets (http://www.cbioportal.org/). Microarray raw data of
GSE76427 obtained from the GEO database were further
processed and normalized using lumi R package.
Identification of Significantly LR-Related
Genes in HCC
To search the genes significantly related to LR in HCC, we
initially filtered LR-related genes in TCGA-LIHC and GSE76427
using DEseq2 and limma R packages, separately, and the
adjusted p-value <0.05 was adopted for further analysis. The
co-upregulated and co-downregulated genes of the two
expression profiles were then determined with VennDiagram R
package. Univariate Cox regression analysis or Kaplan-Meier
survival analysis were conducted to screen genes that
significantly correlated with RFS.
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Development of the LR-Related
Signature in HCC
The least absolute shrinkage and selection operator (LASSO)
logistic regression analysis was used to build the LR-related
model in HCC using glmnet packages . By tenfold
crossvalidation, the optimal lambda was generated when the
partial likelihood deviance reached the minimum value
(l = 0.012). Based on the optimal lambda, genes with nonzero
coefficients were selected to establish the prediction model. The
risk score for each patient was calculated with the LASSO model
weighting coefficient as follows:

Risk score =o
n

i=1
Coef(i)� Exp(i)

where n is the number of key genes, Coef(i) is the LASSO
coefficient of gene i, and Exp(i) is the expression of gene i.
Human Tissue Specimens and
qRT-PCR Analysis
We collected a total of 103 frozen surgically resected HCC tissues
with AJCC stages I–III at The First Affiliated Hospital of
Zhengzhou University. Detailed baseline data of HCC patients
are displayed in Table 1. Total RNA was isolated from HCC
tissues using RNAiso Plus reagent (Takara, Dalian, China)
according to the manufacturer’s instructions. RNA quality was
evaluated using a NanoDrop One C (Waltham, MA, USA), and
RNA integrity was assessed using agarose gel electrophoresis. An
aliquot of 1 μg of total RNA was reverse-transcribed into
complementary DNA (cDNA) according to the manufacturer’s
protocol using the mRNA reverse transcription Kit (TaKaRa
BIO, Shiga, Japan). All cDNA samples were prepared for qRT-
PCR. This project was approved by the Ethics Committee Board
of The First Affiliated Hospital of Zhengzhou University. In the
qRT-PCR analysis, the enrolled six genes in the model were
detected. qRT-PCR was performed using SYBR Assay I Low
ROX (Eurogentec, USA) and SYBR® Green PCR Master Mix
(Yeason, Shanghai, China). The 2−DDCt method was used to
calculate the relative levels of gene and mRNA expression, and
then log2 transformed for subsequent analysis. The primer
sequences of the included six genes and GAPDH are shown in
Table S4.
The Function and Pathway Enrichment
Analysis in LR-HCC
Moreover, we evaluated the functions of the identified LR-related
genes using Gene Ontology (GO) function analysis [biological
processes (BP), molecular functions (MF), and cellular
components (CC)] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) through the clusterProfiler package. To
further reveal the latent functions underlying the different risk
groups, the gene‐set enrichment analysis (GSEA) algorithm was
carried out to identify enriched dramatical terms correlated with
KEGG pathway and GO. We set the number of random
Frontiers in Oncology | www.frontiersin.org 3
permutations as 1,000 to generate a normalized enrichment
score (NES) and false-discovery rate (FDR) q-value. The terms
with NES >2 and FDR q-value <0.01 were deemed as
strikingly enriched.

Immune Cell Infiltration Assessment
Subsequently, we used CIBERSORT (10) algorithm to estimate
abundance of 22 immune cells in the tumor immune
microenvironment (TME). xCell (11) algorithm was also
utilized to infer the abundance scores of 64 immune and
stromal cells in two groups. As reported, immune-regulating
factors such as co-stimulators, co-inhibitors, and other factors,
which exert a role of antitumor or promoting tumor are involved
in regulating the functions of immune cells. Therefore, a total of
27 immune regulators were assembled in our study, and the
differences between two groups were investigated to elucidate the
immune status.

