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ABSTRACT

Laryngeal cancer is a frequent malignancy originating from the squamous 
vocal epithelium in a multi-stage fashion in response to environmental carcinogens. 
Although most cases can be cured by surgery and/or radiotherapy, advanced and 
relapsing disease is common, and biomarkers of such dismal cases are urgently 
needed. The cancer genome of laryngeal cancers was recently shown to feature a 
signature of aberrant nuclear factor (NF)-κB activation, but this finding has not been 
clinically exploited. We analyzed primary tumor samples of 96 well-documented and 
longitudinally followed patients covering the whole spectrum of laryngeal neoplasia, 
including 21 patients with benign laryngeal diseases, 15 patients with dysplasia, 43 
patients with early-stage carcinoma, and 17 patients with locally advanced carcinoma, 
for immunoreactivity of RelA, RelB, P50, and P52/P100, the main NF-κB subunits that 
activate transcription. Results were cross-examined with indices of tumor progression 
and survival. Interestingly, RelB expression increased with tumor stage, grade, and 
local extent. Moreover, patients displaying high RelB immunoreactivity exhibited 
statistically significantly poorer survival compared with patients featuring low levels 
of RelB expression (P = 0.018 by log-rank test). Using Cox regression analyses and 
tumor stage, local extent, grade and RelA/RelB immunoreactivity, we develop a new 
score that can independently predict survival of patients with laryngeal cancer. Hence 
we provide a simple and affordable NF-κB-based test to predict prognosis in laryngeal 
cancer.

INTRODUCTION

Laryngeal cancer is the most frequent head and 
neck squamous cell carcinoma (HNSCC) with constantly 

decreasing five-year survival rates [1, 2]. Although 
surgery and radiotherapy provide for long-term survival, 
a large fraction of newly diagnosed patients display 
already advanced disease, while a significant proportion 
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of treated patients will relapse post-therapy, culminating 
in half of the patients eventually succumbing to the 
disease [3]. Although the prospective identification 
of these patients that anticipate a poor prognosis is 
desirable, this currently relies on preoperative and 
surgical staging, while biomarkers of aggressive 
disease are unavailable, and risk factors implicated in 
the pathogenesis, such as tobacco smoking, alcohol 
consumption, asbestos, dietary factors, and viral 
infection are of limited clinical utility [4–8].

A recent multi-platform analysis of the comprehensive 
genomes of 279 HNSCCs that included 72 laryngeal 
carcinomas identified aberrant activation of nuclear 
factor (NF)-κΒ as critical in the pathogenesis and for the 
development of new therapies [9]. NF-κB is mainly activated 
by nuclear translocation and activation of transcription by 
one or more of four subunits: RelA, RelB, P50, and P52/
P100. These ubiquitous proteins form cytoplasmic homo- 
or heterodimers bound to inhibitors of NF-κB (ΙκΒ). Upon 
stimulation, IκB undergo phosphorylation by multiple IκB 
kinases (IKK), as well as ubiquitination and proteolytic 
degradation by the proteasome and other proteases, and 
release active NF-κB subunits which translocate to the 
nucleus and activate transcription [10]. There are two 
main pathways leading to NF-κB activation. The canonical 
pathway is mainly mediated by RelA/P50 and the non-
canonical or alternative by RelB/P52 dimers [10–12]. NF-
κB activation occurs after stimulation of benign cells by 
cytokines, bacteria or viruses, endotoxins, oxidative stress, 
irradiation, etc, but can be constitutive in cancer cells [13, 
14]. Oncogenic NF-κB activity has been documented in 
several human cancers [15–18] and has been shown to be 
functionally involved in HNSCC progression [19–22]. 
However, a simple and cheap NF-κB-based test clinically 
useful to identify laryngeal cancer patients that face a poor 
prognosis is missing.

