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Abstract: The etiology of osteoarthritis (OA) is multifactorial, with no effective disease-modifying-
drugs. L-theanine has been reported to inhibit inflammatory responses in some diseases and this
study aimed to investigate the effect of L-theanine on Interleukin-1(IL-1)β-stimulated chondrocytes,
and in an injury-induced OA rat model. Primary chondrocytes were stimulated by IL-1β (10 ng/mL)
for 24 h and then co-cultured with L-theanine for 24 h. The effects of L-theanine on IL-1β-stimulated
expression of pro-inflammatory cytokines and hydrolytic enzyme were analyzed using Western
blotting, quantitative polymerase chain reaction (q-PCR) and enzyme-linked immunosorbent assay
(ELISA) kits. An immunofluorescence assay was used to detect nuclear factor kappa B (NF-κB)
phosphorylation. OA was induced by anterior cruciate ligament transection (ACLT) surgery in rats and
celecoxib was used as a positive control. OA severity was measured using the Osteoarthritis Research
Society International (OARSI) grading system to describe histological changes. The results showed
that L-theanine decreased the expression of pro-inflammatory mediators, including cyclooxygenase-2
(COX-2), prostaglandin E2 (PGE-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO),
both in vivo and in vitro. L-theanine treatment inhibited IL-1β-induced upregulation of matrix
metalloproteinases (MMP)-3 and MMP-13, as well as inhibited NF-κB p65 activation. In vivo animal
model showed that L-theanine administration (200 mg/kg) significantly alleviated OA lesions and
decreased OARSI score. Our data indicated that L-theanine decreased inflammatory cytokines and
protected extracellular matrix degradation through inhibition of the NF-κB pathway, and L-theanine
may be considered a promising therapeutic strategy in OA prevention.
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1. Introduction

Low-grade inflammation plays an important role in osteoarthritis (OA) [1,2], and pre-clinical and
clinical trials support therapeutic targets for inflammation in OA treatment. Inflammation cytokines
such as cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE-2) that cause an increase in OA pain
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with OA progression, and non-steroidal anti-inflammatory drugs (NSAIDs) can selectively inhibit
COX-2, and serve as effective drugs in OA management [3]. IL-1β is a pro-inflammatory factor found
in synovial fluid and cartilage during OA development, and induces the production of catabolic
mediators [4], such as matrix metalloproteinases (MMPs), which degrade proteoglycans and type II
collagen, and is a component of extracellular matrix (ECM) scaffolds [5]. MMP-3 and MMP-13 have
been reported as two key mediators in joint inflammation and degradation [6,7]. The dysfunction and
metabolic disorders of chondrocytes and ECM may cause pathological changes to articular cartilage [8].
These factors are locally secreted by chondrocytes, synovial cells, and macrophagocytes, and aggravate
cartilage damage through receptors on the cell surface and crosstalk between signaling pathway.
Importantly, nuclear factor kappa B (NF-κB) was reported a key promoter in OA inflammation [9,10],
which is induced by pro-inflammatory mediators, and in turn promotes cytokine production, including
IL-1, IL-6, and tumor necrosis factor-α (TNF-α) [11]. In addition, NF-κB is essential for the production
of catabolic proteins, including MMPs and iNOS.

Currently, drugs that can effectively slow down the degradation of OA cartilage are still under
investigation. The most commonly used medications, including NSAIDs, such as ibuprofen and
celecoxib have side-effects involving gastrointestinal ulcer bleeding during long-term administration,
and these drugs are not appropriate for patients with kidney damage [12]. Some polyphenols are used
to prevent the progression and development of OA [13–15], such as curcumin, epigallocatechin gallate
(EGCG), and resveratrol. However, more clinical trials are needed to confirm the effects of these drugs,
and identifying new disease-modifying drugs is of utmost importance.

L-theanine is the main amino acid in green tea and accounts for more than 50% of total free amino
acids [16,17]. Other constituents of green tea, for example, EGCG, have been reported to have OA
protective effects in human chondrocytes [18] and in a post-traumatic OA mouse model [19]. Biological
activities of L-theanine, including anti-inflammatory, antioxidant, anti-tumor, neuroprotective effects,
immune regulation [20–23], and inhibiting the NF-κB pathway have been observed. However, the role
of L-theanine in OA inflammation and whether it can regulate the metabolic activity of chondrocytes
are still unclear.