Genomic Landscape and
Chemotherapeutic Response
Prediction in Two Groups
The online dataset cBioPortal was utilized to identify the
significantly mutated genes (SMGs) and significantly altered
segments (SAEs) for the two risk groups of HCC. Genes with the
top 20 mutation frequency were defined as SMGs, and fragments
with top 20 alteration frequency were defined as SAEs. A previous
work has proposed a ridge regression model to evaluate the
imputed response to 138 chemotherapeutic agents based on
pharmacogenomics and gene expression data. The pRRophetic
(12) R package was conducted to perform the prediction process.
The half‐maximal inhibitory concentration (IC50) was utilized to
quantify drug sensitivity and the lower the IC50, the higher the
sensitivity. In order to better display the difference of potential
chemotherapeutic agents between two groups, we labeled the
sensitivity of two groups as “high sensitivity” and “low
sensitivity,” according to the criteria we established before (13).

Statistical Analysis
All data processing, statistical analysis, and plotting were
conducted in R 4.0.2 software. Continuous variables were
compared between two groups through the Wilcoxon rank-
sum test or t-test. Fisher’s exact test or Pearson’s Chi-squared
test was applied to compare categorical variables. All p-values
were two sided, with p-value <0.05 considered to be of
statistical significance.
RESULTS

Mutation Landscape of LR-HCC
Mutation landscape in LR- and NR-HCC patients was firstly
demonstrated in our study. The waterfall plot exhibited the
detailed mutation information in each sample, with various
color annotations to distinguish different mutation types
(Figure 1A). The top 10 mutation genes in the LR group are
September 2021 | Volume 11 | Article 732447
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TTN (28%), CTNNB1 (24%), MUC16 (20%), AHNAK2 (16%),
CACNA1E (16%), CSMD1 (16%), FCGBP (16%), ABCA13 (12%),
ADGRV1 (12%), and COL11A1 (12%) (Figure 1A), which were
different from the NR-HCC, TP53 (33%), CTNNB1 (20%), TTN
(20%), CSMD3 (15%), BAP1 (13%),MUC16 (13%), RYR1 (13%),
AXIN1 (11%), CCDC168 (11%), and FAT4 (11%) (Figure 1B).
Furthermore, we compared the frequency of somatic mutations
between LR- and NR-HCC patients from TCGA-LIHC.
Intriguingly, TP53, RYR1, and BAP1 mutations were noted to
occur more in NR-HCC patients instead of LR-HCC patients
(Figure 1C) though statistic difference in the two groups is not
significant. This might partially be due to the limited sample size.
Tumor mutation burden (TMB) exhibited a similar trend
(Figure S1B). According to further analysis, in the LR-HCC
group, missense mutations, single-nucleotide polymorphism
(SNP), and C>T transition accounted for majority of different
classification categories, respectively. The median value of
mutations in the samples was 81.76, and the maximum was
322 (Figure S1A). A previous study reported that the co-
occurrence of somatic mutations is commonly noted in
tumorigenesis which displays variant roles to impact prognosis and
treatment. In the LR-HCC group, we identified some co-occurrence
genes, such as FLG2 and HRNR, CACNA1E, and COL5A6 (Figure
S1C) which have not been reported before. Therefore, HCC patients
after surgerymay be characterize by the presence/absence of concurrent
genomic aberrations. Overall, LR-HCC group performed different
distributions and patterns of genomic alterations which may lead to
a distinct clinicopathological progression.
Frontiers in Oncology | www.frontiersin.org 4
Filtration and Enrichment Analysis
of the SLRGS
A total of 1,890 LR-related genes in TCGA-LIHC were screened
by DEseq2 (1236 upregulated genes and 654 downregulated
genes). These genes were presented in the heatmap and
volcano plots (Figures 1D, E). Functional enrichment analysis
was performed using GO and KEGG analyses to further explore
the involved biological functions of these LR-related genes. The
top MF of the 1,890 LR-related genes included enzyme activity
and RNA-binding related MFs such as acting on NAD(P)H,
oxidoreductase activity, structural constituent of ribosome. In
terms of BP, majority of these genes were involved in protein
translation and targeting transportation-related BPs including
mitochondrial translation, SRP-dependent co-translational
protein targeting the membrane, and nuclear division. These
genes are the main cell components of ribosome subunit and
mitochondrial protein complex (Figure S1D). The KEGG
analysis suggested that these LR-related genes were mainly
involved in pathways related to cancer- and metabolism-
related pathways, like MAPK signaling pathway, estrogen
signaling pathway, bile secretion, and aldosterone synthesis
and secretion (Figure 1I). GSEA analysis using hallmark
pathway database validated the results, and some cancer- and
metabolism-related pathways were enriched (Figure S1E).
Subsequently, LR-related genes were also screened by limma in
GSE76427 (totally 1,070, including 506 upregulated genes and
564 downregulated genes) (Figures 1F, G). Then, taking the
intersection of upregulated and downregulated genes both in
TABLE 1 | Detail clinical data of qRT-PCR data from 103 samples.

