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ABSTRACT: Photocatalytic water splitting can produce hydro-
gen in an environmentally friendly way and provide alternative
energy sources to reduce global carbon emissions. Recently,
monolayer fullerene networks have been successfully synthesized
[Hou et al. Nature2022, 606, 507], offering new material
candidates for photocatalysis because of their large surface area
with abundant active sites, feasibility to be combined with other
2D materials to form heterojunctions, and the C60 cages for
potential hydrogen storage. However, efficient photocatalysts need
a combination of a suitable band gap and appropriate positions of
the band edges with sufficient driving force for water splitting. In
this study, I employ semilocal density functional theory and hybrid
functional calculations to investigate the electronic structures of monolayer fullerene networks. I find that only the weakly screened
hybrid functional, combined with time-dependent Hartree−Fock calculations to include the exciton binding energy, can reproduce
the experimentally obtained optical band gap of monolayer C60. All the phases of monolayer fullerene networks have suitable band
gaps with high carrier mobility and appropriate band edges to thermodynamically drive overall water splitting. In addition, the
optical properties of monolayer C60 are studied, and different phases of fullerene networks exhibit distinct absorption and
recombination behavior, providing unique advantages either as an electron acceptor or as an electron donor in photocatalysis.

■ INTRODUCTION
The energy consumption of fossil fuels is the main source of
global carbon emissions.1 As an alternative, hydrogen can be
burnt in the presence of oxygen and produce only water,
supporting mitigation of CO2 emissions. Photocatalysis can
decompose water into hydrogen and oxygen using light,
providing a low-cost approach for the green production of
hydrogen. Photocatalytic water splitting has been extensively
studied since the discovery of electrochemical photolysis of
water in TiO2 in 1972.2−11 However, due to the wide band gap
of 3.0−3.2 eV in TiO2, only the ultraviolet part of the solar
spectrum can be harnessed. To maximize the photocatalytic
efficiency, a water-splitting material needs to (i) absorb the light
effectively to generate enough electron−hole pairs; (ii) separate
the generated electrons and holes on the surface; and (iii)
overcome the potential barrier of the reaction. For (i) and (iii), a
compromise of the band gap is needed to harness the photon
energy effectively while fulfilling the requirements of the band
edges to facilitate the redox reaction of water. As a result, an
optimal band gap around 2 eV is required, and the band edges
must span the redox potential.12−14 For (ii), a type-II band
alignment can spontaneously separate the electrons and holes.
Based on these requirements, a variety of candidate materials
have been proposed for efficient water splitting.15−30 Among all
the candidates, carbon nanomaterials exhibit high physical
stability and rich redox chemistry.31,32 In particular, fullerene,

the cage structure of C60,
33 displays high quantum efficiency in

photocatalytic reactions because of their large surface area,
abundant micropores, increased surface active sites, and efficient
electron transport properties.34−37 In photocatalysis, C60 can
enhance the photocatalytic activity via different mechanisms: it
can work as an electron acceptor owing to rapid carrier
separation,36,38−40 or as an energy transfer mediator,41 or as an
electron donor due to high photosensitivity.42 In addition, for
composite materials, the introduction of fullerene results in
better crystallization by reducing the defects37 and can also
improve the stability of the composites,43,44 which further
enhance the photocatalytic efficiency. Most interestingly, C60
itself is a promising hydrogen storage material,45−49 and
photocatalytic water splitting using fullerene provides a
convenient approach to produce and store hydrogen at the
same time.
Recently, a 2D material composed of covalently bonded

fullerene network structures has been synthesized, with two
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configurations obtained: a few-layer quasi-tetragonal phase
(qTP) and a monolayer quasi-hexagonal phase (qHP).50 The
various structural phases of 2D fullerene networks can be
combined with other 2Dmaterials to form type-II van der Waals
heterostructures,51−53 which can efficiently separate carriers
between individual layers. In addition, the band alignment in
these heterostructures can be further controlled by external
strain because of the mechanical flexibility of 2D materials.54−56

