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Abstract: Intermolecular interactions play an important role for the understanding of catalysis,
biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper
treatment of short-range interactions of common density functionals with the correct description
of long-range interactions of wave-function correlation methods. Up to now, there are only a few
benchmark studies available examining the performance of DHDFs in condensed phase. We studied
the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane
waves formalism on cohesive energies of four representative dispersion interaction dominated crystal
structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of
long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme
grid dependence of the underlying density functional for PWRB95. The basis set superposition
error (BSSE) and convergence with respect to the super cell size are discussed for two different large
basis sets.

Keywords: density functional theory; double-hybrid functionals; benchmark, wave-function
correlation method

1. Introduction

Electronic structure calculations for realistic condensed-phase systems are generally more
involved than those for molecules. The former include more atoms and are performed under
periodic boundary conditions (PBC), implying interactions between periodic images. Therefore,
condensed-phase electronic structure modelling often relies on simple approximations. Tight-binding
approaches—semiempirical methods, density functional based tight-binding (DFTB)—used to be the
work horse in the field. With increased computational power Kohn-Sham density functional theory
(KS DFT) [1] became a standard approach. Recently, implementations of wave function theories (WFT)
became available, although their application is far from routine.

In DFT, energy is given as unique functional of electron density alone (Hohenberg-Kohn
theorem) [2]. Although the exact functional is unknown, several approximation levels are available,
often classified as rungs of the Jacob’s ladder of accuracy [3]. The most simple approximation includes
only local information on the density (local density approximation, LDA) [4–8]. More eleborate
theories take more properties of the density into account. Including the density gradient yields
generalized-gradient (GGA) approximations (LYP [9], PBE functionals [10]), whereas including the
kinetic energy density gives meta-GGA functionals [11–13] (e.g., TPSS functional [14]).

Incorporating a portion of exact exchange (non-local) leads to hybrid functionals (e.g., PBE0 [15],
B3LYP [16]). Exact exchange energy is not density-dependent, but is rather a non-local quantity
(dependent on the density matrix) borrowed from WFT, viz. from Hartree-Fock (HF) theory [17,18].
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Hence, the term “hybrid” functional means including quantities from WFT, i.e., the Hartree-Fock
exchange energy, into DFT functionals. Further examples of this approach are range-separated
methods (HSE [19], WB97X [20]) and double-hybrid functionals, the latter can also involve range
separation. Whereas hybrid functionals depend on the occupied KS orbitals, double-hybrid functionals
include additionally virtual orbitals. They account for electron correlation in both DFT fashion via
exchange-correlation functional and WFT fashion via excited determinants. We will refer to WFT
methods which include correlation energy as Wave-function correlation (WFC) method.

Double-hybrid functionals [21–26] can potentially take “the best of the two worlds”. GGA-,
meta-GGA- and hybrid DFT functionals are relatively fast and accurate for covalently and ionically
bound systems. However, they intrinsically fail to describe long-range dispersion interactions (which
is often coped with by explicit dispersion corrections [27–32] and non-local functionals [33,34]) and
strong correlations. WFC methods, on the other hand, inherently include the correct asymptotic R−6

behaviour. Their significant disadvantage is the high computational cost: N4 scaling and higher in
the canonical formulations. Reduced-cost methods allow decreasing the scaling, although with high
prefactors. Consequently, the cost of a double-hybrid DFT calculation is defined by the cost of its WFT
part. The question may then arise: why not use pure WFT instead of double-hybrid functionals? The
answer is that the N4–N5 scaling of WFT methods used for double-hybrid functionals (second-order
Møller-Plesset perturbation theory, MP2 [35]; random phase approximation, RPA [36]) are relatively
crude approximations, and despite capturing long-range interactions they can be outperformed by
DFT functionals. Thus, inclusion of electron correlation in WFT and DFT fashion may lead to the
improved accuracy of both at moderate price as compared to highly precise WFT approaches, such as
coupled-cluster methods [37] scaling as N6 and higher.

Most condensed-phase implementations of electronic structure methods are based either on the
use of plane waves (PW) or Gaussian basis sets. Plane waves constitute a basis in a strict mathematical
sense: they are orthogonal and complete. In PW basis DFT and correlation energies converge
systematically with basis size [38]. However, due to the fact that PW do not reflect the character
of chemical bonding, a larger number of basis functions is needed for accurate calculations, which is
detrimental for calculations with WFC methods as virtual space becomes huge. Since atom-centered
Gaussian functions reasonably approximate atomic orbitals, good accuracy can be achieved with
compact basis sets, i.e., at a lower computational price, especially for DFT. WFC energies are more
sensitive to basis set size and exhibit slow convergence with basis set size [39], especially for long-range
dispersion interactions [40]. WFC methods and DHDFs are available for PW basis sets in VASP [38,41],
for Gaussian basis sets in CP2K [42], CRYSTAL [43] and GAMESS (US) [44] and for Slater type basis
sets in ADF [45].

2. Theoretical Background

In the following, a, b, . . . are virtual orbital indices, i, j, . . . occupied orbital indices, p, q, . . . general
orbital indices, and P, Q, . . . auxiliary function indices. In DFT, the total energy is given as a functional
of the total ground-state density n(~r):

EDFT [n] = T0[n] + Ene[n] + EH [n] + EXC[n], (1)

where EDFT [n] is the total energy functional, T0[n] is the kinetic energy of a reference system of
non-interacting electrons, Ene[n] is the nuclei-electron interaction energy, EH [n] is the Hartree energy
describing the classical electron-electron interaction energy, and EXC[n] is the exchange-correlation
energy describing the quantum mechanical contributions of the electron-electron interaction.
The ground-state density is expressed in terms of orbital functions ψi(~r)

n(~r) = ∑
i
|ψi(~r)|2 (2)
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where i runs over all occupied orbitals. The orbital functions fulfill the orthonormality constraint:∫
d3rψ∗i (~r)ψj(~r) = δij (3)

with the Kronecker delta δij. The orbitals are solutions of the Kohn-Sham (KS) equation:(
−∆

2
+ vne(~r) + vH [n](~r) + vXC[n](~r)

)
ψi(~r) = εiψi(~r) (4)

with the potential arising from the nuclei vne(~r), the Hartree potential vH [n](~r), the exchange-
correlation (XC) potential vXC[n](~r), and the orbital energy εi of orbital i. In this article, we will
consider Gaussian functions centered at the atoms only.