Based on this, we proposed a hypothesis that L-theanine plays a protective role in IL-1β-induced
OA chondrocytes for rats in vitro, and alleviates cartilage injury in an OA model of anterior cruciate
ligament transection (ACLT) in vivo. Celecoxib was chosen as a positive control for treatment because
of its powerful anti-inflammatory activity and fewer side effects [3] compared with other NSAIDs.

2. Materials and Methods

2.1. Preparation of Rat Primary Chondrocytes

Primary chondrocytes were isolated from 14- to 21-day-old rats. After trypsinization (0.25%,
GIBCO, New York, USA) of cartilage for 30 min, the slice was treated with 0.2% collagenase II
for 4 h at 37 ◦C. The culture medium was then cultured with DMEM/F12, including 10% fetal calf
serum (Biological Industries, Israel). The steps were consistent with previous research [24] and the
second passage cells were chosen for the subsequent experiments. Identification of chondrocytes was
stained with toluidine blue for proteoglycans and immunohistochemical staining for type II collagen
(Novus Biologicals, CO, USA).

The medium was cultured with DMEM/F12 containing 0.5% serum starving for 12 h and were
stimulated with IL-1β (PeproTech Inc. USA) for 24 h prior to being co-cultured with different
concentrations of L-theanine (50, 100, 200 µM) for 24 h. Cells treated with IL-1β only served
as the control. The dose of L-theanine (≥98% (high-performance liquid chromatography, HPLC),
Sigma-Aldrich, St. Louis, MO, USA) was determined according to previous studies which L-theanine
showed inhibition of NF-κB [25] and anti-inflammation activities [26].
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2.2. Cell Proliferation Assay

Chondrocytes were inoculated into 96-well plates (5000/well) for 24 h. The culture medium was
administrated with or without IL-1β for 24 h and different concentrations of L-theanine (0, 10, 50, 100,
200 400, and 800 µM) treated for 24 h, and then incubated with cell counting kit (CCK)-8 solution
(DOJINDO, Japan) for 1 h at 37 ◦C, which was used to determine whether L-theanine had cytotoxic
effects, and to identify the effective dose of L-theanine for the chondrocytes stimulated by IL-1β.
Cells were cultured in DMEM containing 0.5% serum for 12 h prior to L-theanine administration to
ensure that cells were quiescent.

2.3. In Vitro Immunofluorescence Assay

The culture medium was rinsed with phosphate-buffered saline (PBS) prior to 4% paraformaldehyde
fixation for 1 h at ambient temperature (AT). Chondrocytes were permeabilized with PBS containing 0.2%
Triton-X100 for 30 min at AT before incubation with primary antibodies (phospho-p65 from Cell Signaling
Technology, USA, 1:100 in PBS) in a wet box (4 ◦C overnight). The secondary antibody (goat-anti-rabbit
immunoglobulin, diluted 1:250 in PBS) was used to treat the glass plate for 1 h and subsequently incubated
with 4’,6-diamidino-2-phenylindole (DAPI) (Beyotime Biotechnology, Shanghai, China) for 3 min and
Phalloidin (Alexa Fluor® 555) for 15 min at AT. The processing interval was rinsed gently with PBS
containing Tween-20 (PBST). The medium was visualized under fluorescence microscope.

2.4. In Vitro Western Blot Analysis

Western blot analysis was performed as described in our early study [27] to detect the expression
of both nucleoproteins and cytoplasmic proteins for p-65 and p-p65 (Beyotime Biotechnology, Co.,
Ltd., Shanghai, China). Total protein was extracted to measure the contents of MMP-3 (Cell Signaling
Technology, Inc, Boston, MA, USA), MMP-13 (Novus Biologicals, Inc, CO, USA), COX-2 (Cell Signaling
Technology, Inc, Boston, MA, USA) and iNOS (Novus Biologicals, Inc, Littleton, CO, USA). An enhanced
BCA protein assay kit (Beyotime Biotechnology, Co., Ltd., Shanghai, China) was used to detect the
concentration of protein.

2.5. In Vitro Real-Time Polymerase Chain Reaction (PCR) Analysis

Total RNA was extracted from the cultured chondrocyte monolayers through the RNAiso
Plus reagent, according to the manufacturer’s instructions. cDNA was obtained through a reverse
transcriptase kit (TianGen Biotechnology, Beijing, Co., Ltd. China) with gDNA remover. Real-time
quantitative PCR was performed in duplicate to determine the relative gene expression of MMP-3
and MMP-13, with an endogenous control of glyceraldehyde-3phosphate dehydrogenase (GAPDH).
Primer sequences (Sangon Biotech, Shanghai, Co., Ltd., China) are provided in Table 1.