Compared to heterostructures using C60 molecules where the
low C60 content is not periodically bounded at the edge of the
other 2D material,57 heterostructures using monolayer poly-
metric fullerene has a smooth microscopic surface with uniform
periodic C60 networks, which provides higher crystallinity with
higher C60 concentrations and consequently increases the
photocatalytic activity. Compared to other 2D materials,58−69

monolayer C60 has larger surface area with more active sites due
to the quasi-0D network structures of C60 cages. Additionally,
monolayer C60 exhibits good thermodynamic stability and high
carrier mobility.50 All these physical/chemical properties render
monolayer fullerene networks a promising candidate for
photocatalytic water splitting. However, all theoretical calcu-
lations underestimate the band gap of monolayer C60 by at least
10%,54,55,70 and a correct description of the band structures is
the prerequisite for exploring the band edge positions for water
splitting or the optical absorption for photocatalysis.
In this paper, the electronic structures of monolayer qTP and

qHP fullerene networks are investigated using semilocal density
functional theory (DFT) and hybrid functional calculations. By
examining the band gap and exciton binding energy, I find that
the electronic structures and optical properties of monolayer C60
can only be described correctly by a weakly screened hybrid
functional. The band gaps of monolayer fullerene are around
1.67−1.88 eV, and the band edge positions of qTP C60 provide
sufficient driving forces for overall water splitting. In addition,
monolayer fullerene networks possess high carrier mobility that
can effectively transfer the photoexcited electrons and holes.
Furthermore, the carrier recombination in qTP C60 is sup-
pressed by weak optical transitions, leading to efficient carrier
separation as an electron acceptor. On the other hand, the strong
optical absorption in qHP C60 can provide a large amount of
electrons for hydrogen evolution, making it promising as an
electron donor. These results indicate that monolayer fullerene
networks are promising as efficient photocatalysts for overall
water splitting.

■ METHODS
All crystal structures of monolayer fullerene networks are optimized
using the PBEsol functional71 as implemented in VASP.72,73 A plane-
wave cutoff of 800 eV is used with a k-mesh of 5 × 5 and 3 × 5 for qTP
and qHP C60 respectively. During the structural relaxation, an energy
convergence criterion of 10−6 eV and a force convergence criterion of
10−2 eV/Å are enforced. Tomimic the 2Dmonolayers with 3D periodic
boundary conditions, an interlayer vacuum spacing larger than 17 Å is
used to eliminate interactions between adjacent unit cells along the c
direction.

The electronic structures of qTP and qHP C60 are calculated using
the screened hybrid functional HSE.74−77 Using the HSE wave
functions, the partial (band decomposed) charge density is calculated
for the top valence and bottom conduction bands at selected k-points.
The transport properties are calculated based on theHSE eigenenergies
and eigenstates in a k-mesh of 8 × 8 (5 × 8) for qTP (qHP) C60, which
is further interpolated using an interpolation factor of 100. The
scattering rates for acoustic deformation potential and ionized impurity
scattering are calculated using the AMSET package.78 The deformation
potential is calculated for the anisotropically contracted (−0.5%) and
expanded (+0.5%) lattice, and the elastic tensor coefficients (including
ionic relaxations) are computed using the finite differences method.79,80

For ionized impurity scattering, the static dielectric constant is
calculated from density functional perturbation theory.81

When computing the optical properties, the thickness-independent
absorbance A(ω) is calculated from the imaginary part of the dielectric
function ϵ2(ω)82−84

=A
c

L( ) ( )2 (1)

where ω is the photon frequency, c is the speed of light, and L is the
distance between the 2D sheets. The absorbance in the independent
particle picture81 is calculated using the hybrid-functional electronic
structures. To include the excitonic effects, time-dependent Hartree−
Fock (TDHF) calculations are performed on top of the HSE
eigenenergies and eigenstates using the Casida equation that includes
couplings among the group of resonant/antiresonant two-orbital
states.85 The exciton eigenenergies and their corresponding oscillator
strengths can be obtained directly from the Casida equation.85 The
exciton binding energy is then computed as the difference between the
eigenenergy in the independent particle picture and the exciton
eigenenergy. The Tamm−Dancoff approximation is used, as the exciton
eigenenergies calculated within and beyond this approximation86 only
have a difference smaller than 5 meV. In 2D materials, the exciton
absorption spectrum calculated from TDHF agrees qualitatively well
with the results obtained from the Bethe−Salpeter equation (BSE) on
top of the GW calculations,87 and TDHF is computationally much less
expensive than GW + BSE, especially for large systems such as
monolayer fullerene networks. A k-mesh of 8 × 8 (5 × 8) is used for
qTP (qHP) C60, with the highest eight (16) valence bands and the
lowest eight (16) conduction bands included as the basis, converging
the exciton eigenenergy within 1 meV.