Because the total energy functional is not known explicitly in terms of the ground-state density,
we rely on approximations of the XC functional. These approximate energy functionals are given as
integrals of a function explicitly depending on the ground-state density, its gradient and its Laplacian.
For convenience, the XC functional is split into an exchange functional EX [n] and a correlation
functional EC[n].

The more complex hybrid density functionals (HDFs) [16] include explicit information of the
occupied orbitals. They modify the exchange functional by including a certain amount αX,HF of
Hartree-Fock (HF) exchange EX,HF[n] providing the exchange functional

EX,hybrid = αX,HFEX,HF[n] + αX,DFTEX,DFT [n]. (5)

We introduce the amount αX,DFT of DFT exchange EX,DFT [n] to reflect that the DFT exchange
functional is an already known GGA or meta-GGA functional (compare [15,16]). Using the Mulliken
notation (chemists’ notation) for electron repulsion integrals

(pq|rs) =
∫

d3r
∫

d3r′
φ∗p(~r)φq(~r)φ∗r (~r ′)φs(~r ′)

|~r−~r ′| (6)

the HF exchange energy can be written as

EX,HF = −1
2 ∑

ij
(ij|ji). (7)

Non-HDFs suffer from self-interaction errors [46]. These are reduced in HDFs but usually not fully
cancelled since αX,HF 6= 1 in general case. This self-interaction error results in erroneous description of
charge-separation processes and transition states. But even hybrid methods and HF lack a reasonable
description of dispersion interactions decaying like R−6 with R being a measure of charge separation.

For increased flexibility, we can further split the exchange functional in a long-range and a
short-range functional and describe both with a given mixture of HF theory and DFT resulting in
range-separated HDFs [19].

The highest flexibility is achieved by including virtual orbitals ψa(~r). Double-hybrid density
functionals (DHDFs) are HDFs in which the correlation functional is composed of a mixture of a DFT
correlation functional EC,DFT [n] with ratio αC,DFT and correlation energy EC,WFT [n] of a WFC method
with ratio αC,WFT providing a functional

EC,double−hybrid = αC,WFTEC,WFT [n] + αC,DFTEC,DFT [n]. (8)

Because WFC methods are computationally more demanding than HDFs or standard DFT
functionals, most DHDFs exploit the MP2 theory, the SOS-MP2 theory, or the RPA method.
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The correlation energy within the MP2 theory for closed-shell systems is

EC,MP2 = ∑
ijab

(ia|jb) [2(ia|jb)− (ib|ja)]
εi + εj − εa − εb

. (9)

The computationally most expensive step of the MP2 method is given by the transformation
of the electron interaction integrals from atom orbital basis to molecular orbital basis leading to
a O(N5) scaling with N being a measure of system size. The prefactor can be reduced by the
resolution-of-the-identity (RI) approach introducing an auxiliary basis in which densities are expanded
giving the equation

(pq|rs) = ∑
P

Bpq
P Brs

P (10)

with

Bia
P = ∑Q(pq|Q)(Q|P)−1/2 (11)

(pq|P) =
∫

d3r
∫

d3r′
φ∗p(~r)φq(~r)φP(~r ′)

|~r−~r ′ | (12)

(P|Q) =
∫

d3r
∫

d3r′ φP(~r)φQ(~r ′)
|~r−~r ′ | . (13)

This method is called RI-MP2 [47,48].
A simplified version of the RI-MP2 method is the Scaled-Opposite-Spin(SOS)-MP2 method [49]

given by

EC,SOS−MP2 = −
∫ ∞

0
dτTr

(
QSOS−MP2(τ)QT

SOS−MP2(τ)
)

(14)

with
(QSOS−MP2(τ))PQ = ∑

ia
Bia

P eτ(εi−εa)Bia
Q. (15)

The integration is carried out numerically using a Minimax quadrature. The RI-SOS-MP2 method
scales like O(N4).

Another correlation method with increasing popularity is the Random Phase Approximation
(RPA) method [50,51] within the RI approximation

EC,RPA =
1
2

∫ ∞

0

dω

2π
Tr (ln(1 + QRPA(ω))−QRPA(ω)) (16)

with
QRPA(ω) = 2 ∑

ia
Bia

P
εa − εi

ω2 + (εa − εi)2 Bia
Q. (17)

RI-RPA scales like O(N4). As with the RI-SOS-MP2 method, the integration is carried out numerically
using a Clenshaw-Curtis grid [52] or a Minimax grid [53,54].

All WFC methods and all DHDFs correctly reproduce the R−6 energy behaviour of long-range
interactions. Comparable to range-separated HDFs, there are DHDFs with range-separated exchange
functionals like the ωB97X-2 functional [55]. Further, there are DHDFs with range-separated correlation
functionals [56]. In this article, we will not focus on DHDFs with range-separated correlation
functionals and refer to the literature [40,57–60] for more details.

3. Computational Details

3.1. Gaussian and Plane Waves Method (GPW) and Integral Evaluation

The Gaussian and plane waves method (GPW) [61] allows for efficient periodic calculations
with Gaussian basis sets using a dual representation of the electronic density and molecular orbitals.
It assumes the use of a primary Gaussian basis for the expansion of matrix quantities (density matrix,
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KS matrix) and an auxiliary plane waves (PW) basis for the evaluation of the Hartree potential and the
numerical integration of density functionals. To converge GPW calculations, one has to pay attention
to both the size and quality of the Gaussian basis and the energy cutoff for the PWs. In the current
implementation, GPW is used for the calculation of the Hartree potential, XC functionals, and two and
three center integrals necessary for the RI-MP2 and RI-RPA methods. Exchange integrals are computed
analytically using a truncated Coulomb potential [62].

3.2. Test Systems

Because we are interested in the description of intermolecular interactions, we are testing the
functionals on molecular crystals (NH3, HCN) and rare-gase crystals (Ar, Ne) which have been studied
by Sansone et al. [63]. Structural information of the unit cells are summarized in Table 1. In case of
molecular solids, we were using structures reoptimized at the B3LYP-D* level [64].