Table 1. Primer sequences.

Gene Primer Sequence Product Length (bp)

MMP-3 F: TTTGGCCGTCTCTTCCATCC 175
R: GCATCGATCTTCTGGACGGT

MMP13 F: TTCTGGTCTTCTGGCACACG 92
R: TGGAGCTGCTTGTCCAGGT

GAPDH F: GATGCCCCCATGTTTGTGAT 150
R: GGCATGGACTGTGGTCATGAG

2.6. In Vivo Rat Anterior Cruciate Ligament (ACL) Transection-Induced Osteoarthritis (OA) Model

Ten to 11-week-old male Sprague Dawley (SD) rats with an average weight range from 230 g to 270 g
(bought from Harbin Medical University, Harbin, China) were used to establish an experimental model
by anterior cruciate ligament transection (ACLT). Rats were raised at the experimental animal center in



Nutrients 2020, 12, 1988 4 of 14

Northeast Agricultural University on a standard 12 h dark/light cycle. All animal experiments were
carried out in accordance with the guidelines of the China Ethical Committee for Animal Experiments.

A total of 72 rats were anesthetized (about 3.5% isoflurane, obtained from Shenzhen Ruiwode
Life Technology Co., Ltd., Shenzhen, China) and the joint capsule incision and ACLTs were performed
under an operating microscope. Rats were randomly divided into 6 groups: (1) ACLT group
(no treatment), (2) Sham group (capsule incision only, PBS treatment), (3) Low-dose L-theanine
(50 mg/kg), (4) Moderate-dose L-theanine (100 mg/kg), (5) High-dose L-theanine (200 mg/kg),
(6) Celecoxib group (2.86 mg/kg [28]). The drug delivery route and dosage are presented in Figure 1.
L-theanine was bought from Shanghai yuanye Bio-Technology Co., Ltd. (BR, 99%).

Figure 1. The intervention time point in vivo; osteoarthritis (OA) was induced in 10- to 11-week-old
male Sprague Dawley (SD) rats by anterior cruciate ligament transection (ACLT) of the right knee.
Sham surgery was performed on the right knee by incision of joint capsule, and sham operation was
performed from a separated group of rats. L-theanine (50, 100 or 200 mg/kg, once a day gavage, until the
rats were sacrificed), was administrated one day after ACLT surgery. Phosphate-buffered saline (PBS,
1 mL) was used for treatment after sham surgery as a control. Celecoxib (2.86 mg/kg) was used for
treatment 4 weeks after ACLT surgery as a positive control.

2.7. Histological Assessment and Osteoarthritis Research Society International (OARSI) Grading System

The tibial samples of the right knee were collected for decalcification prior to a standard paraffin
embedding. The block was sectioned at 5 µm-thick slices, separated by 250 µm. Sections were stained
with hematoxylin-eosin (HE) to assess the changes of cartilage and Safranin O and fast green for
proteoglycan degeneration. OA severity was evaluated blinded using the OARSI grading system,
which was suitable to both experienced and novice scorers [29]. Cartilage severity was displayed by
OARSI scores from 0–6.

2.8. In Vivo Enzyme-Linked Immunosorbent Assay (ELISA) Kits

Serum samples and cartilage tissue samples were collected and concentrations of COX-2, PGE-2,
iNOS and NO were measured using specific rat enzyme-linked immunosorbent assay (ELISA)
kits (NanJing JianCheng, Co., Ltd., NanJing, China) according to the manufacturer’s instructions.
Col2-3/4C-terminalcleavageproductoftype II collagen (C2C) and crosslinked C-telopeptides of Type II
collagen (CTX-II) assay kits were bought from Jingmei Biotechnology Co., Ltd. (Jingmei, Co., Ltd.,
JiangSu, China).

2.9. Statistical Analysis

All statistical analyses were performed using SPSS 22.0 software, and results are expressed
as the mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was used for
comparisons between groups, and P < 0.05 was considered statistically significant. Multiple
comparisons between groups were performed using post hoc Student–Newman–Keuls tests. Western
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blot results were analyzed using Image J software. Histological analyses were performed by two
experienced investigators who were double-blinded. All experiments were performed in triplicate.

