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Alzheimer’s disease (AD) is a chronic neurodegenerative disease leading to dementia,
which is characterized by progressive memory loss and other cognitive dysfunctions.
Recent studies have attested that noninvasive repetitive transcranial magnetic
stimulation (rTMS) may help improve cognitive function in patients with AD. However,
the majority of these studies have focused on the effects of high-frequency rTMS
on cognitive function, and little is known about low-frequency rTMS in AD treatment.
Furthermore, the potential mechanisms of rTMS on the improvement of learning
and memory also remain poorly understood. In the present study, we reported that
severe deficits in spatial learning and memory were observed in APP23/PS45 double
transgenic mice, a well known mouse model of AD. Furthermore, these behavioral
changes were accompanied by the impairment of long-term potentiation (LTP) in the
CA1 region of hippocampus, a brain region vital to spatial learning and memory. More
importantly, 2-week low-frequency rTMS treatment markedly reversed the impairment
of spatial learning and memory as well as hippocampal CA1 LTP. In addition,
low-frequency rTMS dramatically reduced amyloid-β precursor protein (APP) and its
C-terminal fragments (CTFs) including C99 and C89, as well as β-site APP-cleaving
enzyme 1 (BACE1) in the hippocampus. These results indicate that low-frequency
rTMS noninvasively and effectively ameliorates cognitive and synaptic functions in a
mouse model of AD, and the potential mechanisms may be attributed to rTMS-induced
reduction in Aβ neuropathology.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder that
affects a large number of elderly people and is characterized
clinically by progressive loss of memory and decline of
multiple cognitive abilities (Nie et al., 2011). Amyloid-β (Aβ)
accumulation is considered to play an essential role in AD
pathogenesis by resulting in neuritic plaques, synaptic deficit
and neuronal death (Koffie et al., 2009). Aβ derives from
the amyloid-β precursor protein (APP), which is cleaved by
β-secretase and γ-secretase to yield Aβ, and β-site APP-cleaving
enzyme 1 (BACE1) is the β-secretase in vivo (Sinha et al.,
1999; Vassar et al., 1999; Yan et al., 1999; Hussain et al.,
2000; Ly et al., 2013). It has been reported that BACE1 and
its activity are significantly increased in the brain of AD
patients and various transgenic models of AD (Yang et al.,
2003; Zhang et al., 2009). Further genetic studies have shown
that overexpression of BACE1 at moderate levels increases APP
processing and the steady-state level of Aβ (Bodendorf et al.,
2002; Harrison et al., 2003; Chiocco et al., 2004). On the
contrary, knockdown or knockout BACE1 expression reduces,
even abolishes Aβ generation (Cai et al., 2001; Luo et al., 2001;
Roberds et al., 2001; Kao et al., 2004). These observations suggest
that an increase in BACE1 expression may contribute to the
pathogenesis of AD.

Repetitive transcranial magnetic stimulation (rTMS), a
painless and non-invasive method to deliver magnetic stimuli
into the brain through the intact scalp, has been widely used in
psychiatry, neurology as well as other clinical specialties since the
1980s (Barker et al., 1985; Barker, 1994). It has been reported
that rTMS is able to modulate synaptic plasticity via changing
the excitability of neurons in specific brain regions or the whole
brain in a direct or indirect manner (Miniussi and Rossini,
2011). It is widely accepted that activity-dependent synaptic
plasticity including long-term potentiation (LTP) and long-term
depression (LTD) in the hippocampus, is the cellular mechanism
underlying certain types of learning and memory (Bliss and
Collingridge, 1993; Malenka and Nicoll, 1999). It is, however,
well documented that LTP in the hippocampal CA1 region is
dramatically impaired whereas LTD is significantly facilitated
in animal models of AD (Nalbantoglu et al., 1997; Chapman
et al., 1999; Shankar et al., 2008) and AD patients (Koch et al.,
2012). Therefore, it is reasonable to propose that rTMS may
modulate synaptic plasticity and subsequently alleviate memory
deficits during AD development. Indeed, recent studies have
shown that rTMS treatment alone or combined with cognitive
training effectively improve cognitive function in AD patients,
such as naming and language performance (Cotelli et al.,
2008, 2011; Rabey et al., 2013). However, most of previous
studies have focused on the effects of high-frequency rTMS on
cognitive function in AD, and the role of low-frequency rTMS
in the treatment of AD has not been extensively investigated.
In addition, little is known about the cellular and molecular
mechanism underlying the amelioration of AD symptoms after
rTMS treatment.