We used simple immunohistochemistry to analyze 
the expression of the four main NF-κB subunits on 
serial sections of primary tumor samples from 96 well-
documented and longitudinally followed patients 
spanning the whole spectrum of laryngeal neoplasia. A 
simple, fast, and reproducible NF-κB scoring system that 
examines immunoreactivity intensity, extent, and nuclear 
localization was employed [23]. We show how using this 
clinically relevant approach, RelB expression was found to 
increase with tumor stage, grade, and local extent and to 
portend poor survival, establishing it as a useful biomarker 
of prognosis in laryngeal cancer.

RESULTS

A prospective cohort of laryngeal neoplasia

Ninety-six patients were prospectively enrolled 
in the study. All were Caucasian, 86 were male, and 
median (interquartile range) follow-up was 24 (16-

34) months. Twenty-one had benign laryngeal disease, 
15 had dysplasia, 43 had early-stage carcinoma, and 
17 had locally advanced carcinoma (Figure 1A). The 
clinical and pathologic features of the study patients 
are summarized in Table 1. Overall median survival 
was > 12 years (undefined by Kaplan-Meier analysis), 
while 94, 93, 79, and 57 patients survived to 1, 2, 5, 
and 10 years post-diagnosis, respectively (Figure 1B). 
There was no impact of gender, age, smoking, and 
alcohol intake on survival (Figure 1C-1F). As expected, 
patients with carcinoma, TNM7 stage II-IV disease, and 
medium/high grade histology displayed shorter survival 
(Figure 1G-1I).

Increased RelB and P50 expression in advanced 
laryngeal cancer

We next compared NF-κB subunit expression 
assessed by simple immunohistochemistry across our 
four study groups (clinicopathologic categories of 
benign laryngeal disease, dysplasia, biopsied carcinoma, 
and resected carcinoma). We found no significant 
differences in RelA and P100/P52 expression, but P50 
was significantly increased in biopsied carcinomas and 
RelB in resected ones (Figure 2). A similar pattern was 
evident when patients were subgrouped according to 
TNM7 stage, with no differences being evident for RelA 
and P100/P52 expression across tumor stages and with 
increased P50 and RelB expression in stage III patients 
compared with stage I/II patients (Figure 3). NF-κB 
subunit expression was also examined in respect to 
tumor grade, revealing no changes in RelA and P100/
P52 expression, but enhanced P50 and RelB expression 
with increasing tumor grade (Figure 4). These findings 
indicated that P50 and RelB expression increase with 
laryngeal cancer progression, as determined by tumor 
stage, grade, and local extent.

RelB expression predicts survival in laryngeal 
cancer

In order to define a potential role for NF-κB subunit 
expression in predicting survival, we dichotomized our 
study cohort into low and high expression groups by the 
median value for each subunit (always n = 48/group). 
Interestingly, we found no significant differences in 
survival between patient groups expressing different 
levels of RelA, P100/P52, and P50 (Figure 5A, 5C, 5D). 
However, patients with high RelB expression displayed 
statistically significant shorter survival compared with 
patients with low RelB expression (Figure 5B). We 
next entered all clinical variables and NF-κB subunit 
expression group (low or high for each different subunit) 
into Cox regression analysis using survival as the end-
point and the Waldman backward elimination method 
(Figure 6). Tumor grade emerged as the only independent 
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predictor of survival, suggesting that tumor stage, local 
extent necessitating intervention, and RelB expression 
are interconnected predictors of survival in laryngeal 
cancer. When tumor grade was eliminated, TNM7 stage 
emerged as an independent predictor of survival, and when 
TNM7 stage was eliminated, clinicopathologic category 
significantly predicted survival (Figure 6A; Table). We 
extracted proportional hazards ratios from these analyses 
and combined them with RelA and RelB scores (which 
marginally and significantly predicted survival in Kaplan-

Meier analyses shown in Figure 5) to form a proportional 
laryngeal cancer prognostic score (Figure 6A; equation). 
Based on the distribution of patients according to the 
new score, they were dichotomized using a cut-off of 
25 (Figure 6B). The newly devised laryngeal cancer 
prognostic score accurately and significantly predicted 
survival on Kaplan-Meier and Cox proportional hazards 
analyses, indicating that NF-κB subunit expression 
cooperates with clinical grade, stage, and extent to define 
survival (Figure 6C and 6D).