Figure 1. Crystal structures of monolayer (a) qTP1, (b) qTP2, and (c) qHP C60 from top and front views.
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To compute the thermodynamics of water adsorption and redox
reactions, a supercell of 2 × 2 and 1 × 2 is used for qTP and qHP C60
respectively, with an electronic k-point grid of 3 × 3. Both the lattice
constants and internal atomic coordination are fully relaxed for all the
atoms. For hydrogen reduction reaction, geometry optimization always
results in top-site adsorption. The lowest energy intermediates are
evaluated by comparing hydrogen adsorption on all the symmetry
irreducible carbon atoms. The thermal corrections at room temper-
ature, including zero-point energy, entropy, and internal thermal
energy, are calculated using VASPKIT.88 The vibrational frequencies are
computed for both the adsorbed hydrogen atoms and the neighboring
carbon atoms within a radius of 2.5 Å.

■ RESULTS AND DISCUSSION
Crystal Structures. The crystal structures of fully relaxed

fullerene networks are present in Figure 1. After geometry
optimization, two quasi-tetragonal phases are obtained. One
phase, denoted as qTP1, is obtained by structural relaxation
starting from the quasi-tetragonal phase consisting of only
carbon atoms. The other quasi-tetragonal phase, denoted as
qTP2, is obtained by a two-step geometry optimization, which
starts with the experimentally reported qTP Mg2C60 and then
removes the Mg ions before the second relaxation. The two-step
structural relaxation is to mimic the experimental procedure to
remove the charged ions introduced during synthesis by
treatment with hydrogen peroxide to obtain clean single crystals
of the carbon polymers.50,89

Monolayer qTP1 C60 crystallizes in space group P2/m (No.
10) with lattice parameters a = 10.175 Å and b = 9.059 Å, in
which each C60 is linked by two neighboring C60 cages through
two [2 + 2] cycloaddition bonds along the b direction, forming
1D chains of C60 cluster cages in Figure 1a. The shortest
interchain distance between the nearest carbon atoms is 3.065 Å
along the a direction, which is much longer than the C−C single
bonds. The interchain distance is shortened merely by 0.172 Å
when including the van der Waals interactions;90 therefore, the
van der Waal forces are neglected in qTP1 C60 (for the role of
van der Waals forces in the lattice constants of all three phases,
see the Supporting Information). The space group of qTP2 C60
is Pmmm (No. 47), with lattice parameters a = 9.097 Å and b =
9.001 Å. Similar to qTP1 C60, the in-plane [2 + 2] cycloaddition
bonds connect neighboring C60 cages along the b direction in
qTP2 C60. The difference between qTP1 and qTP2 C60 is along
the a direction: no bond is formed between neighboring C60
chains in qTP1 fullerene along the a direction, whereas each C60
cage of qTP2 fullerene connects two neighboring cages along
that direction through two out-of-plane [2 + 2] cycloaddition
bonds, as demonstrated in Figure 1b. Monolayer qHP C60 has a
space group of Pc (No. 7) with lattice parameters a = 15.848 Å
and b = 9.131 Å, where each C60 is connected to six neighboring
C60 cages with four C−C single bonds along the diagonal lines of
the rectangular unit cell and two [2 + 2] cycloaddition bonds
along the b direction, as demonstrated in Figure 1c. The
calculated lattice constants agree well with previous calcu-
lations.54 The dynamic stability of all three phases is evaluated in
the Supporting Information. In addition, the thermal stability of
monolayer qTP and qHP C60 has been confirmed using
molecular dynamics simulations in a previous study, showing
that both qTP and qHP C60 monolayers can remain stable at
temperatures near 800 K,91 which is in line with the
experimental result that monolayer qHP C60 does not
decompose at 600 K.50