In the present study, we wanted to determine whether
low-frequency rTMS can improve spatial learning and memory

in APP23/PS45 double transgenic mouse model of AD. At
the same time, we further explored the influence of rTMS on
hippocampal LTP and the pathological changes of AD including
neuritic plaques, APP processing and BACE1 expression.

MATERIALS AND METHODS

Animals
SPF grade C57/BL6 (wild type, WT) and APP23/PS45 double
mutant transgenic mice (1.5-month old) were selected. All
mice were housed in plastic cages in a temperature-controlled
(21◦C) colony room on a 12 h light/12 h dark cycle, and
all electrophysiological and behavioral experiments were
conducted during the light cycle. Food and water were
available ad libitum. APP23 transgenic mice carry human
APP751 cDNA with the Swedish double mutation at
positions 670/671 (KM→NL) under control of the murine
Thy-1.2 expression cassette. PS45 transgenic mice carry
human presenilin-1 cDNA with the M146V mutation.
The genotype of the mice was confirmed by PCR using
DNA from tail tissues (Dong et al., 2015). All procedures
were performed in accordance with Chongqing Science and
Technology Commission guidelines for animal research and
approved by the Chongqing Medical University Animal Care
Committee.

Low-Frequency rTMS Treatment
Both WT and AD mice are randomly divided into two
subgroups: WT, WT+rTMS, AD and AD+rTMS. Both
AD+rTMS and WT+rTMS groups were treated with one
session of low-frequency rTMS daily (between 14:00 and 17:00)
for 14 consecutive days (from postnatal day 45 to 58). Similar
to our previous report (Tan et al., 2013), highly focusing
magnetic-electric stimulator (CCY-III, Wuhan Yiruide Medical
Equipment Co., LTD., Wuhan, China) with a round coil
(6.5 cm diameter) was held centered tangentially to the center
of exposed head of the mouse which was fixed in a suitable
cloth sleeve. The pattern of one session rTMS consisted of
20 burst trains, each train contained 30 pulses at 1 Hz with
2-s inter-train intervals, in total 600 stimuli and the pulse
width was 70 µs. Stimulation intensity was presented 100%
of average resting motor threshold as determined by visual
inspection of bilateral forelimb movement in a preliminary
experiment in anesthetized mice as described previously
(Gersner et al., 2011). The sham group mice were treated
similarly to the rTMS group by the reverse side of the coil,
but were separated from the head using a 3 cm plastic spacer
cube.

Water Maze Task
To test the hippocampal-based spatial memory, 29 WT (16 for
sham treatment and 13 for rTMS treatment) and 28 AD
(15 for sham treatment and 13 for rTMS treatment) mice
were used to perform the Morris water maze task as described
previously (Dong et al., 2015). In brief, after daily treatment with
low-frequency rTMS (1 Hz) for 2 weeks, mice (aged 3 months)
were subjected to water maze test. The maze consists of a
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round stainless steel pool (150 cm in diameter), which filled
with water mixed with opaque white paint (23 ± 1◦C). The
pool was surrounded by light blue curtains, and 3 remote visual
cues were fixed on the curtains. A CCD camera is suspended
right on the pool center to record the animal’s swimming
path, and the video output was digitized by the Any-maze
tracking system (Stoelting). The pool was artificially divided
into four quadrants: NE, NW, SW and SE. The Morris water
maze test includes spatial training and probe test. Twenty-four
hours before spatial training, the animals were allowed to swim
freely in the maze for 120 s adaptation. The spatial learning
task was tested four trials per day for five consecutive days.
In each trial, mice were placed in the water facing the pool
wall from four starting positions (NE, NW, SW, SE), to find
the hidden platform (7.5 cm in diameter, located in the SW
quadrant), which is submerged in the water at a depth of
1 cm. In each trial, the mice were allowed to swim to find
the hidden platform, and then stayed on the platform for 20 s
before returning to a cage. Mice failed to find the hidden
platform within 120 s were then led to the platform, and stayed
for 20 s. Twenty-four hours after the final training trial, mice
were returned to the pool from a novel drop point with the
hidden platform absent for 120 s, and their swim path was
recorded to analysis their spatial memory performance. To
exclude the influence of sensorimotor function on learning and
memory, the swimming speed was monitored and calculated by
escape distance and latency by using the equation: swimming
speed = distance/latency.