3. Results

3.1. L-Theanine Reduces the Release of Catabolic Enzymes and Inflammatory Mediates from IL-1-Induced
Chondrocytes In Vitro

The cultured cells showed fast proliferation and a polygonal appearance (Figure 2A). Proteoglycan
were stained blue-ish violet by toluidine blue staining (Figure 2A). In addition, the immunofluorescence
staining results showed that the green fluorescence of cell endochylema was type II collagen (Figure 2B).
Moreover, L-theanine treatment alone resulted in no demonstrable adverse effects on cell viability,
which was in accordance with the results of the CCK-8 assay. When L-theanine was co-cultured
with IL-1β, the results showed a significant increase in cell viability at 50 µM of L-theanine that was
sustained up to 200 µM of L-theanine (Figure 2C). Therefore, 50, 100, and 200 µM were selected for
subsequent experiments.

Figure 2. Identification of primary chondrocytes and the effects of L-theanine on cell viability with or
without IL-1β. (A) Representative images of rat primary chondrocyte morphology, which was observed
on the third day after incubated, the second day after the first passage of cells and 24 h after the second
passage of cells, respectively(a-c). Representative images of toluidine blue staining of monolayers of
rat chondrocytes in the same time point (d–f) and the nucleus of cells was dyed blue violet. Original
magnification × 100. (B) Immunofluorescence assay of rat second generation chondrocytes for type II
collagen with primary antibody to COL2A1 and fluorescent secondary antibody. DAPI for nucleus
staining. Original magnification × 200. (C) CCK-8 assay for cell ability of L-theanine with or without
IL-1β. L-theanine treated with different concentrations (0, 10, 50, 100, 200 400, 800 µM) showed no
significant difference compared to controls. Pre-treatment with IL-1β (10 ng/mL) for 24 h sharply
reduced cell viability, however the significant increase was observed after treatment of L-theanine in
50, 100, and 200 µM for 24 h. Values are the mean ± standard deviation (SD); * p < 0.05, ** p < 0.01 vs.
IL-1β group.

To determine the effects of L-theanine on IL-1β-induced chondrocytes, we investigated its
effect on the expression of MMPs and pro-inflammatory cytokines. After 24 h of co-culturing
with IL-1β, L-theanine dose-dependently decreased mRNA levels and protein levels of MMP-3 and
MMP-13 (Figure 3A–B). Furthermore, L-theanine also reduced the expression of COX-2 and iNOS in
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chondrocytes, as well as the secretion of PGE-2 and NO in culture supernatant in a dose-dependent
manner (Figure 3C–D).

Figure 3. L-theanine reduced the expression matrix-degrading enzymes and pro-inflammatory mediates
in IL-1β-stimulated rat chondrocytes. (A) Western bolt analysis of MMP-3 and MMP-13 in chondrocytes
treated with L-theanine (50, 100, 200 µM) for 24 h. (B) Real time PCR analysis of gene expression of
MMP-3 and MMP-13 in chondrocytes treated with L-theanine (50, 100, 200 µM) for 24 h. (C) Western
bolt analysis of cyclooxygenase-2 (COX-2) and iNOS in chondrocytes treated with L-theanine (50, 100,
200 µM) for 24 h. (D) Enzyme-linked immunosorbent assay (ELISA) of prostaglandin E2 (PGE-2) and
NO in the cell supernatant treated with L-theanine (50, 100, 200 µM) for 24 h. Values are the mean ± SD;
** p < 0.01, vs. IL-1β treatment group. ## p < 0.01 vs. L-theanine (100 µM) treatment group. C, control.