Appropriate Screening Parameter. To gain insight into
the appropriate level of theory to correctly describe the

electronic structures and optical properties of the C60
monolayers, the electronic and optical band gaps of monolayer
qHP C60, as well as the exciton binding energy, are calculated
using the hybrid functional with different screening parameters
μ,77,92−94 and then compared with the experimentally
determined value. In 2D materials, the excitonic effects are
stronger than their bulk counterparts due to weaker dielectric
screening67,87,95 (for dielectric screening in bulk and monolayer
polymeric C60, see the Supporting Information). To include
exciton binding energy, time-dependent Hartree−Fock calcu-
lations are performed on top of different hybrid functionals,
which provides a qualitatively consistent exciton absorption
spectrum compared to GW + BSE and is computationally much
less expensive.87

Figure 2 summarizes the electronic band gap Eg
ele, optical band

gap Eg
opt, and exciton binding energy Eb of qHP C60 computed

from different screening parameters μ (for similar results on qTP
C60, see the Supporting Information). A screening parameter
larger than 0.15 Å−1 not only severely underestimates the
electronic band gap Eg

ele but also predicts zero exciton binding
energy. For example, the HSEsol (the PBEsol counterpart of the
widely used HSE06 with μ = 0.2 Å−1) hybrid functional predicts
an electronic band gap of 1.44 eV, and the HSEsol band gap is
10% narrower compared to the measured gap of 1.6 eV, which
can be attributed to an increase in the dielectric screening of
HSEsol.96 Therefore, the HSEsol hybrid functional is
inadequate to describe the electronic and optical properties of
monolayer fullerene networks, as it tends to overestimate the
screening effects in low-dimensional systems and consequently
underestimate their band gap and exciton binding energy.87,97,98

This is unsurprising because in quasi-0D C60 monolayers the
screening effects are much weaker than most 2D materials.
Among all the screening parameters below 0.15 Å−1, a

screening parameter of 0.11 Å−1 yields an exciton binding energy
Eb of 0.05 eV, which is in good agreement with the experimental
value.50 The screening length is in excellent agreement with the
inverse of the distance between two nearest neighboring
buckyballs (∼9.1 Å). In addition, it predicts an electronic
band gap of 1.67 eV compared to the measured Eg

ele of 1.6 eV,
while obtaining a reasonable Eg

opt of 1.62 eV compared to the
experimentally obtained 1.55 eV. The tiny discrepancy (<4.5%)
may come from temperature effects such as electron−phonon
coupling,99−103 which are not included in the calculations.
Further decreasing the dielectric screening results in an

Figure 2. Electronic and optical band gaps, as well as the corresponding
exciton binding energy, of monolayer qHPC60 calculated from different
screening parameters.
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overestimation of both the band gaps and the binding energy.
Thus, a correct description of the band structures and optical
properties can only be obtained by using the weakly screened
hybrid functional with μ = 0.11 Å−1 and TDHF on top of the
hybrid functional, respectively.

Electronic Structures. Using the weakly screened hybrid
functional with μ = 0.11 Å−1, the electronic structures are
predicted (for band structures calculated from PBEsol and
HSEsol, see the Supporting Information). All three phases have
a 2D rectangular Brillouin zone (for details, see the Supporting
Information), with high-symmetry points Γ (0, 0), X (1/2, 0), S
(1/2, 1/2), and Y (0, 1/2). Figure 3a shows the band structures
of qTP1 C60. The obtained band gap of 1.88 eV is indirect, with
the valence band maximum (VBM) at the Y high-symmetry
point and the conduction band minimum (CBM) at X. The

direct transition energies at X and Y are 2.00 and 1.89 eV
respectively.
To visualize the band edges, the partial charge density for the

top valence and bottom conduction bands at X and Y is shown in
Figure 3d. The lowest conduction band at X (CB1) is more
dispersive, and its charge density is more diffuse along both the a
and b directions. The highest valence band is flat along Γ − X,
and as expected, the corresponding charge density of the top
valence band at X (VB1) is isolated within separated C60 cages.
Similarly, the top valence states and lowest conduction states at
Y, denoted as VB2 and CB2 respectively, are centered around
each single C60 cage, and such molecular-like character is
consistent with their flat bands.
For qTP2 C60, the weakly screened hybrid functional predicts

an indirect band gap of 1.74 eV with the VBM at Γ and the CBM
at Y, while the direct transition energy at Γ is 1.95 eV. As shown