Electrophysiology In Vitro
Nine WT (6 for sham treatment and 3 for rTMS treatment)
and 12 AD (7 for sham treatment and 5 for rTMS treatment)
mice at age of 3 months were deeply anesthetized with urethane
(1.5 g/kg, i.p.) and transcardially perfused with artificial cerebral
spinal fluid (ACSF; in mM: NaCl 124, KCl 2.8, NaH2PO4.H2O
1.25, CaCl2 2.0, MgSO4 1.2, Na-vitamin C 0.4, NaHCO3 26,
Na-lactate 2.0, Na-pyruvate 2.0 and D-glucose 10.0, pH = 7.4)
prior to decapitation as described previously (Peng et al., 2016).
The brain was rapidly dissected and placed in ice-cold ACSF.
Hippocampal slices (400 µm) were coronally sectioned with
a vibratome (VT1200S, Leica Microsystems, Bannockburn, IL,
USA) and then were incubated in ACSF for 2 h at 35◦C.
A bipolar stimulating electrode was placed at the Schaffer
collaterals of dorsal hippocampus CA3 pyramidal neurons,
and a recording pipette filled with ASCF was placed at the
ipsilateral striatum radiatum of the hippocampal CA1 area.
After a 30-min stable baseline, theta burst stimulation (TBS)
was given to induce LTP. TBS consisted of two trains of
stimuli (at 20 s interval), with each train composed of
five bursts (4 pulses at 100 Hz in each burst) at an inter-burst
interval of 200 ms. Data acquisition was performed with the
PatchMaster v2.73 software (HEKA Electronic, Lambrecht/Pfalz,
Germany).

Immunohistochemistry Staining
After behavioral testing, mice were anesthetized with urethane
(1.5 g/kg, i.p., Sigma) and one-half of the brains was immediately

frozen for protein extraction. The other half of the brains
for immunocytochemical staining was fixed with 4% PFA for
24 h at 4◦C. Then cryoprotected with 30% sucrose until the
brain sank to the bottom. The brain was coronally sectioned
into 20 µm slices. 3% H2O2 was used to remove residual
peroxidase activity for 30 min and rinsed with PBS for 5 min
(repeated three times). Then slices were blocked with 5%
non-fat milk and incubated overnight with mouse monoclonal
4G8 antibody (1:500) at 4◦C to label Aβ. Every sixth slice with
the same reference position was mounted onto slides for staining.
Plaques were visualized by the avidin-biotin-peroxidase complex
(ABC) and DAB (3,3′Diaminobenzidine) method. All visible
plaques were counted by microscopy at ×40 magnification in
a double-blind manner. The mean plaque count per slice was
recorded for each mouse as described previously (Dong et al.,
2015).