3.2. L-Theanine Inhibits Nuclear Factor Kappa B (NF-κB) p65 Phosphorylation and Expression In Vitro

To unravel the mechanisms by which L-theanine promoted inflammatory responses and triggered
ECM degradation, we next investigated, using Western blot analysis and immunofluorescence analysis,
whether L-theanine inhibited the phosphorylation and expression of NF-κB p65 in chondrocytes.
NF-κB is a multifunctional transcription factor associated with proinflammatory responses, and plays
an important role in OA progression [30]. We found that L-theanine, given at 50 µM to 200 µM,
significantly inhibited the expression of phosphorylated NF-κB p65 (Figure 4A–C). Notably, L-theanine
in 200 µM exerted intense effects (Figure 4B–C).
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Figure 4. L-theanine inhibited nuclear factor kappa B (NF-κB) phosphorylation and expression in
IL-1β induced chondrocytes in vitro. (A) Immunofluorescence analysis of nuclear translocation of
NF-κB in chondrocytes. NF-κB signaling in chondrocytes was activated (green fluorescence) after IL-1β
(10 ng/mL) treatment for 24 h and was suppressed after L-theanine (200 µM) treatment for 24 h. C,
control; I, IL-1β (10 ng/mL); I + L, IL-1β (10 ng/mL) + L-theanine (200 µM). (B) Western blot analysis of
p65 and p-p65 in cytoplasm in rat chondrocytes. The internal reference was GAPDH. (C) Western blot
analysis of p65 and p-p65 in nucleus in rat chondrocytes. The internal reference was Lamin B. Values
are the mean ± SD; ** p < 0.01 vs. IL-1β treatment group. # p < 0.05, ## p < 0.01 vs. L-theanine (100 µM)
treatment group. C, control; p-p65, phosphorylated p65.

3.3. L-Theanine Ameliorates Knee Joint Histopathology and Reduces Extracellular Matrix (ECM) Degradation
in the Rat Anterior Cruciate Ligament Transection (ACLT) Model

To assess the effect of L-theanine on OA development and progression, we performed ACLT surgery
in rats with or without L-theanine administration. Celecoxib was used as a positive control. Lesions
of the medial tibial plateau were analyzed to assess knee joint damage, including articular cartilage
degeneration, and proteoglycan content by Safranin-O staining and chondrocyte proliferation. In ACLT
knees, severe cartilage degradation was observed, including moderate to severe hypocellularity,
superficial fibrillation, a thickened perichondrium, and a reduction in Safranin-O staining when
compared with sham-operated knees (Figure 5A). Administration of L-theanine (100 and 200 mg/kg)
caused significant reduction in cartilage degradation and an increase in Safranin-O staining (Figure 5A),
thereby indicating increased expression of proteoglycans. Moreover, milder superficial fibrillation
and matrix edema were noted by treatment with celecoxib when compared with the ACLT rat model
(Figure 5A). OA lesions were less severe with both L-theanine and celecoxib treatment when compared
with the ACLT surgery group, however L-theanine at 200 mg/kg showed a similar OARSI score to
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celecoxib treatment as assessed by the OARSI score system (Figure 5C). Results were confirmed by HE
staining. The operated knees from L-theanine-treated rats showed less severe cartilage injury, a lack of
cell clustering, and clear columnarization when compared with the ACLT group (Figure 5B).

We next investigated the levels of C2C and CTX-II, two biochemical markers that are potentially
predictive of the development of knee OA. A significant increase in serum levels of C2C and CTX-II
were observed at 6 weeks after ACLT surgery in rats (Figure 5D–E). After L-theanine treatment, both of
these two degradation products of type collagen II were significantly decreased in a dose-dependent
manner (Figure 5D–E).

Figure 5. L-theanine treatment ameliorated OA cartilage lesions and reduced serum levels of cartilage
metabolism biomarkers. (A–C) Representative images of cartilage in tibial plateau (right knees of rats)
and Osteoarthritis Research Society International (OARSI) score. Safranin O-fast green staining and
HE staining were performed to evaluated the relative content of proteoglycan (red color in Safranin O
staining) and articular cartilage degeneration. Original magnification ×200. HE, hematoxylin-eosin
staining. (D–E) ELISA assay of serum levels of C2C and CTX-II in vivo. Values are the mean ± SD;
* p < 0.05, ** p < 0.01 vs. ACLT group. # p < 0.05, ## p < 0.01, compared between groups with
L-theanine treatment.

3.4. Systemic L-Theanine Treatment Exerts Anti-Inflammatory Activity In Vivo

To investigate whether L-theanine could still inhibit inflammatory responses in a surgery-induced
OA model, ELISA assays were performed. The results showed that significantly increased serum
levels of COX-2 and PGE-2, and highly increased levels of iNOS and NO were observed in rats that
underwent ACLT surgery without L-theanine treatment. Administration of L-theanine (3 different
doses), commencing 1 day after ACLTsurgery (lasting 6 weeks of treatment), could significantly
decreased the levels of these pro-inflammatory mediators in a dose-dependent manner. Of note,
L-theanine at 200 mg/kg had a similar effect when compared with celecoxib treatment (Figure 6A–B).
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Figure 6. L-theanine reduced levels of pro-inflammatory mediates in vivo. (A) ELISA assay of serum
levels of COX-2 and PGE-2 in ACLT-induced OA rat model treated with L-theanine (50, 100, 200 mg/kg)
and celecoxib. (B) ELISA assay of iNOS and NO in cartilage in ACLT-induced OA rat model. Values are
the mean ± SD; ** p < 0.01 vs. ACLT group. # p < 0.05, ## p < 0.01, compared between groups with
L-theanine treatment.