NR (N=61) LR (N=42) Pval ALL (N=103)

Age > 60: 1
Yes 12 (19.7%) 8 (19.0%) 20 (19.4%)
No 49 (80.3%) 34 (81.0%) 83 (80.6%)

Sex: 0.008
Male 38 (62.3%) 37 (88.1%) 75 (72.8%)
Female 23 (37.7%) 5 (11.9%) 28 (27.2%)

Cirrhosis: 0.028
Yes 41 (67.2%) 37 (88.1%) 78 (75.7%)
No 20 (32.8%) 5 (11.9%) 25 (24.3%)

Preoperative AFP level >400 mg/L: 0.94
Yes 22 (36.1%) 14 (33.3%) 36 (35.0%)
No 39 (63.9%) 28 (66.7%) 67 (65.0%)

Stage: 0.95
I 37 (60.7%) 27 (64.3%) 64 (62.1%)
II 19 (31.1%) 12 (28.6%) 31 (30.1%)
III 5 (8.20%) 3 (7.14%) 8 (7.77%)

Tumor size >5.0 cm: 0.845
Yes 18 (29.5%) 14 (33.3%) 32 (31.1%)
No 43 (70.5%) 28 (66.7%) 71 (68.9%)

Multiple tumors: 0.454
Yes 11 (18.0%) 11 (26.2%) 22 (21.4%)
No 50 (82.0%) 31 (73.8%) 81 (78.6%)

Macrovascular invasion: 0.698
Yes 5 (8.20%) 2 (4.76%) 7 (6.80%)
No 56 (91.8%) 40 (95.2%) 96 (93.2%)

Microvascular invasion:
Yes 23 (37.7%) 14 (33.3%) 37 (35.9%)
No 38 (62.3%) 28 (66.7%) 66 (64.1%)
Sept
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FIGURE 1 | Analyses of somatic mutation profiles in HCC samples and filtration of LR-related genes. (A, B) Waterfall plot of detailed mutation information for top 10
genes in the 23 and 46 HCC patients with LR (A) and 46 with NR (B), respectively. (C) Waterfall plot of the different mutation genes between LR- and NR-HCC.
(D, E) The heatmap (D) and volcano plots (E) of LR genes in the TCGA-LIHC. (F, G) The heatmap (F) and volcano plots (G) of LR genes in the GSE76427 cohort.
(H) The Venn diagrams of the down and up overlap genes. (I) The KEGG enrichment analysis between LR- and NR-HCC in the TCGA cohort. (J) The KEGG enrich
analysis of the common LR-related genes.
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TCGA-LIHC and GSE76427, a total of 14 upregulated and 16
downregulated genes were determined (Figure 1H). KEGG of
these 30 overlapping genes were also enriched in the cancer and
metabolism-related pathway mentioned above, comprising Ras
signaling pathway, MAPK signaling pathway, alpha-linolenic
acid pathway, and vascular smooth muscle contraction
(Figure 1J).

