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Abstract

Degeneration of the intervertebral disc is characterized by changes in proteoglycan status, loss of 

bound water molecules, decreased tissue osmotic pressure and a resulting mechanical failure of 

the disc. A similar spectrum of changes is evident in osteoarthritic articular cartilage. When 

healthy, resident cells in these skeletal tissues respond to applied mechanical loads by regulating 

their own osmotic state and the hydration of the extracellular matrix. The transcription factor 

Tonicity-Responsive Enhancer Binding Protein (TonEBP or NFAT5) is known to mediate the 

osmoadaptive response in these and other tissues. While the molecular basis of how osmotic 

loading controls matrix homeostasis is not completely understood, TonEBP regulates the 

expression of aggrecan and β1,3-glucoronosyltransferase in nucleus pulposus cells, in addition to 

targets that allow for survival under hypertonic stress. Moreover, in chondrocytes, TonEBP 

controls expression of several collagen subtypes and Sox9, a master regulator of aggrecan and 

collagen II expression. Thus, TonEBP-mediated regulation of the matrix composition allows disc 

cells and chondrocytes to modify the extracellular osmotic state itself. On the other hand, TonEBP 

in immune cells induces expression of TNF-α, IL-6 and MCP-1, pro-inflammatory molecules 

closely linked to matrix catabolism and pathogenesis of both disc degeneration and osteoarthritis, 

warranting investigations of this aspect of TonEBP function in skeletal cells. In summary, the 

TonEBP system, through its effects on extracellular matrix and osmoregulatory genes can be 

viewed primarily as a protective or homeostatic response to physiological loading.
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1. Introduction

Both back pain and osteoarthritis (OA) are common, costly, and painful conditions (Katz, 

2006; Lee et al., 2013). As the second most frequent neurological ailment in the United 

States, back pain causes Americans to spend upwards of $100 billion annually on treatment 

(Katz, 2006). This type of chronic pain is closely linked to degenerative changes that impair 

function of tissues of the intervertebral disc, the soft tissue between vertebrae. Intervertebral 

disc degeneration is characterized by changes in proteoglycan status, loss of bound water 

molecules, decreased tissue osmotic pressure and a resulting decline in the ability of the 

tissues to absorb biomechanical forces (Haefeli et al., 2006; Le Maitre et al., 2007). Over 

96% of people age 60 and above exhibit signs of disc degeneration on autopsy, making it an 

almost ubiquitous feature of aging (Lawrence, 1969; Miller et al., 1988). Not surprisingly, 

the same spectrum of changes is evident in degeneration of another proteoglycan-rich tissue, 

the articular cartilage. Indeed, in OA, disease progression is closely linked to the loss of 

aggrecan and decrease in tissue osmolarity1 (Wheaton et al., 2004; Hani et al., 2014). In the 

disc and articular cartilage, resident cells are able to respond to applied mechanical loads by 

regulating their own osmotic state and the hydration status of the extracellular matrix.

While the components of matrices are similar in disc and cartilage, the proportion of the 

individual matrix components is different, resulting in tissues with differing architecture and 

properties. The intervertebral disc is composed of three tissue types: the inner nucleus 

pulposus (NP), a fibrocartilagenous annulus fibrosus (AF), and cartilage endplates (CEP) 

that cover the contiguous vertebrae. In terms of matrix composition, there are more 

similarities between NP, CEP and articular cartilage than any one of them with the AF. The 

disc provides mobility to the spine during flexion, extension and rotation. In the adult disc, 

NP cells are sparse and reside within a gelatinous network of proteoglycans and collagens. 

The AF comprises concentric loops of collagen I fibers in the outer aspect of the tissue, 

transitioning to a mixture of collagen I and II in the inner AF and the NP (Roberts and 

Urban, 2011). While the most abundant proteoglycan is aggrecan, smaller amounts of 

versican, biglycan, decorin, and fibromodulin are also present (Cs-Szabo et al., 2002). On 

the other hand, the articular cartilage provides an almost frictionless articulating diarthrodial 

joint surface. Long-lived chondrocytes are sparsely distributed within an abundant 

extracellular matrix, which is composed mainly of aggrecan and collagen II along with 

decorin, biglycan, and fibromodulin (Roughley and Lee, 1994).

The high proteoglycan content of the disc and the articular cartilage accounts for elevated 

water content in these tissues; the percentage water of the NP and AF is approximately 77% 

and 70%, respectively (Roberts and Urban, 2011). The term solid–fluid phase biphasic 

mixture was used by Q. Wang et al. (2013) to describe the composite structure of cartilage 

and a similar term could be used to describe the fluid phase of the disc (Q. Wang et al., 

2013).Water molecules exist in both tissues in free and bound forms: the bound water 

reflects the charge density distribution mediated by both proteoglycans and to a lesser extent 

the fibrous proteins, while the free water status is dependent on both the hydrostatic as well 

as the osmotic pressure. Within this hydrostatically loaded environment, cells of both the 

1Osmolarity refers to the total concentration of both cell-penetrating and non-cell-penetrating solutes in extracellular environment.
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disc and the synovial joint have evolved mechanisms to regulate water transport and the 

external osmotic pressure. This mini-review describes the molecular mechanisms by which 

cells of the disc and articular cartilage respond to osmotic changes, with special focus on the 

role of the osmo-responsive transcription factor TonEBP or nuclear factor of activated T 

cells 5 (NFAT5) in regulating cell function and tonicity2.