Molecular crystals represent systems with a mixture of covalent bonding and dispersion
interactions. NH3 and HCN crystals additionally contain hydrogen bonds which are crucial for
the discription of proteins. In contrast to that, there are only dispersion interactions within the rare-gas
crystals. This results in low cohesive energies and the need for well-balanced functionals.

Table 1. Structural information about the bulk structures used in this study. n f u is the number of
formula units per unit cell. References for the geometrical information of the respective system are
provided in the last column. Please note that there was a mistake in the cell parameters of CO2 provided
in reference [63].

System a;b;c (Å) n f u References

NH3 5.048 4 [65]
HCN 4.13; 4.85; 4.34 2 [66]

Ne 4.464 4 [67–69]
Ar 5.300 4 [70,71]

3.3. Parameters of the Calculations

All calculations have been carried using a development version 8.0 of CP2K [42]. To ensure
convergence with respect to the density cutoff, we were using high cutoffs of 1500 Ry for all RPA
and MP2 calculations, 4000 Ry for remaining calculations of the molecular crystals NH3 and HCN,
and 10, 000 Ry for the rare-gas crystals Ar and Ne (see Section 4.1 for more details) and a relative cutoff
of 50 Ry. For the rare-gas crystals, we set the parameters EPS_DEFAULT, EPS_PGF_ORB, EPS_SCF,
and EPS_SCHWARZ in the HF section to 10−30, 10−50, 10−5, and 10−10, respectively, for the molecular
crystals, we were using for the same parameters 10−20, 10−40, 10−5, and 10−9, respectively (see the
CP2K manual for the meaning of these parameters). HF calculations for the bulk systems were using a
truncated Coulomb potential with a cutoff radius of roughly half the super cell size. All densities have
been smoothed using the NN10 method.

RI-MP2, RI-SOS-MP2 and RI-RPA calculations have been carried out using the GPW method to
determine all integrals with a primary cutoff of 300 Ry and a relative cutoff of 50 Ry. We have exploited
an 8-point minimax grid for all RI-RPA and RI-SOS-MP2 calculations.

3.4. Choice of Functionals and Implementation

We carried out calculations at the PBE [10], ωB97M-V [72], ωB97X-2 [55], PW6B95 [73],
PWRB95 [74], SOS-PBE0-2 [75], RI-MP2 [35,47] and RI-RPA [51] levels of theory. PBE and RI-MP2
are used to compare differences between valence-only calculations of our valence-only calculations
and the all-electron calculations of Sansone et al. [63]. PW6B95 is a meta-hybrid functional which
performed best for weakly interacting systems with more pronounced dispersion interactions.
PWRB95 is its RPA-based DHDF. ωB97M-V is a dispersion-corrected range-separated meta-hybrid
functional. ωB97X-2 is an MP2-based DHDF with range-separated exchange functional. SOS-PBE0-2
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is a RI-SOS-MP2-based DHDF. With this choice, we cover a large variety of different flavours
of meta-hybrid and DHDF theories. Due to very high computational cost, we have restricted
ourselves to this small, but representative set of functionals: one for each flavour of DHDFs and
a corresponding HDF.

PBE calculations have been carried out using the CP2K implementation of PBE. For the ωB97M-V,
and the PW6B95 functionals, we exploited the implementations of the LibXC library [76], version 4.3.4.
Since the VV10 dispersion correction is not available in CP2K, we relied on the rVV10 correction and
the parametrization suggested by Mardirossian et al. [77]. For the ωB97X-2 and PWRB95 functionals,
we implemented the required parameter sets into the LibXC library.

3.5. Basis Sets and Pseudopotentials

The MP2 and RPA implementations within CP2K rely on a pseudopotential (PP) approach with
Goedecker-Teter-Hutter PPs [78]. For the PBE functional, we used PPs optimized for PBE, for RPA
and MP2 calculations, we were using PPs optimized for HF whereas for both HDFs and all DHDFs,
we utilized PPs optimized for the PBE0 functional. All PPs have been taken from the Github repository
of Jürg Hutter [79].

Correlation-consistent primary basis sets and suitable auxiliary basis sets of double zeta (DZ)
and triple zeta (TZ) quality for the elements C, H, N and O have been taken from Del Ben et al. [80]
We have optimized appropriate correlation-consistent primary and auxiliary basis sets of the same
qualities for Ne and Ar using the polarization functions of the respective Dunning basis sets [48,81,82].
All PPs and primary and auxiliary basis sets are compiled in the Appendxes A–C.

3.6. Cohesive Energies and Basis Set Superposition Error

To determine total energies per formula unit, we carried out calculations of 2× 2× 2, 3× 3× 3
and 4× 4× 4 supercells of all given unit cells and used a linear fit of the total energy per formula unit
against the inverse of the cell volume.

Because calculations of cohesive energies usually suffer from basis set superposition errors
(BSSE), we perform a counterpoise correction [83]. The BSSE-free cohesive energies Ecoh are calculated
according to

Ecoh = Ebulk − Emol+ghost,bulk + Emol,bulk − Emol,gas (18)

with the total bulk energy per formula unit extrapolated to infinite cell volume Ebulk, the energy of the
molecule with ghost atoms Emol+ghost,bulk, the energy of the molecule using the bulk geometry Emol,bulk,
and the total energy of the molecule using an optimized gas phase structure Emol,gas. For Ar and Ne,
we trivially have Emol,bulk = Emol,gas.

The corresponding BSSE is given by

∆EBSSE = Emol+ghost,bulk − Emol,bulk. (19)

For the BSSE calculations, we took the crystalline structures, chose one molecule (or atom for Ar
and Ne) surrounded by all ghost atoms within a 3× 3× 3 supercell.

4. Results

4.1. General Remarks

We found the convergence of total energies of meta-HDFs PW6B95 and PWRB95 requires very
tight energy cutoffs for the auxiliary PW basis of at least 4000 Ry. In contrast to that, calculations
with the other meta-HDFs in our benchmark study, ωB97M-V, provided reasonable results with a
cutoff of only 1200 Ry. Because the basis functions for the elements argon and neon are more localized
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than those for hydrogen, carbon and nitrogen, higher cutoffs for the noble gases were needed for an
adequate representation of the basis functions of these elements on the grid.