Construction and Validation of the
LR-Related Signature
Thirty overlapping genes associated with LR were further screened
using univariate Cox regression analysis and Kaplan-Meier
analysis in both the TCGA-LIHC and GSE76427 cohort.
Eventually, a total of seven and 11 SRLGs were identified in
TCGA-LIHC and GSE76427 cohort, respectively. In aggregate, six
overlapping SRLGs were identified, including ANGPT4, AMFR,
COLEC12, FAM78B, LMTK3, and TRABD2A. Based on the
optimal cutoff point determined by survminer package, Kaplan-
Meier analysis of these six genes indicated an obvious distinction
in disease progression time in the TCGA train cohort (Figures
2A–F), and similar trend was observed in the external validation
cohort GSE76427 (Figures S2A, B). Through the LASSO logical
regression, we further minimized over-fitting and narrowed the
number of genes related with RFS (Figures 2G, H). Meanwhile, an
optimal prognostic signature based on SRLGs was identified, and
the formula for our model was risk score = 0.356 + 0.06 × Exp
ANGPT4 + 0.110 × Exp FAM78B + 0.046 × Exp COLEC12 +
0.063 × Exp TRABD2A + 0.049 × Exp AMFR + 0.004 × Exp
LMTK3. In addition, the risk score of each patient in our study
cohort was calculated.

Survival Outcomes and
Multivariate Examination
The optimal risk score cutoff was used to stratify the patients into
high-risk and low-risk groups. Obviously, patients in the low-risk
group had a lower rate of relapse (low-risk vs.. high-risk: 26.7%
vs.. 76.9%) and longer remission than those in the high-risk
group in TCGA-LIHC (p-value = 0.011; Figure 2I). To estimate
the power of the signature, the ROC analysis was performed
(AUC = 0.73; Figure 2J). This finding was validated in the
external validation data, GSE76427. Kaplan-Meier survival
analysis showed a significant difference in the RFS between the
two groups. The model perfectly distinguished LR from NR
(high-risk vs.. low-risk: 80% vs.. 9%; Figure S2G) with a high
precision of AUC = 0.94 (Figure S2H). The relative gene
expression levels and distribution of the six significantly LR-
related genes (SLRGs) are shown in Figures 2K, I. The predictive
value of the risk score was compared with the following clinical
indicators: age, sex, stage, grade, creatinine, and prothrombin
time (PT). Univariate Cox regression analysis demonstrated that
HR of risk score is 2.020 [1.339–3.047] (p-value <0.001) (Figure
S2J) and multivariate Cox regression analysis determined that
the risk score was an independent risk factor for LR of HCC [HR:
2.007 (1.200–3.357)] (Figure S2K). In line with the RFS, high-
risk group was inclined to possess worse clinical outcomes, such
as advanced clinical stage (Table S2). The risk score was also
Frontiers in Oncology | www.frontiersin.org 6
validated as an independent risk factor in the external cohort,
GSE76427 (Table S3). These results suggested that the six-gene
signature was an independent prognostic factor for LR-HCC.

Validation of LR-Related Signature in a
Clinical In-House Cohort
In order to verify the power of our six-gene model into a
clinically translatable risk-stratification assay, we further
performed qRT-PCR assays for these genes in a clinical cohort
containing 103 HCC patients. Expression heatmap of the six
SLRGs, distribution of SLRGs, and recurrent status of each
patient are illustrated in Figure S3G. Consistent with our
discovery in silico validation cohorts, patients with high score
have a significantly dismal RFS (p-value <0.001; Figure 3A). The
six-gene model perfectly distinguished LR- from NR-HCC (high-
risk vs.. low-risk: 69% vs.. 13%; Figure 3C), with a high precision
AUC = 0.851 (Figure 3B). Univariate (HR: 3.383 [2.253-4.735], P-
value <0.001; Figure 3D) and multivariate (HR: 3.383 [2.100-
5.450], P-value <0.001; Figure 3E). Cox regression analysis
revealed that the 6-gene signature remained the statistical
significance, after adjusting for potential confounding factors
(including sex, cirrhosis, and microvascular invasion).
Collectively, the results from a clinical in-house cohort
supported that our discovery and in silico validation cohort
findings, which validated and confirmed that our six-gene model
was quite robust and can serve as an independent predictor of LR
in stages I–III HCC.