Figure 3. Electronic structures of (a) qTP1, (b) qTP2, and (c) qHP C60 calculated with weakly screened hybrid functional (μ = 0.11 Å−1), as well as
their corresponding partial charge density of the top valence states and the lowest conduction states in (d)−(f). The default isosurface level is used
(0.009 and 0.005 Å−3 for qTP and qHP C60 respectively), as implemented in VESTA.104

Figure 4. Mobility of monolayer (a) qTP1, (b) qTP2, and (c) qHP C60 at 300 K as a function of carrier concentration.
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in Figure 3b, the band structures of qTP2 C60 show distinct
differences from qTP1 C60, despite the fact that their lattice
parameters are similar. In addition, the charge density of qTP2
C60 changes significantly compared to that of qTP1 C60. Because
the space group of qTP2 C60 (Pmmm) has more symmetry
operations than that of qTP1 C60 (P2/m), their partial charge
density in Figure 3e is more symmetric than that of qTP1 C60.
Interestingly, although the lowest conduction band between Γ
and Y has an energy difference of 0.21 eV, their corresponding
partial charge density (denoted as CB1 and CB2 respectively)
exhibits no significant difference. In contrast, for the highest
valence band, although the energy difference between Γ and S is
lower than 0.7meV, their partial charge density (denoted as VB1
and VB2 respectively) is distinct from each other.
Figure 3c depicts the band structures of monolayer qHP C60.

Monolayer qHP C60 possesses a direct band gap at Γ. The CBM
of monolayer qHP C60 exhibits flat-band features, and its charge
density is molecular-like, as shown in Figure 3f. On the other
hand, the charge of the more dispersive VBM is distributed in
the entire Brillouin zone, connecting neighboring C60 cages via
both the C−C single bonds and the [2 + 2] cycloaddition bonds.
Therefore, holes are expected to diffuse more effectively in qHP
C60.

Carrier Mobilities. To confirm the transport properties, the
carrier mobilities of all three phases at 300 K are calculated as a
function of carrier concentration. As shown in Figure 4, the
mobilities for both electrons and holes decrease with increasing
carrier concentration in all three phases, as ionized impurity
scattering becomes stronger. Although the experimental carrier
concentration is unknown, the calculated electron mobility
along a, 1.7−4.8 cm2/(V s) at low carrier concentrations (<109

cm−2), is in perfect agreement with the measured electron
mobility.50

The obtained electron mobility for qTP1 C60 in Figure 4a is
higher than the hole mobility in a wide doping range, consistent
with the more dispersive CB1 in Figure 3a. For both electrons
and holes, the mobility along the 1D chain (b direction) is higher
than that perpendicular to the chain (a direction). For qTP2 C60
in Figure 4b, the electron mobility along a is the highest. This is
unsuprising because the CB1 alongΓ−X andCB2 along S−Y are
more dispersive than other bands in Figure 3b and both states
along a in Figure 3e tend to overlap across the vertical [2 + 2]
cycloaddition bonds. For qHP C60, the hole mobilities along
both directions are much higher than the electron mobilities, as
shown in Figure 4c, which is in line with the dispersive VBM at Γ
along both directions in Figure 3c and the corresponding diffuse
charge density in Figure 3f. The electron mobility along a is
much lower than that along b because the CBM along Γ−X is
much flatter than that along Y−Γ. Despite that, even the lower
bound of themobility is still relatively high, as the nonlocalized π
bonds in C60 allow efficient carrier transfer.31

Optical Absorption. Having established that all three
fullerene networks can separate the carriers effectively in 2D,
their absorption spectra for photocatalysis are then investigated.
The thickness-independent absorbance A(ω) of monolayer
fullerene networks is first calculated by using the weakly
screened hybrid functional with μ = 0.11 Å−1, corresponding to
the optical absorption of the hybrid-functional electronic
structures in the independent particle picture. The absorbance
of all three phases is gathered in Figure 5a−c. Within the
independent particle approximation, the low-energy absorbance
of both qTP1 and qTP2 C60 is strongly anisotropic along the a