It is well-known that GGA functionals and especially meta-GGA functionals require very tight
integration grids for convergence and thus accurate results. Such cutoffs reflect numerical issues and
the need for very fine integration grids when using the PW6B95 and PWRB95 functionals. Such grids
are not necessary for the ωB97M-V functional which has been optimized with coarser integration grids
in mind [72]. Thus, energy differences converged faster with ωB97M-V and PBE. Nevertheless, the total
energies were not converged. To remove any possible problems due to incomplete convergence with
respect to cutoffs, we utilized unusually high cutoffs for all density functionals.

Furthermore, we have found convergence problems with the PW6B95 and PWRB95 functionals,
which can be resolved with density smoothing. Unfortunately, in some cases an increase of the energy
cutoff for the density resulted in SCF convergence issues which could not be resolved with tighter
filter thresholds. Nevertheless, we were able to achieve convergence by restarting the calculations
with a higher cutoff starting from the converged SCF results with a lower cutoff. This was not possible
for argon, where we exploited a cutoff of 4000 Ry for the PW6B95 and PWRB95 functional. Thus,
some numbers for the PW6B95 and PWRB95 functionals are not fully converged with respect to the
density cutoff.

Due to the higher computational costs, we have not carried out calculations of the 4× 4× 4
supercells on the TZ level.

All cohesive energies are compiled in Tables 2 and 3.

Table 2. Cohesion energies Ecoh and absolute relative error with respect to experimental results for all
considered methods and systems in kJ/mol exploiting basis sets of DZ quality. The statistical indicators
are the mean absolute error (MAE) and the mean absolute relative error (MARE). a This work. b Values
by Sansonse et al. [63]. c Experimental values [68,71,84], corrected for zero-point energy (ZPE) and
thermal effects at 298 K [63,85].

Functional Ecoh(Ne) % Ecoh(Ar) % Ecoh(NH3) % Ecoh(HCN) % MAE MARE

PBE a −2.92 48 2.47 131 −39.9 9 −29.0 32 7.09 0.55
PBE b −0.27 86 2.36 130 −26.9 25 −28.0 34 8.95 0.69
RPA a 0.82 141 4.61 159 −19.0 47 −28.1 33 11.7 0.96
MP2 a 0.83 141 2.95 138 −27.6 23 −35.2 17 7.40 0.80
MP2 b 0.22 111 3.13 140 −24.2 33 −31.7 25 9.01 0.78
ωB97M-V a −2.65 34 −8.30 7 −41.2 13 −58.0 36 5.37 0.23
PW6B95 a −1.99 1 −0.03 99 −27.1 25 −33.8 20 6.43 0.37
PWRB95 a −2.29 16 −4.15 46 −34.8 4 −40.3 5 1.91 0.18
ωB97X-2 a −0.43 78 −3.60 53 −35.2 3 −42.3 0 1.77 0.34
SOS-PBE0-2 a 0.57 128 2.76 135 −25.0 31 −31.0 27 8.98 0.81
Expt. c −1.97 −7.73 −36.3 −42.6

Table 3. Same as Table 2, but with basis sets of TZ quality. b exploits basis sets of augmented DZ quality.

Functional Ecoh(Ne) % Ecoh(Ar) % Ecoh(NH3) % Ecoh(HCN) % MAE MARE

PBE a −1.22 37 0.49 106 −28.5 21 −29.5 30 7.47 0.49
PBE b −0.40 79 0.42 105 −26.2 27 −29.7 30 8.18 0.61
RPA a 0.32 116 0.44 105 −24.1 33 −34.9 17 7.58 0.68
MP2 a 0.05 102 −4.48 42 −34.4 5 −43.9 3 2.13 0.38
MP2 b −1.10 44 −6.45 16 −31.8 12 −41.4 2 1.96 0.19
ωB97M-V a −3.51 78 −9.28 20 −39.5 8 −50.9 19 3.65 0.32
PW6B95 a −2.31 17 −1.95 74 −25.6 29 −32.6 23 6.72 0.36
PWRB95 a −2.67 35 −3.10 59 −36.1 0 −44.0 3 1.73 0.25
ωB97X-2 a −2.59 31 −8.15 5 −38.6 6 −43.0 0 0.93 0.11
SOS-PBE0-2 a 0.10 105 −0.12 98 −26.4 27 −33.0 22 7.28 0.63
Expt. c −1.97 −7.73 −36.3 −42.6
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4.2. Convergence with Respect to Super Cell Size

In Figure 1, we compiled the differences in total energies per formula unit relative to the
extrapolated total energies. In general, we expect the total energies to decrease with increasing
supercell size and the extrapolated value is a lower bound for the total energies of the super cells.
Our results show exactly this behaviour.
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Inverse number of unit cells per super cell

Figure 1. Total energies per formula unit relative to extrapolated total energy in kJ·mol−1 against
inverse number of unit cells in supercell with basis sets of DZ and TZ quality for the systems Ne, Ar,
NH3, HCN.

An important question is for which supercell size the error becomes negligible. A useful
magnitude is given by the chemical accuracy of 4 kJ·mol−1. For weakly-interacting systems such as
rare-gas crystals with cohesive energy of less than chemical accuracy, the order of magnitude is set
by the cohesive energy itself. As the error of a method should be not larger than chemical accuracy,
the allowed error of the supercell method must be at least one order of magnitude smaller then the
methodological error, i.e., not larger than 0.4 kJ·mol−1. We find that a 3× 3× 3 super cell provides
sufficient accuracy for all functionals and test systems. This behaviour is in agreement with the
literature [80]. Sometimes, the total energy per formula unit of the 4× 4× 4 super cell has a higher
magnitude than this of the 3× 3× 3 supercell, which may be due to numerical issues. For PBE, a cubic
fit does not seem to be appropriate, and an exponential fit should be used instead.

4.3. Convergence of the BSSE

The BSSEs for the different test systems are compiled in Figure 2. First, we would like to point out
that the BSSE is significantly larger for the molecular crystals than for the rare-gas crystals. This might
be related to the larger number of atoms per molecule and to the spread of the basis functions. Since the
effective core charge of rare-gas atoms is larger than for carbon or nitrogen, the basis functions are
more localized which results in weaker overlap with neighbouring atoms. This is supported by the
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smaller reduction in BSSE for Ar and Ne when we exploit larger basis sets. Thus, augmentation of basis
sets must significantly reduce BSSEs of Ar and Ne. Indeed, diffuse basis functions actually improve
cohesive energies as shown by Sansone et al. [63].