Somatic Mutation and CNV Landscape of
High- and Low-Risk Groups
The samples were allocated into high‐ and low‐risk groups to
distinguish their potential functions and elucidate the significant
survival differences using GSEA. Immune- and metabolism-
related pathways were enriched in the high-risk group, such as,
B-cell receptor signaling pathway, focal adhesion, and primary
bile acid biosynthesis (Figure 4A). Protein synthesis and
transfer-related BPs such as mRNA catabolic process, protein
localization to membrane, protein targeting ER, and ribosome
assembly are the top BPs in the high-risk group (Figure 4B). The
results showed that not only was there a difference in enriched
functions between high- and low-risk groups but also in the
probability of mutation and CNV. Out of the 20 SMGs, 11 SMGs
exhibited significant mutation differences, six of which exhibited
a higher mutation frequency in the high-risk group, including
TTN, MUC16, CSMD3, AXIN1, and CACNA1E, while in the
contrary, five of which, TP53, BAP1, RYR1,MIT1L, UNCB0, and
RYR2 mutated more frequently in the low-risk group (Figure
S4A). Consistent with the mutation, significant CNV in two
phenotypes which might result in distinct biological behaviors in
stages I–III HCC also differed. By employing the cBioPortal
database, we ultimately identified significant CNV which
encompassed the top 10 amplification and deletion genes in
the two groups separately (Figure S4B). The genes which have
been reported to involve the cancer cell invasion (ENPP2,
ADCY8), dysregulated cellular metabolism (CYC1), and
September 2021 | Volume 11 | Article 732447
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angiogenesis (ANGPT1), immune inhibition (ANXA3) amplified
notably in the high-risk group, which might elaborate the
aggressiveness and malignancy in this group. Moreover, the
low-risk group was inclined to maintain more ZHX1,
WDYHV1, FBXO32, ATAD2, and PKLR amplification referring
to transcriptional deregulation, TGF-beta1/Smad3 signaling
Frontiers in Oncology | www.frontiersin.org 7
pathway, oxidative phosphorylation, and deletions of tumor
suppressor genes CSMD1, ERICH1, MYOM2, and FBXO25. In
conclusion, the high-risk group exhibits a different genetic
pattern from the low-risk group, which can be used to
recognize the patients at high risk of LR and then to
implement a precision medicine strategy.
A B C

D E

G H

I J K

F

FIGURE 2 | Survival analysis of the six SLRGs and development of the LR-related signature in the TCGA-LIHC cohort. (A–F) The Kaplan–Meier analysis of the six
SLRGs. The six SLRGs were ANGPT4, AMFR, COLEC12, FAM78B, LMTK3, and TRABD2A. (G, H) The results of the LASSO regression. (I) Kaplan–Meier analysis.
(J) The ROC curve of the model. (K) The distribution of risk score, recurrence status, and gene expression panel.
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Immune Cell Infiltration in the High-
and Low-Risk Groups
The above research indicated that diverse immune status may
predominate in two groups, thus CIBERSORT and xCell
algorithm were further applied to estimate the infiltration
status if immune cells. CD8+ T cells, which implement
cytolytic activity to kill tumor cells increased significantly in
the low-risk group (Figure S4C). Furthermore, we noticed that
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immune system in the low-risk group performed a host-
protecting role, such as increased naïve B cells, activated NK
cells, CD8+ T cells, and follicular helper T cells, though there was
no statistical significance. Immune cells infiltrating in the high-
risk group mainly included naive CD4+ T cells, macrophages
(M0), and gamma delta T cells. The distinction was validated by
the xCell algorithm; granulocyte macrophage progenitor (GMP)
increased in the high-risk group whereas the naive B cells
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FIGURE 3 | Validation of the model in clinical in-house cohort. (A) Kaplan-Meier curves of RFS according to LR-related model. (B) ROC analysis for predicting LR.
(C) Comparison of LR rates between the high- and low-risk groups. (D) Univariate Cox regression analysis of risk score. (E) Multivariate Cox regression analysis of
risk score.
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increased in the low-risk group (Figure S4D). Studies have
characterized the importance of co-stimulating and co-
inhibiting molecular functions based on the immune
microenvironment. Therefore, we aimed to identify the
differences in the expression levels of B7-CD28, TNF
superfamily, and other factors between the two groups, and we
found the expression of ICOS and TNFRSF4 increases
significantly in the low-risk group (Figure 4C).