Figure 5.Absorbance of monolayer (a) qTP1, (b) qTP2, and (c) qHPC60 calculated withHSE (μ = 0.11 Å−1) and TDHF on top of HSE, as well as the
binding energy Eb of the low-energy excitons in (d)−(f). The radius of the bright excitons indicates the oscillator strength. The larger the radius, the
higher the oscillator strength.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c08054
J. Am. Chem. Soc. 2022, 144, 19921−19931

19925

https://pubs.acs.org/doi/10.1021/jacs.2c08054?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c08054?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c08054?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c08054?fig=fig5&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c08054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and b directions, whereas the first absorbance peaks of qHP C60
have similar energies along both directions. Moreover, the
indirect band gaps of qTP1 and qTP2 C60, along with the low
optical transition probabilities between the highest valence and
lowest conduction bands, give rise to low optical absorbance
below 2 eV.
Beyond the independent particle approximation, the

absorbance is evaluated by HSE + TDHF to assess the excitonic
contributions, as demonstrated by the green and cyan curves in
Figure 5a−c. In monolayer qTP1 C60, the inclusion of excitonic
effects leads to a much weaker optical absorbance, as shown in
Figure 5a. This is because the low-energy excitons are mostly
dark and the optical transitions involved in these dark excitons
have zero oscillator strengths, as demonstrated in Figure 5d. For
monolayer qTP2 C60, although the oscillator strengths in the
low-energy range are mostly zero in Figure 5e, the exciton
absorbance peak in monolayer qTP2 C60 is only moderately
weaker than the independent particle absorbance peak in Figure
5b. Compared to its qTP counterparts, much stronger exciton
absorbance peaks are observed in monolayer qHP C60, as shown
in Figure 5c. The low-energy excitons in monolayer qHP C60 are
mostly bright with binding energies around 5−50 meV, as
present in Figure 5f. Therefore, strong exciton absorbance is
induced in qHP C60, and in particular, the absorbance around 2
eV (0.20−0.32) is even stronger than those in zero band gap
graphene82,105 and in large band gap photocatalysts such as
monolayer GaSe106 and blue phosphorus/Mg(OH)2 van der
Waals heterostructures,107 which makes qHP C60 a promising
photocatalytic material to effectively utilize the solar spectrum
around 2 eV.

Band Alignment. The exciton absorbance peaks in
monolayer qHP C60 networks around 2 eV can maximize the
solar energy absorption for water splitting.12,14 For an overall
water splitting reaction, the energy levels of the CBM and VBM
must straddle the redox potentials of water. In other words, the
CBM (with respect to the vacuum level) should be higher than
the hydrogen evolution potential of −4.44 + pH × 0.059 eV,
while the VBM should be lower than the oxygen evolution
potential of −5.67 + pH × 0.059 eV.65,69,108 To determine the
band edge positions of qTP1, qTP2, and qHP C60 monolayers,
the vacuum levels of all three phases are calculated by averaging
the electrostatic potential along the c axis. Figure 6a summarizes
the HSE band alignment of all three C60 monolayers with μ =
0.11 Å−1 (for band alignment calculated with PBEsol, HSEsol
and unscreened hybrid functional, see the Supporting
Information). In monolayer qTP1 C60, the CBM is 0.35 eV

higher than the reduction reaction potential of H2/H+ at pH = 0,
which is suitable for water reduction.Moreover, the VBM is 0.30
eV lower than the oxidation potential of O2/H2O at pH = 0,
which is suitable for water oxidation. Similarly, the CBM of
qTP2 C60 is 0.29 eV higher than the reduction potential and the
VBM is 0.22 eV lower than the oxidation potential. Regarding
monolayer qHP C60, the CBM lies 0.26 eV above the reduction
potential and the VBM is 0.18 eV below the oxidation potential.
Including the exciton binding energy leads to band edge shifts
toward the redox potential by 0.06 eV for qTP1 C60, while the
band edge shifts in qTP2 and qHP C60 are about 0.02 eV.
Therefore, all three C60 monolayers exhibit large band gaps with
appropriate band edge positions for overall photocatalytic water
splitting at pH = 0. Increasing the pH upshifts the redox
potentials of water, and at pH = 6, all three phases of monolayer
C60 are no longer suitable for water reduction.
The lattice parameters of 3 × 1 qTP1 C60 and 2 × 1 qHP C60