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ne

0

1

2

3

4

5

Ar

PBE RPA MP2
wB97M-V

PW6B95
PWRB95

wB97X-2

SOS-PBE0-2
0

2

4

6

8

10

12

14

NH3

PBE RPA MP2
wB97M-V

PW6B95
PWRB95

wB97X-2

SOS-PBE0-2
0

5

10

15

20

HCN
DZ
TZ

Negative Basis Set Superposition Errors in kJ/mol

Figure 2. Negative Basis set superposition errors in kJ·mol−1 with basis sets of DZ and TZ quality for
the systems Ne, Ar, NH3, HCN.

Molecular crystals are thus more suitable objects to study BSSE than rare-gas crystals. For both
molecular crystals in the test set, the non-DHDFs PBE, PW6B95 and ωB97M-V, provide the smallest
BSSEs whereas the two WFC methods MP2 and RPA have the largest BSSEs, as expected. The DHDFs
have a BSSE between both classes of methods because they employ a mixture of DFT and WFC methods.

Furthermore, we note that the WFC methods in CP2K are implemented within the RI
approximation employing an auxiliary basis set. This leads to an additional source of BSSE for
RPA, MP2 and all the DHDFs because the addition of the auxiliary functions of the ghost atoms
increases the overall accuracy.

4.4. Convergence with Respect to Basis Set Size

In numerous studies, it was shown that total energies from DFT calculations converge
exponentially with respect to basis set size. In contrast to that, total energies from WFC methods
converge cubically with respect to basis set size when employing correlation-consistent basis sets. Thus,
most DHDFs are expected to have a cubic convergence with respect to basis set size but with a smaller
prefactor. DHDFs employing a long-ranged Coulomb operator only and describing short-ranged
interactions with a density functional, converge exponentially [40]. This behaviour is confirmed with
our data compiled in Figure 3.
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Figure 3. Errors in cohesive energies in kJ·mol−1 with respect to the experimental values with basis
sets of DZ and TZ quality for the systems Ne, Ar, NH3, HCN.

Since larger basis sets systematically reduce total energies, cohesive energies increase. We observe
this behaviour for the WFC methods and almost all DHDFs. The slight difference for PWRB95 in case
of Ar may be due to not full convergence with respect to super cell size. For the other functionals—PBE,
ωB97M-V and PW6B95—the cohesive energy from the TZ basis set is sometimes higher, i.e., the system
is weaker bound. One problem might be that the 2× 2× 2 super cells are not yet fully converged or
the extrapolation scheme using a linear fit of the total energies versus the inverse of the volume is not
appropriate and an exponential fit might be more suitable.

Next, we would like to discuss the results obtained for the molecular crystals NH3 and HCN.
They are bound together by covalent bonds, dipole-dipole interactions, and dispersion interactions.
For both systems, the results with the RPA and MP2 methods significantly improve the results over
GGA DFT functionals, MP2 even achieving chemical accuracy. The ωB97M-V functional also provides
very accurate numbers. The PW6B95 functional, as PBE, systematically underestimates the cohesive
energies with errors compatible to PBE. The PWRB95 functional significantly improves upon the
results of its relative PW6B95, bringing them within 1 kJ·mol−1 from the experiment. The same holds
for the ωB97X-2 functional compared with the ωB97M-V functional, although the DHDF is based on
the non-meta-GGA HDF ωB97X [86]. One of the worst performing functionals is SOS-PBE0-2.

For the rare-gas crystals, the picture is more complicated because the absolute values of the
cohesive energies are of the order of the chemical accuracy. As pointed out by Sansone et al. [63],
augmented basis sets are required for these systems. Our cohesive energies from MP2 with a TZ basis
set are only slightly lower than their result with a DZ basis set but still much worse than those with
an augmented basis set for both Ne and Ar. Consequently, our results for Ne do not allow for an
evaluation of the performance of these functionals and further studies employing either quadruple
or augmented basis sets (which are to be constructed) are needed. Nevertheless, our results for Ar
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show that the ωB97X-2 functional provides a good description. The same holds for MP2, PW6B95 and
PWRB95, although one needs further investigations with augmented basis sets.

This issue does not apply to the molecular crystals. Indeed, our cohesive energies with a TZ basis
set are even lower than those with an augmented basis set. Thus, the use of augmented basis sets is
not necessary for the molecular crystals. This result is important for reducing computational costs of
HF calculations and low-scaling WFC methods.

5. Discussion

Because DHDFs can be considered to be a mixture of DFT and WFC methods, the flexibility of
DHDF parametrizations can yield approaches more accurate than the parent DFT and WFC functionals.
At the same time, they inherit the shortcomings of both classes. Due to the dependence on the grid
parameters, the functionals PW6B95 and PWRB95 are more difficult to use than others: care must
be taken to check whether the results are converged with respect to the grid parameters, in CP2K,
the density cutoff.

As expected, PBE can only provide the order of magnitude for weakly interacting systems,
although it converges fast with respect to basis set size and has a low BSSE. MP2 and RPA are more
sensitive to the basis set size and exhibit large BSSEs. These methods provide a moderate accuracy for
different systems with small basis sets.

Non-DHDFs benefit from lower BSSEs. The PW6B95 functional has high demands on integration
grids. Both considered functionals also provide a moderate accuracy and should be favourable over
MP2 and RPA with their higher computational costs.

The double-hybrid functionals PWRB95 and ωB97X-2 show excellent performance with moderate
BSSEs and lower basis set incompleteness errors. Both have computational costs compatible to full
MP2 or RPA calculations and inherit the need of fine integration grids for accurate results, especially
for PWRB95.

The non-empirical SOS-MP2 based DHDF, SOS-PBE0-2, does not provide any advantage as
compared to the original methods. It was pointed out by different authors [87,88] that non-empirical
DHDFs usually perform worse than empirical DHDFs.