Assessment of Chemotherapy
Furthermore, by performing pRRophetic R package, we
estimated the imputed responses to 138 chemotherapeutic
agents among patients in stages I–III HCC to dertermine
potential drugs with specific sensitivity to both groups.
Eventually, as displayed in Figure S4E, a total of seven drugs
were identified. One of the seven drugs, BMS.708163 known as a
Notch inhibitor was more sensitive to patients in the low-risk
group. Of note, the other six of the seven drugs have shown
specific sensitivity to patients in the high-risk group. For
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instance, VX.680, a potent and selective small-molecule
inhibitor of the Aurora kinases, was more sensitivity to
patients in the high-risk group; BI.2536, a Plk1 inhibitor, also
showed more sensitivity to the high-risk group. Of the seven
drugs, a multitude of their targeted pathways were associated
with tumor cell prolifiation, such as, cell cycle, chromatin histone
acetylation, PI3K/MTOR signaling, mitosis, and kinases, which
were the latent targets of patients in the high-risk group (Figure
4D). These results further demonstrated that patients in the
high-risk group might have several choices of chemotherapy
drugs for prevention and treatment. Our research provided the
patients in the high-risk group with a resource for precision
chemotherapy and long-term management.
DISCUSSION

HCC is the fifth most common tumor worldwide and the fourth
most common cause of cancer-related deaths in China (14).
A C
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FIGURE 4 | Molecular landscape, immune landscape, and assessment of chemotherapy. (A, B) The GSEA analysis of the high- and low-risk groups. (A) The KEGG
pathway enrichment analysis and (B) The biology process enrichment analysis. (C) The heatmap of the clinical- and immune-related molecular landscape. From the
top to the end, there are five models, including clinical characteristics, immune cells, B7-CD28, TNF superfamily, and other immune-related molecular landscapes.
(D) Molecular regulatory mechanism of the seven potential antitumour drugs. Left, the drug names and the level of sensitivity in each group; middle, the drug-
targeted molecules; right, the drug-targeted pathways.
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Although advances in the treatment and management of patients
with HCC have improved survival rates to some extent, it still has
a high rate of recurrence, limiting long-term survival even after
surgical resection. Thus, the deciphering the genomic landscape
and recognition of predictive factors for LR could improve
patient management and guide precise medication of
chemotherapy drugs for patients with LR. For early recurrence,
there are some research indicating different signatures can be
used as predictors (15), while few data are available for LR.

In the current study, specific mutation landscape in the LR-
HCC was revealed comprehensively for the first time. The LR-
HCC exhibited different significant mutation genes compared
with NR-HCC, which indicated that different driven genes
exerted roles in the tumorogenesis and prognosis in two
groups of HCC. The top 3 most frequently mutated genes are
TTN (28%), CTNNB1 (24%), andMUC16 (20%). TTN encodes a
giant protein (>30,000 amino acids) and is rarely recognized as a
tumor-associated gene. Recent studies have suggested that TTN
mutation is associated with increased TMB and better response
to ICIs; however, its role in the development of HCC still needs
to be evaluated (16, 17). CTNNB1 mutations which induce
excessive activation of Wnt-b-catenin pathway in HCC play a
crucial role in regulating tumor cell proliferation and survival
and in tumor angiogenesis (18). MUC16, the coding gene of
mucin 16, promotes the proliferation and metastasis of cancer
cells, and the cancer antigen CA125, as an epitope present on
mucin 16, is the most commonly used serum biomarker in
epithelial ovarian cancer (19). Besides, we found BAP1 and
RYR1 mutated exclusively in NR-HCC compared with patients
with LR. A previous study found patients with BAP1-mutation
HCC could benefit from drugs inactivating PKA and
immunomodulators (20), which gave some hints that NR-HCC
may benefit from these therapies. Although co-mutations are
common in different cancer types and exert various roles in
tumorigenesis, especially in lung adenocarcinomas (21), further
research is still needed for our discovery to explore the
underlying regular mechanism.