are matched within 3.8% for a and 0.8% for b respectively.
Therefore, monolayer qTP1 and qHP C60 can be combined to
form qTP1/qHP heterostructures. To identify the type of the
heterostructures for device applications, the band alignment at
the qTP1/qHP interface is investigated. Compared to qTP1
C60, qHP C60 has a consistently smaller band gap, as shown in
Figure 6a. The offset between the conduction band edges of
qTP1 and qHPC60 monolayers is 0.09 eV with the CBM of qHP
lower than that of qTP1, and a higher VBM of qHP relative to
qTP1 leads to a valence band discontinuity of 0.12 eV.
Consequently, a type-I (straddling gap) band alignment exists
between qTP1 and qHP C60. Geometry optimization of the
qTP1/qHP heterostructures results in 3.5% strain along a and
0.3% strain along b for qTP1 C60, while compresses the qHP C60
lattice by 0.4% and 0.5% along a and b respectively (for strain
effects on band alignment of individual monolayers, see the
Supporting Information). Despite that, the band alignment is
still type-I, as demonstrated in Figure 6b. The type-I
heterostructures with qTP1 and qHP C60 can be utilized in
optical devices such as light-emitting diodes owing to high
emission efficiency,109 or in lasers because of efficient
recombination of spatially confined electrons and holes.51 As
confirmed by the partial charge density of CBM and VBM in
Figure 6c, these states are confined in monolayer qHP C60.

Thermodynamic Driving Force for Water Splitting.
The thermodynamics of water adsorption on monolayer
fullerene networks are investigated by calculating the total
energy difference between the H2O-adsorbed C60 and individual
systems (i.e., pristine monolayer C60 and isolated H2O

Figure 6. (a) Band alignment of qTP1, qTP2, and qHP C60 monolayers calculated with HSE (μ = 0.11 Å−1). The CBM and VBM positions in the
independent particle picture are marked in green and cyan respectively, while the CBM and VBM positions including the excitonic effects are marked
in dark green and blue, respectively. (b) Band structures of qTP1/qHP heterostructures, with the vacuum level set to zero. (c) Partial charge density of
the CBM and VBM states in the qTP1/qHP heterostructures. The default isosurface level (0.002 Å−3) is used, as implemented in VESTA.104
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molecule).26 The obtained adsorption energies for qTP1, qTP2,
and qHP C60 are −0.151, −0.109, and −0.107 eV respectively,
indicating their capability of water adsorption.
The thermodynamics of the hydrogen evolution reaction are

investigated by calculating the Gibbs free energy of the
intermediates of the reaction at pH = 0 and room temper-
ature15,16 (for details on the half-reaction of water oxidation, see
the Supporting Information). As shown in Figure 7a−c, the
hydrogen evolution reaction has two steps. In the first step,
monolayer fullerene networks (denoted as *) combine with a
proton (H+) and an electron (e−) to form H* species. In the
second step, H2 molecules are formed from the H* species. The
lowest energy intermediates H* for all three phases are present
in Figure 7d−f. For qTP1 C60, the hydrogen atom is adsorbed at
the top site of the nearest neighboring carbon atom to the [2 +
2] cycloaddition bonds. Similarly, the adsorbed H atom on
qTP2 C60 is at the top site of the nearest neighboring carbon
atom to the vertical [2 + 2] cycloaddition bonds. Different from
qTP1 and qTP2 C60, in the H-adsorbed qHP C60, a C−H bond
is formed between the hydrogen atom and the second nearest
neighboring carbon atom to the C−C single bond.
In the absence of photoexcitation (U = 0 V), all three phases

of monolayer fullerene networks, when forming the lowest
energy H* species, exhibit unfavorable positive Gibbs free
energies (0.327, 0.266, and 0.289 eV for qTP1, qTP2 and qHP
C60 respectively). Then the release of H2 molecules from the H*
species is exothermic. Upon light irradiation, the photoexcited
electrons in the CBM generate an external potential U of 0.345,
0.291, and 0.259 eV for qTP1, qTP2, and qHP C60 respectively,
corresponding to the potential difference between the CBM and