6. Conclusions

In this study, we examined a selection of different HDFs and DHDFs by computing cohesive
energies in four different crystal structures. Our results show that DHDFs inherit the shortcomings of
the underlying DFT functional (integration grids) and the underlying WFC method (computational
costs, BSSE, basis set dependence). We were able to show that the PWRB95 and the ωB97X-2 functionals
provide excellent accuracy for molecular and rare-gas crystals. The HDFs ωB97M-V and PW6B95 also
provide reasonable accuracy for these systems, whereas the SOS-PBE0-2 functional underperforms
and can not be recommended.

The exploited basis sets allow a good description of molecular crystals. For the rare-gas crystals,
we showed that non-augmented basis sets are not sufficient to achieve energy convergence with respect
to the basis set size. Due to the high computational costs, we leave studies with augmented basis sets
(and the construction of those basis sets) as well as benchmarking more range-separated DHDFs for
future prospect.
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Abbreviations

The following abbreviations are used in this manuscript:

DFT Density Functional Theory
DHDF Double-Hybrid Density Functional
DZ Double Zeta
GTO Gaussian Type Orbital
HDF Hybrid Density Functional
HF Hartree-Fock
KS Kohn-Sham
MP2 second order Moller-Plesset Perturbation theory
PW Plane Wave
RI Resolution of the Identity
RPA Random-Phase Approximation
SOS-MP2 Scaled Opposite-Spin MP2
TZ Triple Zeta
WFC Wave-Function Correlation
WFT Wave-Function Theory
XC Exchange-Correlation

Appendix A. Pseudopotentials

Appendix A.1. PBE Pseudopotential

Table A1. PBE pseudopotential parameters. The format corresponds to [78]. Pseudopotentials are
taken from [79].

H 1 1
0.20059317301776 −4.17806832477260 0.72440924243368

C 6 4
0.33855479630051 −8.80455195420776 1.33837678314185
0.30260967537284 9.62286249628669

N 7 5
0.28382600053810 −12.41517350030142 1.86813618209744
0.25541754972811 13.63124869974610

O 8 6
0.24446328480160 −16.67548222363837 2.48908598241780
0.22097110943471 18.33446866406285

Ne 10 8
0.19013599957922 −27.11394809602904 4.36380616652624
0.17606810618356 28.17757050106910 0.83365740579601 −1.07616503335814
0.19546571702831 −0.23610573844687

Ar 18 8
0.40003082668805 −7.08796199095755
0.31882882990174 17.25258480082010 −5.58549698978039 7.21031819907047
0.35335630753415 4.97482100660240
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Appendix A.2. PBE0 Pseudopotential

Table A2. PBE0 pseudopotential parameters. The format corresponds to [78]. Pseudopotentials are
taken from [79].

H 1 1
0.20049539759096 −4.17780338804233 0.72403926676805

C 6 4
0.34015230644208 −8.75626046428525 1.33212403341974
0.30255799930084 9.58980355283555

N 7 5
0.28405138134082 −12.39652421586226 1.86372383417056
0.25538070446385 13.63073438324169

O 8 6
0.24671011902360 −16.65533253748591 2.50854752353111
0.22100154713718 18.34370453997725

Ne 10 8
0.19050423878827 −27.40404160755363 4.42644219542327 0.00312528175949
0.17609378094694 28.18364816845336 0.83365182689679 −1.06378213860369
0.19427680906964 −0.23683812086750

Ar 18 8
0.39979462541098 −7.23417721420866 0.00616780402846
0.31880599007091 17.21513221796928 −5.58548607072547 7.21072495408957
0.35343634803616 4.97384170460103

Appendix A.3. HF Pseudopotential

Table A3. Hartree-Fock pseudopotential parameters. The format corresponds to [78]. Pseudopotentials
are taken from [79].

H 1 1
0.20049539759096 −4.17780338804233 0.72403926676805

C 6 4
0.34816792458406 −8.54312820557867 1.33276540541946
0.30230247000627 9.59710582360109

N 7 5
0.28300476743411 −12.39840200798251 1.86939057420079
0.25539202567537 13.64483766978610

O 8 6
0.24676969870316 −16.66528269564613 2.52030687064467
0.22121058101998 18.39425181647437

Ne 10 8
0.19050265092574 −27.39590696172339 4.41958869715540 0.01834396326683
0.17637388496062 28.18533818441574 0.83365996989179 −1.04842942962620
0.19585379054851 −0.27609661906079

Ar 18 8
0.39771927261258 −7.21348927487361 0.01323122557817
0.31872450490949 17.20921819285275 −5.58549109340678 7.19978913165534
0.35357441343299 4.98951929408379
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Appendix B. Primary Basis Sets

Table A4. Parameters of the cc-DZVP basis set of Hydrogen. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

s 8.3744350009 −0.0283380461
1.8058681460 −0.1333810052
0.4852528328 −0.3995676063

s 0.1658236932 1.0000000000
p 0.7270000000 1.0000000000

Table A5. Parameters of the cc-TZVP basis set of Hydrogen. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

s 10.8827241585 −0.0167058885
3.0968750876 −0.0627538300
0.9874518162 −0.1917521975

s 0.3450687533 1.0000000000
s 0.1492693554 1.0000000000
p 1.4070000000 1.0000000000
p 0.3880000000 1.0000000000
d 1.0570000000 1.0000000000

Table A6. Parameters of the cc-DZVP basis set of Carbon. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

sp 4.3362376436 0.1490797872 −0.0878123619
1.2881838513 −0.0292640031 −0.2775560300
0.4037767149 −0.6882040510 −0.4712295093

sp 0.1187877657 1.0000000000 1.0000000000
d 0.5500000000 1.0000000000

Table A7. Parameters of the cc-TZVP basis set of Carbon. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

sp 5.3685662937 0.0974901974 −0.0510969367
1.9830691554 0.1041996677 −0.1693035193
0.6978346167 −0.3645093878 −0.3579933930

sp 0.2430968816 1.0000000000 1.0000000000
sp 0.0812865018 1.0000000000 1.0000000000
d 1.0970000000 1.0000000000
d 0.3180000000 1.0000000000
f 0.7610000000 1.0000000000