Figure 1: Study design and survival of 96 patients with benign and malignant laryngeal disease.  (A) Schematic representation of 
patient clinicopathologic categories and their distribution across the spectrum of laryngeal neoplasia. (B) Overall Kaplan-Meier survival 
plot with 95% confidence interval. (C-I) Kaplan-Meier survival estimates of patients stratified by gender (C; female: n = 10; male: n = 86), 
age (D; ≤65 years: n=49; >65 years: n=47), smoking (E; ≤100 pack years: n= 37; >100 pack years: n= 59), alcohol (F; no: n= 48; yes: n= 
48), clinicopathologic category (G; benign/dysplasia: n = 36; carcinoma: n = 60), TNM7 stage (H; I: n = 55; II-IV: n = 41), and tumor grade 
(I; none/low: n = 47; medium/high: n = 49). n, sample size; P, probability by log-rank test.
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RelB and P50 expression are linked with tumor 
progression in laryngeal cancer

In order to better define the association between 
clinicopathologic variables and NF-κB expression with 
tumor progression, we performed ROC analyses. As 
shown in Figure 7, increasing age, smoking exposure, and 
RelB and P50 expression were statistically significantly 
and positively associated with tumor extent, stage, and 
grade (Figure 7A-7C). However, we failed to identify such 
relationships for alcohol consumption and RelA and P100/
P52 expression (Figure 7A-7C).

DISCUSSION

Based on two previous reports that identified the 
cardinal significance of NF-κB signaling in HNSCC, 
we characterized the expression and subcellular 
localization of the main NF-κB pathway effector 
proteins in human laryngeal cancer. We employed simple 
immunohistochemistry and an own-devised scoring 
system to achieve clinically relevant methods and results. 
We studied a carefully designed patient cohort reflecting 
the whole spectrum of progressive laryngeal neoplasia. 

Importantly, we followed patients for several years over a 
total study period of 18 years to obtain robust and valuable 
survival data for a cancer type that has a relatively good 
prognosis. Our simple but robust approach identifies 
that NF-κB subunits, especially P50 and RelB are linked 
with laryngeal cancer progression. Moreover, that RelB 
assessed at the time of diagnosis can predict the survival 
of patients with this cancer type.

The prognosis of patients with larynx cancer is 
currently assessed using the TNM7 staging system, while 
risk factors such as smoking and viral infection cannot 
accurately predict survival [9, 24]. However, TNM staging 
in the post-laryngectomy era is anatomic imaging based, 
labor-intensive, and not always accurate, as some early-
stage tumors will relapse. To this end, a biologic marker 
of prognosis would be advantageous, especially one that 
is easily performed and quantified [25].

Although the importance of NF-κB signaling 
in HNSCC has been long suspected [26–29], it was 
recently independently established by a comprehensive 
study of 279 human HNSCC genomes and by a 
functional investigation of the two main NF-κB kinases 
[9, 19]. However, the findings of these two hallmark 
studies remained clinically unexploited. Here we show 

Table 1: Clinical-pathologic features of 96 patients with laryngeal cancer

Benign laryngeal disease Dysplasia Early-stage carcinoma Locally advanced 
carcinoma

Gender 
(male/female; n)

13/8 15/0 42/1 16/1

Age 
(years; range)

24-75 48-76 53-90 49-88

Smoking 
(never/ex/current; n)

3/8/10 0/1/14 0/5/38 2/2/13

Alcohol intake 
(no/yes; n)

16/5 3/12 21/22 8/9

Tumor grade (n)

Not specified 21 15 2 1

Low 0 0 4 4

Intermediate 0 0 26 5

High 0 0 11 7

TNM7 stage(n)

Not applicable 21 15 0 0

I 0 0 18 1

II 9 9 11 2

III 0 0 10 8

IV 0 0 4 6
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that RelB expression assessed by immunohistochemistry 
and a simple scoring system at the time of diagnosis 
can be used as a cheap and accurate bedside test to 
predict the prognosis of patients with laryngeal cancer. 
Moreover, that RelA and RelB expression can be 
combined with clinical variables to form a prognostic 
score that robustly predicts survival.