Western Blotting
After behavioral testing, the hippocampal tissues from each
mouse were collected for western blotting as described previously
(Dong et al., 2015; Li et al., 2016). Briefly, the collected
hippocampal tissues were lysed on ice in the lysis buffer, and
then centrifuged at 14,000 g for 10 min at 4◦C. Supernatant was
collected, and protein concentration was determined by BCA
protein assay kit (Thermo Fisher Scientific,Waltham,MA, USA).
Equal amounts of protein samples were mixed with 4× sample
buffer and boiled at 95◦C for 5 min. Proteins were separated
on 10% tris-glycine SDS-PAGE or 16% tris-tricine SDS-PAGE
and then transferred to immobilon-PTM polyvinylidene fluoride
(PVDF) membranes with an electrophoresis apparatus (Bio-Rad,
Hercules, CA, USA). The membranes were blocked with 5%
non-fat milk in Tris-buffered saline containing 0.1% Tween-20
(TBST) for 1 h at room temperature and then incubated
overnight at 4◦C with primary antibody. After TBST washing
3 × 5 min, membranes were incubated with horseradish
peroxidase-conjugated secondary antibody for 1 h at room
temperature. After another three times washing with TBST,
the protein was visualized in the Bio-Rad Imager using ECL
Western blotting substrate (Pierce). Immunoblotting with anti-
β-actin (Sigma; 1:3000) was used to control equal loading and
protein quality. Anti-APP antibody (1:1000) C20 was used to
detect APP and its C-terminal fragment (CTF) products. Both
Anti-APP and Anti-BACE1 antibody (1:1000) were obtained
from professor Weihong Song in the University of British
Columbia, Vancouver, BC, Canada. The band intensity of
each protein was quantified by the Bio-Rad Quantity One
software.

Statistical Analysis
For behavioral and electrophysiological experiments, all data
are presented as mean ± SEM. Spatial learning and swimming
speed data were analyzed by a two-way ANOVA, with treatment
(group) as the between-subjects factor and learning day as
the within-subjects factor. All the other data were analyzed
by a one-way ANOVA followed by post hoc Turkey’s tests,
with treatment (group) as the between-subjects factor. For
immunohistochemical and immunoblotting assays, all data
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FIGURE 1 | Low-frequency repetitive transcranial magnetic stimulation (rTMS) rescues spatial memory deficits in Alzheimer’s disease (AD) mice. (A) The average
escape latency to the hidden platform location is plotted for each spatial learning day in the Morris water maze task. (B) The similar swimming speed was observed
among these groups during spatial learning. (C,D) Bar graph showed the time spent in the hidden platform-located quadrant (C) and the number of entries into the
hidden platform zone (D) during the probe test with absence of the hidden platform, which is conducted 24 h after the last learning trial. ∗∗p < 0.01, ∗p < 0.05.

were analyzed by the Student’s t-test and nonparametric
Mann-Whitney U test, respectively. Significance level was set at
p < 0.05.

RESULTS

Low-Frequency rTMS Treatment Rescues
Spatial Memory Deficit in AD Mice
To test the potential rescue effect of rTMS on AD, we first
examined the effects of low-frequency rTMS on spatial learning
and memory by using a hippocampus-dependent learning and
memory task, the Morris water maze, in APP23/PS45 double
transgenic AD mice. The AD transgenic mice displayed a
significant deficit in spatial learning, as reflected by taking much
longer to find the hidden platform than WT control on day 2–5
(WT: n = 16, 70.3 ± 8.8 s for day 2, 48.14 ± 6.9 s for day 3,
36.7 ± 6.1 s for day 4, 18.1 ± 1.7 s for day 5; AD: n = 15,
93.8 ± 5.8 s for day 2, p < 0.05 vs. WT, 72.6 ± 8.4 s for
day 3, p < 0.05 vs. WT, 57.8 ± 68.8 s for day 4, p < 0.05 vs.