Table A8. Parameters of the cc-DZVP basis set of Nitrogen. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

sp 6.1526903413 0.1506300537 −0.0950603476
1.8236332280 −0.0360100734 −0.2918864295
0.5676628870 −0.6942023212 −0.4739050050

sp 0.1628222852 1.0000000000 1.0000000000
d 0.8170000000 1.0000000000
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Table A9. Parameters of the cc-TZVP basis set of Nitrogen. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

sp 7.6227447102 0.0983924689 −0.0561654555
2.7970605447 0.1045217098 −0.1798165209
0.9909765447 −0.3742661352 −0.3653986185

sp 0.3417314862 1.0000000000 1.0000000000
sp 0.1116822743 1.0000000000 1.0000000000
d 1.6540000000 1.0000000000
d 0.4690000000 1.0000000000
f 1.0930000000 1.0000000000

Table A10. Parameters of the cc-DZVP basis set of Oxygen. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

sp 8.3043855492 0.1510165999 −0.0995679273
2.4579484191 −0.0393195364 −0.3011422449
0.7597373434 −0.6971724029 −0.4750857083

sp 0.2136388632 1.0000000000 1.0000000000
d 1.1850000000 1.0000000000

Table A11. Parameters of the cc-TZVP basis set of Oxygen. Parameters taken from [80].

Shell Type Exponents Contraction Coefficients

sp 10.2674419938 0.0989598460 −0.0595856940
3.7480495696 0.1041178339 −0.1875649045
1.3308337704 −0.3808255700 −0.3700707718

sp 0.4556802254 1.0000000000 1.0000000000
sp 0.1462920596 1.0000000000 1.0000000000
d 2.3140000000 1.0000000000
d 0.6450000000 1.0000000000
f 1.4280000000 1.0000000000

Table A12. Parameters of the cc-DZVP basis set of Neon.

Shell Type Exponents Contraction Coefficients

sp 13.8523672900 0.1501498200 0.10214300
4.0685498000 −0.0314908700 0.3058092400
1.2730584300 −0.7070497300 0.4766050400

sp 0.3565013600 1.0000000000 1.0000000000
d 2.2020000000 1.0000000000

Table A13. Parameters of the cc-TZVP basis set of Neon.

Shell Type Exponents Contraction Coefficients

sp 17.4276488400 0.073686700 0.0702714400
6.3439264100 0.0969132500 0.2167849700
2.2823205800 −0.3010470300 0.4317763300

sp 0.7945993700 1.0000000000 1.0000000000
sp 0.2560537300 1.0000000000 1.0000000000
d 4.0140000000 1.0000000000
d 1.0960000000 1.0000000000
f 2.5440000000 1.0000000000
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Table A14. Parameters of the cc-DZVP basis set of Argon.

Shell Type Exponents Contraction Coefficients

sp 2.6724631600 0.1547491900 0.2663267700
1.5750569800 −0.1300613000 −1.0821938600
0.5528926600 −0.1247859600 0.1177549000

sp 0.1720724500 1.0000000000 1.0000000000
d 0.7380000000 1.0000000000

Table A15. Parameters of the cc-TZVP basis set of Argon.

Shell Type Exponents Contraction Coefficients

sp 3.5650652500 −0.03560400 −0.0341601300
2.8711385000 0.107453000 0.0274003200
0.928908200 −0.070935800 0.1084604500

sp 0.3762992800 1.0000000000 1.0000000000
sp 0.1388133000 1.0000000000 1.0000000000
d 1.2540000000 1.0000000000
d 0.4100000000 1.0000000000
f 0.8900000000 1.0000000000

Appendix C. Auxiliary Basis Sets

Table A16. Parameters of the cc-DZVP auxiliary basis set of Hydrogen. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 5.1153315245 1.0000000000
s 1.1472440266 1.0000000000
s 0.3203181150 1.0000000000
p 1.9149400132 1.0000000000
p 0.9859513111 1.0000000000
d 1.1714848284 1.0000000000

Table A17. Parameters of the cc-TZVP auxiliary basis set of Hydrogen. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 8.5115919487 1.0000000000
s 1.8744684087 1.0000000000
s 0.5632515602 1.0000000000
s 0.3698299759 1.0000000000
p 2.3711712242 1.0000000000
p 1.1794161391 1.0000000000
p 0.6050431621 1.0000000000
d 1.8092525711 1.0000000000
d 1.1433220615 1.0000000000
f 1.8065804513 1.0000000000
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Table A18. Parameters of the cc-DZVP auxiliary basis set of Carbon. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 13.8045000000 1.0000000000
s 4.7727700000 1.0000000000
s 1.5133300005 1.0000000000
s 0.7826969986 1.0000000000
s 0.4090720022 1.0000000000
s 0.2067960415 1.0000000000
p 6.0052300018 1.0000000000
p 1.7206000311 1.0000000000
p 0.7544648237 1.0000000000
p 0.3216662007 1.0000000000
d 2.6784400611 1.0000000000
d 0.9225147829 1.0000000000
d 0.3408412315 1.0000000000
f 2.7429299969 1.0000000000
f 0.8957560323 1.0000000000

Table A19. Parameters of the cc-TZVP auxiliary basis set of Carbon. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 22.2608165950 1.0000000000
s 7.1315246807 1.0000000000
s 3.5380450775 1.0000000000
s 1.2333453175 1.0000000000
s 0.2821517353 1.0000000000
s 0.3468258230 1.0000000000
p 7.2975063903 1.0000000000
p 3.7896065213 1.0000000000
p 1.0633834831 1.0000000000
p 0.2356430320 1.0000000000
p 0.5078423493 1.0000000000
d 9.9000557486 1.0000000000
d 2.3408375066 1.0000000000
d 1.5195338451 1.0000000000
d 0.5788522388 1.0000000000
d 0.3721345858 1.0000000000
f 1.9332589728 1.0000000000
f 1.1560553410 1.0000000000
f 0.4987261239 1.0000000000
g 1.2175667359 1.0000000000