Overexpression of RelA and P50 has been 
previously reported in laryngeal carcinoma and has 
been linked to tumor progression, therapy response, 
and prognosis [26–31], but the potential role of RelB as 
a biomarker of progression and survival is still under 
investigation. In non-small cell lung cancer, a tumor type 
with high similarity to HNSCC, two previous studies 
identified similar roles for RelB as a potential biomarker 
of tumor progression and survival [23, 32]. In addition, 

a more recent study of head and neck squamous cell 
carcinoma proposed a combined effect of both IKKα and 
IKKβ on the nuclear localization of canonical RelA and 
alternative RelB and P100/P52 subunits [19]. This could 
provide a hint that alternative NF-κB activation stimulates 
altered intracellular and paracrine signaling from tumor 
cells, since RelA-P50 and RelB-P100/P52 complexes bind 
to NF-κB binding sites of different promoters [33]. The 
mechanism of the observed impact of RelB is unknown 
and is worth to be explored by future studies. A possible 
explanation for the predominant effects of RelB is nuclear 
membrane transporter chromosomal region maintenance/
exportin1 protein (CRM1) that is linked with tumor 
progression in different types of cancers [34]. CRM1 is 
known to export RelA from the nucleus, a mechanism 
that could explain the observed cytoplasmic localization 

Figure 2: Immunohistochemical detection of NF-κB subunit expression by clinicopathologic study group. (A) Data summary shown 
as raw data points and bars (median) with boxes (interquartile range) and whiskers (95% percentiles). (B) Representative images.n, sample 
size; P, overall probability by Kruskal-Wallis test. * and **: P< 0.05 and P< 0.01, respectively, for comparison with benign group by Dunn’s 
post- tests. #: P< 0.05 for comparison with dysplasia group by Dunn’s post-tests.
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of RelA in our samples and that could render RelB the 
only nuclear NF-κB transactivator in laryngeal and other 
cancers.

Identifying the link between P50 and RelB with 
laryngeal cancer progression could be mechanistically 
explained by the fact that RelB, which is known to form 
dimers with P100/P52, has been recently published to 
form heterodimers with P50 [35–36]. This phenomenon 
can also explain the findings of the present study, 
indicating that RelB acts by forming canonical side-by 
-side heterodimers with P50. Our identification of RelB 
activation is accompanied by the recent observation that 
the lymphotoxin-β receptor, whose activation results 
in alternative NF-κB activation, is overexpressed in 
a wide range of tumors [37]. Furthermore, NSCLC 
tumors, tightly linked to laryngeal cancer by cellular 
origin and histology, have been reported to express 
another activator of the alternative NF-κB pathway, 
CD40 and its ligand, CD154, providing another possible 

molecular mechanism for alternative NF-κB activation 
[38]. Additional reports identified that elevated nuclear 
RelB in cancer cells promotes tumorigenicity and leads 
to elevated plasma interleukin-8 levels [39]. Consistent 
with our results, interleukin-8 is constitutively expressed 
in many metastatic cancers including HNSCC.

The proposed role for RelB in laryngeal cancer 
is in line with other mechanistic studies that indicate 
it to be a promoter of oncogenic transcription and 
stemness in tumor initiating cells of colon cancers, 
gliomas, lymphomas, and myelomas [40–43]. Future 
studies designed to prospectively resample patients 
with laryngeal cancer after treatment could validate 
our findings and would assess the value of RelB as a 
potential biomarker of treatment response. In addition 
to their clinical implications, our findings highlight 
the potential importance of non-canonical NF-κB 
signaling in cancer. Since most research has focused 
on the functions of components of the classical NF-κB 

Figure 3: NF-κB subunit expression by TNM7 stage. (A) Data summary shown as raw data points and bars (median) with boxes 
(interquartile range) and whiskers (95% percentiles). (B) Representative images.n, sample size; P, overall probability by Kruskal-Wallis 
test. **: P< 0.01 for comparison with benign group by Dunn’s post-tests.
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Figure 4: Immunohistochemical detection of NF-κB subunit expression by tumor grade. Data summary shown as raw data points and 
bars (median) with boxes (interquartile range) and whiskers (95% percentiles). n = 39, 8, 31, and 18, respectively, for none (not applicable 
or specified), low, intermediate, and high grade groups. P, overall probability by Kruskal-Wallis test. *: P< 0.05 for comparison with benign 
group by Dunn’s post-tests.