4. Discussion

This study was the first to demonstrate the effects of L-theanine on articular cartilage in
experimentally induced OA and IL-1β-induced chondrocytes. The present study was designed
based on previous reports that showed that cartilage and synovial inflammation occurs in OA
progression [10,31,32], and that L-theanine can prevent inflammatory responses by suppressing
the NF-κB signaling pathway [33–35], and reduces the release of downstream pro-inflammatory
mediators [26,36] in inflammatory-related diseases.

Animal models of OA which was induced by surgery was demonstrated mimic human
post-traumatic OA, including partial or total meniscectomy, destabilization of the medial meniscus
(DMM), anterior cruciate ligament (ACL) or posterior cruciate ligament transection. Rat OA model
was broadly used and disease progression in rat surgical models is much faster than in human OA [26].
Except for rapid progression and low cost, a rat ACLT induced OA model exhibits mild cartilage
destruction 4 weeks post-surgery. These advantages make rat OA models, especially ACLT, suitable
for drug testing [37].

In our study, we used 3 different doses of L-theanine, 50, 100, and 200 mg/kg respectively.
We selected these doses because in a previous study it was demonstrated that L-theanine (50 mg/kg/day,
p.o.) exerted neuroprotective effects by inhibiting the NO production [38]. Moreover, the antioxidant
effect of L-theanine (50 mg/kg/day, p.o.) on ethanol-induced oxidative stress was demonstrated by
inhibiting lipid peroxidation in mice [33]. Considering that the concentration of oral drugs may be
diluted after reaching the joints, we examined a higher drug concentration to evaluate the effect of
L-theanine on OA. The results showed that a concentration greater than/equal to 50 mg/kg was effective
for OA development, and that a concentration of 200 mg/kg showed better results. Of note, L-theanine
treatment at 200 mg/kg showed similar effects when compared to treatment with celecoxib.
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In this study, L-theanine significantly decreased the expression of COX-2, PGE-2, MMP-3,
and MMP-13 in vitro, which are major pro-inflammatory cytokines and matrix-degrading enzymes.
Moreover, systemic treatment with L-theanine had a significant ameliorating effect on the cartilage
injury of OA histopathology, and reduced the levels of COX-2 and PGE-2 in vivo. Furthermore,
major biomarkers of cartilage destruction were inhibited by L-theanine administration in vivo, including
C2C and CTX-II. Taken together, our results indicated that application of L-theanine yields protective
effects that might result from the inhibition of pro-inflammatory pathways and matrix hydrolase.

The pathogenesis of OA following ACLT surgery is multifaceted and has focused on overloaded
mechanical stress to articular cartilage and inflammation of the synovium [37,39]. Mechanical
compression and low-grade inflammation, which have been reported key promoters to cartilage
degeneration [1,40], triggers the release of matrix hydrolase and cytokines. These catabolic mediates
are considered central causes of OA cartilage deterioration [41]. COX-2 is a key enzyme in the
initial synthesis process of PGE-2, and overexpression of COX-2 has resulted in elevated expression
of PGE-2 [42]. Several studies have reported that COX-2 and PGE-2 were upregulated in OA and
promoted cartilage damage through activating inflammatory pathways [43,44]. COX-2 specific
inhibitors, including celecoxib, are representative drugs of NSAIDs and have been successfully used as
an alternative for OA treatment. In our study, celecoxib was selected as a positive control because
celecoxib has demonstrated fewer side effects compared with non-specific COX inhibitors [45,46].
The data presented in the current study showed that levels of COX-2 and PGE-2 were downregulated
after celecoxib administration in vivo, however, histological assessment showed no significant changes
in proteoglycans (positive staining of cationic with Safranin O). It was unlikely that COX-2 inhibition
alone could reduce degradation of proteoglycans and prevent OA cartilage damage in in vitro
chondrocyte explants [45]. In addition, our results showed that L-theanine treatment reduced levels
of COX-2 and PGE-2 both in vivo and in vitro, thereby indicating that L-theanine could suppress
inflammatory responses in OA progression.