In the past years, several scoring systems have beeen
developed for estimating HCC early recurrence or overall
recurrence (22, 23), while LR was rarelly assessed. In this
research, we developed a novel risk score system consisting of
ANGPT4, AMFR, COLEC12, FAM78B, LMTK3, and TRABD2A,
which has the ability to accurately predict the probability of LR in
HCC patients. The reproducibility and powerful performance of
six-gene model in multiple independent cohorts and external
qRT-PCR data not only prove that it is a robust and highly
accurate model but is also promising to be routinely
implemented into clinical practice due to the following
advantages: high sensitivity and specificity, simplicity, and low
cost of qRT-PCR. Among the six genes, AMFR and LMTKS have
been reported to associate with cellular adhesion, invasion, and
migration, which may alter the metastatic activity of cancer cells
and even play a crucial role as a target for anticancer agents (24–
26). In AMFP, an internalizing cell surface receptor, upregulation
is significantly correlated with more advanced tumor stage and a
decreased survival for cancer of the lung, esophagus, stomach,
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colon, rectum, liver, and skin. LMTK3, an oncogenic kinase,
promotes tumorogenesis in blader cancer via ERK/MAPK
pathway and invasion in breast cancer via GRB2-mediated
induction of integrin b1 (27, 28). The relationship between the
other four genes and migration have never been investigated
before, suggesting that these genes may be novel biomarkers in
the prognosis of cancer.

Based on the model, we aimed to characterize the function
and immune microenvironment of the different groups of
cancers. Utilizing GSEA, we found that the high-risk group is
enriched in B-cell receptor signaling pathway, focal adhesion,
and primary bile acid biosynthesis in KEGG analysis, which
consisted of the recurrent features. Besides, the immune cell
infiltration in the two groups were explored using CIBERSORT
and xCell algorithm, and few differences were identified, such
as the CD8+ T cells and naïve B cells are increased in the
low-risk group, and naive CD4+ T cells, macrophages (M0),
gamma delta T cells, and granulocyte macrophage progenitor
(GMP) are increased in the high-risk group. Tumor immune
microenvironment play a crucial role, e.g., “soil” in the
proliferation, migration, and invasion of cancer cells, which
consist of immune cells and other immune-related factors (29).
We also found ICOS and TNFRSF4, two well-known co-
stimulating molecular functions, increased significantly in the
low-risk group. The different immune landscapes in the two
groups may contribute to the improvement of prognosis and
further selection of immune therapy.