Figure 5: Survival by NF-κB subunit expression. Shown are Kaplan-Meier survival estimates of patients dichotomized by median NF-
κB subunit expression score (n = 48/group for all groups and graphs). n, sample size; P, probability by log-rank test.
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Figure 6: Cox regression analysis of the impact of clinical variables, risk factors, and NF-κB subunit expression on survival. (A) 
Risk ratios (RR) with 95% confidence intervals (CI) and probability values (P) of the of the independent impact of the listed variables on 
survival. Note that successive variable only emerged as important after elimination of the preceeding variables. Equation showing the proposed 
laryngeal cancer prognostic score. (B) Frequency distribution of study cohort according to the newly devised score showing the two groupings 
with low (0-25; n = 70) and high (> 25; n = 26) scores. (C) Kaplan-Meier survival estimates of laryngeal cancer patients with low (0-25) and 
high (> 25) scores. P, probability by log-rank test. (D) Cox regression survival estimates of laryngeal cancer patients with low (0-25) and high 
(> 25) scores. P, probability by proportional hazards model. RR, Risk ratio of high versus low score. CI, 95% confidence interval.

Figure 7: Receiver-operator curve (ROC) analysis of the impact of clinical variables, risk factors, and NF-κB subunit expression on tumor 
histology (A), stage (B), and progression (C). AUC, area under curve; P, probability.
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activation pathway, such as P50 and RelA, our findings, 
along with published functional studies [44, 45], 
underscore the necessity of further research into non-
canonical NF-κB functions in the various cancer types.

In summary, our findings support that, pending 
further clinical validation, immunohistochemical 
assessment of RelB expression at the time of diagnosis 
of laryngeal cancer is intimately linked with tumor 
progression and can accurately predict prognosis.

MATERIALS AND METHODS

Patients

Ninety-six patients who underwent 
microlaryngoscopy with diagnostic intent or laryngectomy 
with curative intent (before this technique was abandoned 
in 2008) between January 2001 and December 2015 at the 
University Hospital of Patras, Greece were prospectively 
enrolled in the study. The study’s observational protocol 
was conducted according to the Declaration of Helsinki, 
was approved by the Hospital Ethics Committee, and 
all patients gave written informed consent. Full clinical 
and pathologic data were recorded including age, gender, 
risk factors, histology, grade, and TNM7 stage. All 
patients were followed till death (actual events) or study 
conclusion (censored events) for overall survival. None 
of the patients received any anti-cancer drug treatment 
or irradiation before biopsy or laryngectomy, according 
to the best international clinical practice guidelines and 
recommendations. Multiple diagnostic tissue samples 
(3-5/patient) were formalin-fixed and paraffin-embedded 
and multiple hematoxylin and eosin-stained sections 
were evaluated by a certified pathologist (HP). Patients 
were classified into four clinicopathologic categories 
spanning the full spectrum of laryngeal neoplasia: 
benign (microlaryngoscopy-obtained benign nodules, 
chronic inflammation, polyps, metaplasia, etc.), dysplasia 
(microlaryngoscopy-obtained samples with mild, 
moderate, and severe dysplasia), early-stage carcinoma 
(microlaryngoscopy-obtained carcinoma biopsies), and 
locally advanced carcinoma (laryngectomy samples from 
patients with locally advanced carcinomas). All patients 
were staged according to the seventh edition of the 
American Joint Committee on Cancer TNM classification 
[24].