In the current study, the effects of L-theanine on iNOS and NO were investigated. Recent studies
have shown the contribution of NO in OA pathogenesis [47,48]. Both iNOS and NO were significantly
increased in OA development and were accompanied with up-regulation of MMPs, which contributed
to collagen-destruction and proteoglycan-degradation. IL-1β and TNF-α were shown to be promoters
of NO production, and NO could promote apoptosis of chondrocytes [49]. Moreover, IL-1β and NO
induced the onset of matrix-degrading enzymes, including MMP-3 and MMP-13 [50]. NOS exists in
animals as neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) [51]. eNOS and
nNOS exert effects through combining with each other, and are in general targeted at the cardiovascular
and nervous system as second-messenger molecules after being induced to NO [52]. iNOS is the
enzyme that is responsible for the production of NO. The induction of iNOS expression is regulated by
NF-Kβ [53] and IL-1β upregulation of the expression of iNOS is mediated by NF-kB. Thus, IL-1β results
in the formation and translocation of NF-kB into the nucleus, where it binds to specific sequences in
the promoter region of the iNOS gene [54].

NF-κB is a multifunctional transcription factor that is associated with proinflammatory
responses [55] and regulates the expression of genes that regulate cell proliferation, differentiation,
and apoptosis [56]. In a variety of tissues, the transcriptional activity of NF-κB is increased with aging,
and is associated with numerous age-related degenerative diseases, including osteoporosis and OA [57].
NF-κB activation occurs in response to stimuli, including IL-1β, TNF-α, and lipopolysaccharide (LPS).
OA chondrocytes display increased expression of IL-1β, which significantly promotes the catabolic
metabolism of joints and cartilage through activation of the NF-κB pathway, thus inducing a variety
of genes in chondrocytes, including cytokines, MMPs, and a disintegrin and metalloproteinase with
thrombospondin motifs (ADAMTS) [58]. In the current study, treatment with L-theanine resulted in
inhibition of the NF-κB pathway by suppression of the translocation of phosphate p-65. Our results
also showed that administration of L-theanine significantly reduced the expression of iNOS and NO
both in vivo and in vitro. Based on results presented in a previous study, L-theanine might prevent
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cartilage deterioration by reducing the action of IL-1β, NF-κB signaling, MMPs, and NO. Considering
that most signaling including MAPK, Wnt, and Nrf2 pathways also play important roles in the OA
process, an NF-κB inhibitor would be necessary in future studies of L-theanine.

In OA, the destruction of the articular cartilage will result in the loss of its two major components,
proteoglycans and type II collagen [59], and C2C and CTX-II are two biochemical markers of the
breakdown of type II collagen [60]. In our study, serum levels of C2C and CTX-II were measured to
evaluate cartilage metabolism. Our results showed a reduction in C2C and CTX-II were observed
in an experimentally induced rat model. The serum or urine concentration of C2C and CTX-II is
sensitive [61] and can be obtained relatively easily compared to synovial fluid. However, considering
that the serum concentration does not directly reflect the local environment of the joint, the effect of
L-theanine on C2C and CTX-II in synovial fluid should be investigated in future studies.

Certain limitations to the current study must be acknowledged. This study was based on a
rat model that underwent 6 weeks of treatment, and in the future, long-term treatment is necessary
before clinical applications are performed in humans. Furthermore, the use of behavioral assessment
could help evaluate OA pain following L-theanine treatment. In addition, although L-theanine
exerted protective effects to cartilage lesions in the current study, considering the anatomy of the knee
joint, further studies on the effects of L-theanine on subchondral bone and synovium are warranted.
Although L-theanine performed protective effects on OA rat knees and rat primary chondrocytes,
more tests are needed before the application for human OA treatment or prevention.

5. Conclusions

Our data revealed that L-theanine exerts an anti-inflammation and ECM-protection effect,
and suppresses the NF-κB pathway in IL-1β stimulated chondrocytes. In addition, our in vivo
study demonstrated a positive effect of L-theanine for damaged-cartilage and showed a comparable
treatment effect of pro-inflammatory cytokines to celecoxib after ACLT-induced OA. These results
suggest that L-theanine should be considered in OA prevention.
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