Table A20. Parameters of the cc-DZVP auxiliary basis set of Nitrogen. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 20.4678978643 1.0000000000
s 7.6243888531 1.0000000000
s 2.3446722210 1.0000000000
s 1.1234062160 1.0000000000
s 0.7258555682 1.0000000000
s 0.3516451521 1.0000000000
p 8.5530798511 1.0000000000
p 2.5349440268 1.0000000000
p 1.0857134625 1.0000000000
p 0.4193736786 1.0000000000
d 3.4384121802 1.0000000000
d 1.2761051199 1.0000000000
d 0.3971760294 1.0000000000
f 3.4010871209 1.0000000000
f 1.3350506486 1.0000000000
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Table A21. Parameters of the cc-TZVP auxiliary basis set of Nitrogen. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 21.6812818892 1.0000000000
s 7.9027065688 1.0000000000
s 2.4447520737 1.0000000000
s 1.2617706294 1.0000000000
s 0.8067419821 1.0000000000
s 0.2885279906 1.0000000000
p 10.3296673020 1.0000000000
p 2.9182107455 1.0000000000
p 1.3834177164 1.0000000000
p 0.7162830530 1.0000000000
p 0.3296257918 1.0000000000
d 13.9094333585 1.0000000000
d 4.5822351942 1.0000000000
d 2.1943496520 1.0000000000
d 0.8349245145 1.0000000000
d 0.4510857395 1.0000000000
f 3.4744937308 1.0000000000
f 1.5532348673 1.0000000000
f 0.8522508678 1.0000000000
g 1.7674440596 1.0000000000

Table A22. Parameters of the cc-DZVP auxiliary basis set of Oxygen. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 25.5779913844 1.0000000000
s 9.5515670675 1.0000000000
s 2.9409752222 1.0000000000
s 1.3964896911 1.0000000000
s 0.9105756313 1.0000000000
s 0.4821009543 1.0000000000
p 10.8823093197 1.0000000000
p 3.2132775587 1.0000000000
p 1.3802086101 1.0000000000
p 0.4601246170 1.0000000000
d 4.5934895346 1.0000000000
d 1.7871052175 1.0000000000
d 0.4206288858 1.0000000000
f 4.2218855419 1.0000000000
f 1.7894864633 1.0000000000
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Table A23. Parameters of the cc-TZVP auxiliary basis set of Oxygen. Parameters taken from [89].

Shell Type Exponents Contraction Coefficients

s 24.5595006061 1.0000000000
s 8.3254503805 1.0000000000
s 2.8895585562 1.0000000000
s 1.3383587201 1.0000000000
s 0.8797495165 1.0000000000
s 0.2902204697 1.0000000000
p 15.0341204959 1.0000000000
p 3.9838033442 1.0000000000
p 2.2151496463 1.0000000000
p 0.8979637674 1.0000000000
p 0.4128471304 1.0000000000
d 15.8683289847 1.0000000000
d 5.3913486662 1.0000000000
d 2.5385447175 1.0000000000
d 1.0911199995 1.0000000000
d 0.3766843343 1.0000000000
f 4.6812603411 1.0000000000
f 2.1656106741 1.0000000000
f 1.0331835741 1.0000000000
g 2.3079719899 1.0000000000

Table A24. Parameters of the cc-DZVP auxiliary basis set of Neon.

Shell Type Exponents Contraction Coefficients

s 0.4283083846 1.0000000000
s 0.9127866030 1.0000000000
s 1.4054659820 1.0000000000
s 2.7308004917 1.0000000000
s 10.8821914790 1.0000000000
s 27.4563627600 1.0000000000
p 0.7929884909 1.0000000000
p 2.5008596627 1.0000000000
p 5.9151957867 1.0000000000
p 15.3673109753 1.0000000000
d 0.8283650682 1.0000000000
d 3.3870444721 1.0000000000
d 10.9778901482 1.0000000000
f 3.1170471491 1.0000000000
f 6.8656878672 1.0000000000

Table A25. Parameters of the cc-TZVP auxiliary basis set of Neon.

Shell Type Exponents Contraction Coefficients

s 0.4218054070 1.0000000000
s 0.9220306716 1.0000000000
s 1.8281445142 1.0000000000
s 4.0122843245 1.0000000000
s 9.3557953735 1.0000000000
s 21.2448698799 1.0000000000
p 0.7819113369 1.0000000000
p 1.2774995450 1.0000000000
p 4.0929391223 1.0000000000
p 6.2303237413 1.0000000000
p 16.9114662817 1.0000000000
d 0.5593906817 1.0000000000
d 1.1997449519 1.0000000000
d 2.6389336208 1.0000000000
d 4.9434479195 1.0000000000
d 14.1003353302 1.0000000000
f 1.5593705359 1.0000000000
f 3.3654768720 1.0000000000
f 8.0058977735 1.0000000000
g 3.9789077704 1.0000000000
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Table A26. Parameters of the cc-DZVP auxiliary basis set of Argon.

Shell Type Exponents Contraction Coefficients

s 0.2021934524 1.0000000000
s 0.5951644570 1.0000000000
s 0.9713367515 1.0000000000
s 2.1348414404 1.0000000000
s 8.3055209987 1.0000000000
s 24.4838599910 1.0000000000
p 0.3806171008 1.0000000000
p 1.0795771281 1.0000000000
p 1.5490430664 1.0000000000
p 4.5409363372 1.0000000000
d 0.4407961817 1.0000000000
d 1.2550515264 1.0000000000
d 5.8159089208 1.0000000000
f 1.2170432674 1.0000000000
f 9.1164484253 1.0000000000

Table A27. Parameters of the cc-TZVP auxiliary basis set of Argon.

Shell Type Exponents Contraction Coefficients

s 0.2374198920 1.0000000000
s 0.4593140129 1.0000000000
s 0.8759707445 1.0000000000
s 1.6509598569 1.0000000000
s 3.0758784521 1.0000000000
s 5.6934758267 1.0000000000
p 0.2795695538 1.0000000000
p 0.5599111995 1.0000000000
p 1.1757695117 1.0000000000
p 2.6036947304 1.0000000000
p 5.6658077981 1.0000000000
d 0.2898716779 1.0000000000
d 0.6972610882 1.0000000000
d 1.2166500341 1.0000000000
d 2.4487532956 1.0000000000
d 5.4801182100 1.0000000000
f 0.6819926505 1.0000000000
f 1.4331910682 1.0000000000
f 3.3654529504 1.0000000000
g 1.4464903837 1.0000000000
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