WT, 45.7 ± 5.1 s for day 5, p < 0.01 vs. WT; Figure 1A).
Notably, this impairment cannot be attributed to alterations
of sensorimotor functions since the swimming speed remained
unchanged among these groups (Figure 1B). Importantly, rTMS
treatment shortened the escape latency for searching for the
hidden platform in AD mice (AD+rTMS: n = 13, 64.9 ± 7.9 s
for day 2, p < 0.05 vs. AD, p > 0.05 vs. WT; 43.8 ± 6.6 s
for day 3, p < 0.05 vs. AD, p > 0.05 vs. WT; 32.6 ± 8.6 s
for day 4, p < 0.05 vs. AD, p > 0.05 vs. WT; 22.8 ± 4.2 s
for day 5, p < 0.01 vs. AD, p > 0.05 vs. WT; Figure 1A).
A probe test with the platform removed was performed 24 h
after the last spatial training trial, to examine long-term spatial
memory retrieval. The results revealed that spatial memory
retrieval was impaired in AD mice since they spent much
less time in the target quadrant in which the platform was
previously located (WT: n = 16, 45.7 ± 2.3 s in the target
quadrant, 19.6 ± 1.5 s in the opposite quadrant; AD: n = 15,
36.1 ± 2.6 s in the target quadrant, p < 0.01 vs. WT; 28.4 ±
2.3 s in the opposite quadrant, p < 0.01 vs. WT; Figure 1C)
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and reduced the number of entries into hidden platform zone
(WT: n = 16, 5.4 ± 0.5; AD: n = 15, 1.4 ± 0.3, p < 0.01 vs.
WT; Figure 1D). As expected, rTMS treatment significantly
increased the time spent in target quadrant (AD+rTMS: n = 13,
44.1 ± 2.8 s in the target quadrant, p < 0.05 vs. AD,
p > 0.05 vs. WT; 20.8 ± 2.5 s in the opposite quadrant,
p < 0.05 vs. AD, p > 0.05 vs. WT; Figure 1C) and the number
of entries into the hidden platform zone (AD+rTMS: n = 13,
5.2 ± 0.9, p < 0.01 vs. AD, p > 0.05 vs. WT; Figure 1D).
Taken together, these results suggest that low-frequency rTMS
treatment can improve spatial learning and memory in ADmice.

Low-Frequency rTMS Treatment Rescues
Impaired Hippocampal LTP in AD Mice
We have previously demonstrated that 1 Hz rTMS rescues the
impairment of hippocampal LTP in an Aβ-induced toxicity rat
model (Tan et al., 2013). In this study, we further investigate
the effect of rTMS on hippocampal LTP in APP23/PS45 double
transgenic AD mice. Consistent with our recent report (Dong
et al., 2015), hippocampal CA1 LTP induced by TBS was
impaired in AD mice compared with WT (WT: n = 11 slices
from six mice, 165.0 ± 7.0%, p < 0.01 vs. baseline; AD:
n = 16 slices from five mice, 118.8 ± 4.0%, p < 0.01 vs.
baseline, p < 0.01 vs. WT; Figures 2A,B). The amplitude of
LTP was markedly increased in AD mice treated with rTMS,
although it is still smaller than WT (AD+rTMS: n = 14 slices
from seven mice, 146.2 ± 6.6%, p < 0.01 vs. baseline,
p < 0.05 vs. AD, p < 0.05 vs. WT; Figures 2A,B). These
results indicate that low-frequency rTMS treatment is partially
able to rescue the impairment of hippocampal CA1 LTP in AD
mice.

Low-Frequency rTMS Treatment Reduces
AD-Related Neuropathology in AD Mice
We next want to determine whether rTMS-ameliorated cognitive
function and synaptic plasticity in APP23/PS45mice is attributed
to a decrease in Aβ neuropathology such as neuritic plaque
formation, APP processing and BACE1 expression. The results
showed that the number of plaques was decreased in AD
mice treated with rTMS compared with that in AD mice
(AD: n = 16, 86.0 ± 6.3 plaques; AD+rTMS: n = 14,
31.9 ± 1.5 plaques, p < 0.01 vs. AD; Figures 3A,B). To further
investigate the potential mechanism underlying the reduction
of neuritic plaques, we examined the effect of rTMS on APP
processing. The level of APP CTFs in the mouse brain tissues
was assayed by western blotting analysis (n = 5 in each group).
The results showed that rTMS treatment significantly decreased
the levels of APP (AD+rTMS: 67.1 ± 10.0% relative to AD,
p < 0.05 vs. AD; Figures 3C,D) and β-secretase-generated C99
(AD+rTMS: 84.2 ± 6.7% relative to AD, p < 0.05 vs. AD;
Figures 3C,D) and C89 (AD+rTMS: 84.7 ± 5.6% relative to
AD, p < 0.05 vs. AD; Figures 3C,D) fragments, as well as
BACE1 (AD+rTMS: 81.7 ± 1.8% relative to AD, p < 0.01 vs.
AD; Figures 3C,D), compared with AD mice without treatment
with rTMS. The decreased C99 and C89 levels, together with the
decreased BACE1 in the brains of the rTMS-treated transgenic