Immunohistochemistry

Tissue blocks were cut into 4 μm-thick sections, 
placed onto polylysine-coated glass slides, deparaffinized 
by ethanol gradient, rehydrated, and boiled for 10 min 
in antigen retrieval solution (0.1 M sodium citrate; pH 
= 6.0). Endogenous peroxidase activity was inhibited 
using 3% H2O2 and non-specific antibody-protein 
binding was prevented using 3% bovine-serum albumin-

containing Tris-buffered saline. The following primary 
antibodies and dilutions were used overnight at 4°C: 
anti-P50 (sc-114 rabbit polyclonal IgG; 1/150; Santa 
Cruz Biotechnology, Santa Cruz, CA), anti-P100/
P52 (ab31409 rabbit polyclonal IgG; 1/150; Abcam, 
Cambridge, UK), anti-RelA (sc-8008 mouse monoclonal 
IgG; 1/200; Santa Cruz), and anti-RelB (sc-226 rabbit 
polyclonal IgG; 1/400; Santa Cruz). Detection of primary 
antibodies was performed using a horse radish peroxidase-
conjugated polymer according to the manufacturer’s 
instructions (EnVision; Dako, Glostrup, Denmark) and 
diaminobenzidine as the chromogenic substrate. Sections 
were counterstained with hematoxylin, dehydrated, and 
mounted using Entellan (Merck Millipore, Darmstadt, 
Germany). For isotype controls, the primary antibody was 
omitted. Normal tonsil tissue was employed as positive 
control. Immunoreactivity was scored by three blinded 
investigators (IG, IL, and HP) and consensus was sought 
in ambiguous cases by co-observation. In order to have 
a more complete description of immunoreactivity for 
further statistical evaluation we first scored NF-κB subunit 
cytoplasmic and nuclear immunoreactivity separately. The 
intensity of cytoplasmic or nuclear immunoreactivity was 
scored as 0 for negative immunoreactivity, 1 for weak, 2 
for moderate, and 3 for strong. The extent of cytoplasmic 
or nuclear immunoreactivity was scored as 0 for < 10% 
positive cells, 1 for 10-25% positive cells, 2 for 25-50% 
positive cells, 3 for 50-75% positive cells and 4 for > 75% 
positive cells. Nuclear distribution was scored as 0 when 
nuclear intensity * nuclear extent equaled 0; 1 for nuclear 
intensity * nuclear extent = 1-2; 2 for nuclear intensity * 
nuclear extent = 3-6 and 3 for nuclear intensity * nuclear 
extent = 6-16. Finally, the total NF-κB subunit score 
was calculated as (cytoplasmic intensity + cytoplasmic 
extent) * nuclear distribution. NF-κB subunit scores were 
further dichotomized into low and high expression by 
median values of the whole cohort. Images were taken 
using an upright AxioLab.A1 microscope connected to an 
AxioCamERc 5s camera (Zeiss, Jena, Germany).

Statistics

The study was designed to include 112 patients 
across all four clinicopathologic patient categories in 
order to detect large biologic effect sizes (ρ = 0.4) with 
acceptable α and β errors of 0.05. However, a posteriori 
analyses including the 96 patients recruited at study 
conclusion indicated that statistical significance for 
primary end-points was reached with > 90% power. 
Power analyses were done using G*Power [46]. Survival 
analyses were done using Kaplan-Meier estimates and 
Log-rank (Mantel-Cox) tests. NF-κB subunit scores were 
not normally distributed, as tested by the Kolmogorov-
Smirnov test (P < 0.05), and are presented as raw data 
points, bars (median) with boxes (interquartile range) and 
whiskers (95% percentiles). Matched scores for different 
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NF-κB subunits of the same tumors were compared by 
Friedman’s test with Dunn’s post-tests. Unpaired scores 
of a given NF-κB subunit between groups of patients were 
compared by Kruskal-Wallis test with Dunn’s post-tests. 
Probability (P) values less than 0.05 were considered 
significant. Multivariate Cox regression survival analyses 
were done using backward (Waldman) elimination. 
Statistical analyses were performed using Prism v5.0.0 
(GraphPad, San Diego, CA) and the Statistical Package for 
the Social Sciences v24 (IBM SPSS Statistics, Chicago, 
IL, USA).
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