the H2/H+ reduction potential. Consequently, both steps (the
formation of H* species and the release of H2 molecules) in the
hydrogen reduction reaction in the free-energy diagram are
downhill for qTP1 and qTP2 C60. Therefore, both qTP1 and
qTP2 C60 can efficiently split water under an acidic environment
upon light irradiation as the hydrogen reduction reaction can
spontaneously proceed. Regarding qHP C60, the reaction barrier
is significantly reduced to 0.030 eV under photoexcitation,
which is close to the thermal fluctuation energy kBT at room
temperature (0.026 eV). In addition, it has been reported that
the experimentally obtained qHP C60 flakes tend to be
negatively charged,50,89 which can provide further external
potential for hydrogen evolution reaction.

Discussion. Monolayer fullerene networks can be combined
with a highly diverse set of lattice-matched 2D materials with
higher CBM and VBM51−53,59 to form type-II heterostructures
to separate electrons and holes in individual layers, which can
further improve the photocatalytic performance (for type-II
band alignment of qTP2/SnTe and qTP2/PbTe heterostruc-
tures, see the Supporting Information). The presence of
monolayer fullerene networks can improve the separation of
electrons and holes by trapping them individually into different
nanostructures, i.e. 0D C60 cages in all three phases, or 1D C60
chains in qTP1 fullerene. For the 0D C60 cages in all three
phases, the nonlocalized π bonds in C60 allow continuous
transfer and separation of the photogenerated carriers.31

Furthermore, the enhanced surface area in monolayer fullerene
networks, with more micropores and surface active sites
compared to other 2D materials, can significantly increase the
photocatalytic efficiency. Additionally, the optical transition

Figure 7. Free-energy diagram for hydrogen reduction reaction at pH = 0 and room temperature in (a) qTP1, (b) qTP2, and (c) qHP C60, with the
Gibbs free energy of the combination of monolayer fullerene networks, a proton and an electron set to zero. U = 0 V corresponds to the absence of
photoexcitaion. The nonzero potential U is generated by photoexcited electrons in the CBM. The lowest energy intermediates H* for all three phases
are present in (d)−(f).
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oscillator strength in both the qTP1 and qTP2 monolayers is
quite low, thereby suppressing the carrier recombination and
enhancing the photocatalytic efficiency as an electron acceptor.
Regarding monolayer qHP C60, the strong optical absorbance
can generate a large amount of electrons, making it promising for
providing electrons for hydrogen evolution.
Most interestingly, fullerene itself, after doping45,49 or

coating,46,47 can act as promising molecular hydrogen attractors.
Theoretical calculations have reported that one transition metal
atom bound to fullerene can bind 11 hydrogen atoms, with a
binding energy of 0.3 eV that is ideal for vehicular applications
because of its ability to adsorb and desorb H2 reversibly.

45 In
addition, the maximum hydrogen storage density can reach 6−9
wt % near ambient pressure at room temperature,45−47 which is
highly desirable for fuel-cell powered vehicles. Moreover, there
is both theoretical and experimental evidence that fullerene can
be decorated with various metal atoms while remaining
stable.110,111 In monolayer fullerene networks, the decorating
atoms can be uniformly distributed to form monolayer coating,
which may further increase the retrievable hydrogen storage
density.

■ CONCLUSION
In summary, a weakly screened hybrid functional is used to
examine the band structures of monolayer C60, rationalizing the
measured electronic band gap. On top of the hybrid-functional
electronic structures, time-dependent Hartree−Fock calcula-
tions predict excellent exciton binding energy, reproducing the
measured optical band gap. To gain insights into the
photocatalytic performance of monolayer fullerene networks, I
investigate the band alignment of monolayer fullerene networks,
and find that all three phases have the band edge positions
suitable for overall water splitting. The overall water splitting can
occur spontaneously in qTPC60 under acidic conditions at room
temperature upon photoexcitation. The distinct optical proper-
ties between qTP and qHP fullerene provide unique advantages
for different applications in photocatalysis, with qTP C60 being a
likely electron acceptor and qHP C60 being a promising electron
donor, respectively. Beyond water splitting, the type-I band
alignment for the qTP1/qHP heterostructures offers new
opportunities for optical devices and lasers.
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