FIGURE 2 | Low-frequency rTMS rescues the impairment of hippocampal
long-term potentiation (LTP) in AD mice. (A) Representative fEPSP traces and
plots of the normalized slopes of the fEPSP 5 min before and 55 min after
theta burst stimulation (TBS) delivery. (B) Bar graphs of the average
percentage changes in the fEPSP slope 55–60 min after TBS delivery.
∗∗p < 0.01, ∗p < 0.05.

mice, indicate that rTMS may inhibit β-secretase cleavage
of APP proteins, and subsequently reduced neuritic plaque
formation.

DISCUSSION

In the present study, we confirm that spatial learning and
memory as well as hippocampal LTP are significantly impaired
in APP23/PS45 double transgenic mice, and demonstrate
that low-frequency rTMS treatment alleviates AD-related
neuropathology, which may contribute to the amelioration of
cognitive function and synaptic plasticity. We have therefore
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FIGURE 3 | Low frequency-rTMS reduces neuritic plaques, β-site APP-cleaving enzyme 1 (BACE1), amyloid-β precursor protein (APP) and its C-terminal fragments
(CTFs) in AD mice. (A,B) Low-frequency rTMS decreases neuritic plaque formation (arrows). Scale bar: 500 µm. (C) Sequential immunoblotting of total tissue lysates
of hippocampal tissues collected from animals after behavioral tests. (D) The relative protein level is normalized by the AD group. ∗∗p < 0.01, ∗p < 0.05.

provided evidence that rTMS is an effective and non-invasive
brain stimulation method to treat AD and related memory
disorders.

So far, no cure has been found for AD. Recently, non-invasive
rTMS has been applied to patients with AD and displays
beneficial effects on various cognitive functions (Cotelli et al.,
2008, 2011; Ahmed et al., 2012; Rabey et al., 2013; Eliasova
et al., 2014). Most of these researches have focused on the
effects of high-frequency rTMS on cognitive function in AD.
However, high-frequency rTMS may occasionally cause some
side effects, such as headache and epilepsy or epileptic seizures
(Wassermann, 1998; Dobek et al., 2015), whereas no such risk
has been reported for low-frequency rTMS to date. Although
accumulating evidence have shown that low-frequency rTMS can
improve cognitive functions in patients with mood disorders,
psychotic disorders, cerebrovascular accident and so on (Lage
et al., 2016), it is still under debate whether low-frequency rTMS

has beneficial effects on cognitive function in AD patients. Our
recent study has shown that low-frequency (1 Hz) rTMS reverses
Aβ-induced memory deficits in rats (Tan et al., 2013). A further
study reports that 1 Hz rTMS of the right dorsolateral prefrontal
cortex (DLPFC) significantly improves the recognition memory
performance of mild cognitive impairment (MCI) patients
(Turriziani et al., 2012). Consistent with these, we here reported
that low-frequency rTMS at 1 Hz dramatically improved spatial
learning and memory in APP23/PS45 transgenic AD mice
(Figure 1). Nonetheless, contradictory results challenge these
findings. For example, Ahmed et al. (2012) have found that
low-frequency rTMS was ineffective on cognitive function in
AD patients. The exact cause of these discrepancies remains
to be determined, but may be at least in part due to the
different brain area stimulated, as low-frequency rTMS on the
right, but not left DLPFC, significantly improves cognitive
function (Turriziani et al., 2012). Notably, we only tested
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the short-term effects (30 days after rTMS treatment) of
low-frequency rTMS on learning and memory in AD mice
in the current study. However, AD is a neurodegenerative
disorder that will last for a long time. Thus, further experiments
on examining the long-term influence of low-frequency rTMS
on AD symptoms need to be carried out in the future
study.