In addition, the different molecular characteristics between
the two groups were also uncovered. As the figure displayed,
TTN, MUC16, CSMD3, AXIN1, and CACNA1E mutations
characterized the high-risk group. Notably, three of these five
genes, TTN, MUC16, and AXIN1 were reported in a previously
published series as the driver genes in hepatocarcinogenesis (30–
32), while CSMD3 acted as a tumor suppressor gene and
decreased expression contributing to hepatocarcinogenesis
(33). Of particular interest, CACNA1E, the major subunit of
the voltage-dependent CaV2.3 Ca2+ channel, may be involved in
regulating metabolism-related functions of the liver, including
bile secretion, glucose and lipid metabolism, and mitochondria
functions, while the specific function of hepatocytes needs more
extensive study (34). The low-risk group was characterized by
TP53, BAP1, RYR1, MIT1L, UNCB0, and RYR2 mutations.
Except for TP53 and BAP1 which have been reported as
oncogenes, the other four genes have not been explored in
hepatocarcinogenesis, suggesting that they may be potential
tumor-related genes. Besides, CNVs in the two groups were
described above. Of note, the high-risk group characterized by
more aggressive and malignant phenotype possessed some
invasion-related gene amplification (ENPP2, ADCY8) (35),
dysregulated cellular metabolism-related amplification (CYC1)
(36), angiogenesis-related amplification (ANGPT1) (37), and
immune inhibition-related amplification (ANXA3) (38). Low-
risk group maintained ZHX1, WDYHV1, FBXO32, ATAD2, and
PKLR amplifications referring to transcriptional deregulation,
TGF-beta1/Smad3 signaling pathway, and oxidative
phosphorylation, as well as deletion of tumor suppressor genes
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CSMD1, ERICH1, MYOM2, and FBXO25. Taken together,
genomic analysis across the different risk groups of HCC
revealed the mechanisms of tumor progression and helped to
identify biomarkers in response to targeted therapies.

Subsequently, as a supplement, we verified some potential
chemotherapy drugs with specific sensitivity to each group, and
most drugs were more sensitive to the high-risk group. These
results may offer more therapeutic opportunities for the patients
suffering from LR. Therefore, to improve the prognosis of LR-
HCC, we should not only strengthen monitoring the patients
susceptible to LR but choose suitable antitumor drugs for early
prevention and treatment. The present research also have some
limitations. First, the utility of the six-gene signature still needs
more clinical applications to further validate. Second, we only
exhibited the genomic landscape in each group while the reasons
behind this phenomenon in terms of specific signaling pathways
and molecular mechanisms require further understanding.
CONCLUSION

In summary, it is the first time to research the genomic landscape
and tumor-infiltrating immune cells in the LR-HCC
comprehensively. Using a systematic biomarker discovery and
validation approach, we established and validated a stable and
powerful six-gene signature for evaluating the LR risk of patients
with stages I–III HCC. Our study demonstrated that the LR-
related model provides a promising tool to optimize decision-
making in surveillance protocol and individual management for
patients with stages I–III HCC.
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Supplementary Figure 1 | Analyses of somatic mutation profiles in HCC
samples and enrichment analysis of LR-related genes. (A) Summary of the detail
mutation information. (B) The boxplot displayed the differences of the TMB in two
groups. (C) Co-occurrence and co-exclusion analysis of the mutated genes in the
LR-HCC. (D) The dot plots of the GO-enriched analysis based on the LR-relative
genes; from left to right: the biology process (BP), cellular component (CC), and
molecular function (MF), respectively. (E) The hallmark signature from the MSigDB
database was utilized to search the tumor-related pathways between two groups.

Supplementary Figure 2 | Survival analysis of the six SLRGs and validation of
the LR-related signature in the GSE76427 cohort. (A–F) The Kaplan-Meier analysis
of the six SLRGs. The six SLRGs were ANGPT4, AMFR, COLEC12, FAM78B,
LMTK3, and TRABD2A. (G) Kaplan-Meier analysis. (H) The ROC curve of the
model. (I) The distribution of risk score, recurrence status, and gene expression
panel. (J, K) The forest plot of the univariate (J) and multivariate (K) Cox regression
analysis for TCGA-LIHC.

Supplementary Figure 3 | Validation of six-gene model in a clinical in-house
cohort. (A–F) Comparison of the six SLRGs in the high- and low-risk groups.
(G) The distribution of risk score, recurrence status, and gene expression panel.

Supplementary Figure 4 | Molecular landscape, immune landscape, and
assessment of chemotherapy. (A) The significant mutated genes in the two groups.
(B) The copy number variation in different risk groups. (C) The bar plots displayed
the proportion of 23 immune cells. (D) The proportion of GMP, naive B cells, and
NKT in different risk groups. (E) The IC50 of BMS.708163 is higher in the high-risk
group, whereas the IC50 of CMK, GW843682X, JW.7.52.1, MS.275, VX.680, and
BI.2536 is higher in the low-risk group.
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