So far, the mechanism underlying cognitive improvement
after rTMS treatment in patients with AD is still poorly
understood. Preclinical studies suggested that inhibition of Aβ

production by altering APP processing at the β- or γ-secretase
site could potentially be avenues for AD drug development
(Weggen et al., 2001; Phiel et al., 2003; Li et al., 2006). It
has been well documented that fragments of Aβ, abundantly
present in the brain, could dramatically interfere with synaptic
transmission, leading to impairment of LTP and facilitation of
long term depotentiation (LTD) in both animal model of AD
(Nalbantoglu et al., 1997; Chapman et al., 1999; Shankar et al.,
2008) and patients with AD (Koch et al., 2012). Here, we reported
that low-frequency rTMS can reduce BACE1 expression,
which leaded to a decrease in APP and its CTFs generation
(Figures 3C,D). Subsequently, the decrease of BACE1-mediated
APP processing may contribute to the improvement of
hippocampal LTP (Figure 2) and spatial learning and memory
(Figure 1) after low-frequency rTMS treatment in the present
study. In addition, the number of neuritic plaques was decreased
after rTMS treatment (Figures 3A,B), indicating an obvious
reduction of insoluble Aβ deposits. Therefore, besides the total
production of Aβ was decreased by suppressed APP processing
(Figures 3C,D), another possibility is that rTMS treatment
increases the degradation of insoluble Aβ. Thus, further study
examining the degradation of Aβ will help understand the
cellular and molecular mechanism underlying the beneficial
effects of low-frequency rTMS on AD symptoms. Notably,
it is still under debate whether the amount of plaques is
correlated with the intensity of observed symptoms (Gruart
et al., 2008). However, a growing body of evidence has
showed that Aβ could dramatically interfere with synaptic
transmission, leading to impairment of LTP and facilitation of
LTD (Nalbantoglu et al., 1997; Chapman et al., 1999; Shankar
et al., 2008).

Alternatively, it has been well documented that neuronal
hyperactivity has been observed in the hippocampus (Palop et al.,
2007; Minkeviciene et al., 2009; Harris et al., 2010; Davis et al.,
2014; Oyelami et al., 2016) and cerebral cortex (Busche et al.,
2008) in AD models. Such hyperactivity could be attributed
either to intrinsic hyperexcitability (Minkeviciene et al., 2009;

Harris et al., 2010; Davis et al., 2014) or to reduced inhibition
(Busche et al., 2008; Oyelami et al., 2016), which may therefore
increase the threshold of LTP induction and result in the
impairment of LTP in AD mice. Importantly, recent studies
have reported that low-frequency rTMS is able to suppress
neuronal excitability both in animal and in human (Maeda
et al., 2000; Muller et al., 2014). Thus, low-frequency rTMS
treatment may ameliorate the impairments of hippocampal LTP
in APP23/PS45 mice via regulating the balance of excitatory and
inhibitory neuronal activities in the present study (Figure 2).
In addition, low-frequency rTMS improves hippocampal LTP
through modulating the expression of genes important for
synaptic plasticity. For example, rTMS treatment enhances
c-Fos and Zif268 expression in different brain areas including
hippocampus and cortex (Doi et al., 2001; Aydin-Abidin
et al., 2008). Low-frequency rTMS also augments neurotrophin
contents such as BDNF and NGF in the hippocampus (Zhang
et al., 2007; Wang et al., 2010; Tan et al., 2013).

CONCLUSION

Overall, our study demonstrates that low-frequency rTMS
can ameliorate the deficits of cognitive and synaptic
functions through reducing BACE1 and APP processing
in APP23/PS45 double transgenic mice of AD, suggesting
that low-frequency rTMS may serve as a highly effective
anti-amyloid treatment in AD. However, the molecular
mechanisms underlying the beneficial effects of low-frequency
rTMS on AD need to be further investigated in the
future.
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