2. Hyperosmolarity promotes matrix synthesis in the intervertebral disc and 

articular cartilage

2.1. The intervertebral disc

Reports from a number of laboratories indicate that the intervertebral disc is hyperosmolar 

when compared to other tissues. Values reported vary from 430 to 496 mOsm (Ishihara et 

al., 1997; van Dijk et al., 2011). This unusually high extracellular osmotic pressure affects 

both cell function and matrix synthesis. Ishihara and colleagues were the first to demonstrate 

this relationship in disc tissue using bovine NP explants (Ishihara et al., 1997). Upon 

addition of NaCl to the culture medium to increase its osmolarity, an observed increase in 

[35S]sulfate incorporation rate suggested an overall elevation in proteoglycan synthesis. 

Importantly, since sucrose produced a similar result, it was inferred that the stimulatory 

effect on proteoglycan synthesis was related to the medium tonicity rather than the presence 

of Na+ or Cl− ions. Subsequent work, using isolated NP cells, indicated that 

glycosaminoglycan (GAG) production and sulfate incorporation rates were highest in 

medium at 370 mOsm(Takeno et al., 2007). Later, van Dijk et al. showed that when 

polyethylene glycol (PEG) was used to increase medium tonicity to 570 mOsm, preservation 

of NP cell phenotype (as measured by aggrecan and collagen expression) was better than 

when sucrose was the osmolyte (van Dijk et al., 2011, 2013).

How extracellular osmolarity regulates the expression levels of specific matrix molecules 

has received intense study in recent years. In human NP and AF cells, expression levels of 

aggrecan and collagen II were increased in cells under hyperosmotic conditions (500 mOsm 

compared to 400 mOsm control), while collagen I expression was downregulated (Wuertz et 

al., 2007). Similarly, in bovine NP cells, an increase in medium osmolarity from 300 to 500 

mOsm increased aggrecan expression, while decreasing levels of MMP-3 mRNA 

(Neidlinger-Wilke et al., 2012). To relate osmolarity to loading, rabbit discs were cultured 

under hyper-osmotic condition (485 mOsm 8 h/day) and before measuring proteoglycan 

synthesis (Haschtmann et al., 2006).While loading did not influence proteoglycan content or 

disc cell viability, after 28 days in culture, the raised osmotic pressure prevented aberrant 

overexpression of collagen I and appeared to influence aggrecan expression. More recently, 

Spillekom et al. found that expression of brachyury, a phenotypic indicator of the NP, as 

well as aggrecan and GAG synthesis was at optimal levels when cells were cultured in 

medium adjusted to 400 mOsm/L (Spillekom et al., 2014). Although there are few studies of 

the osmotic responsiveness of the AF, Chen et al. showed that in a hyperosmotic 

environment (450 mOsm), there were decreased levels of aggrecan and collagen II in the 

transition zone of the disc. Incubation in either hypoosmotic or hyperosmotic media 

2Tonicity refers to only the concentration of non-cell-penetrating solutes
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increased mRNA levels of the small proteoglycans bigycan and decorin in transition zone 

cells, while both conditions decreased mRNA levels of these transcripts in the NP (Chen et 

al., 2002). The above studies provide strong evidence that cells of the intervertebral disc, 

especially those of the NP, respond to environmental osmotic changes by altering their 

matrix production. The 1997 study by Ishihara et al. demonstrated that maximum rates of 

sulfated GAG production resulted from bringing medium osmolarity to an approximately 

physiological level (430 mOsm), suggesting that osmotic changes accompanying tissue 

degeneration may affect matrix production rate.

2.2. Articular cartilage

In a 1986 study, Schneiderman et al. evaluated the effects of mechanical and osmotic 

loading on [35S]sulfate incorporation into the GAGs of the femoral cartilage (Schneiderman 

et al., 1986). These workers demonstrated that both types of pressure decreased 

incorporation and that this was not due to changes in solute transport. A more detailed study 

was performed by Bayliss and Urban, who questioned how increases in extracellular 

osmolarity impacted proteoglycan synthesis in both load-bearing (human articular cartilage) 

and non-loadbearing (bovine nasal cartilage) tissues (Urban and Bayliss, 1989). In contrast 

to the earlier work (above), they showed that, in both tissue types, ionic strength positively 

influenced [35S]sulfate and 3H-proline incorporation rates, subsequently reporting that 

incorporation rates were maximized between 350 and 400 mOsm; values that are similar to 

that of native cartilage (Urban et al., 1993).

The relationship between osmotic loading and the impact of biomechanical forces on 

articular cartilage has also received attention. Under hyperosmotic conditions (560–680 

mOsm), there was a decrease in aggrecan promoter activity and mRNA expression 

following loading for 24 h. Since the decrease in promoter activity was relieved when 

osmotic loading was performed in a cyclic manner, the authors suggested that both the 

osmotic environment and the applied force regulated the transcriptional response (Palmer et 

al., 2001). Finally, there is evidence linking osmotic pressure to expression of the 

chondrocyte phenotype. Tew et al. revealed that hyperosmotic treatment increased the 

mRNA stability of SOX9 and other genes important to chondrocyte function as well as the 

activity of a COL2A1 enhancer-driven reporter (Tew et al., 2009, 2011). In an equine model 

of OA, it was shown that the osmotically driven increase in SOX9 mRNA stability was 

disease dependent (Peffers et al., 2010).

Thus, hyper-osmolarity regulates expression of the most critical matrix genes in both the NP 

and articular cartilage: aggrecan and collagen II. While the molecular basis of this response 

has not been completely characterized, within the last decade increasing attention has been 

focused on the role of transcription factor TonEBP in mediating the osmotic response of 

these connective tissues.
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3. The osmotic response of both chondrocytes and NP cells is mediated by 

TonEBP

3.1. General osmotic response of TonEBP

Shifts in the extracellular osmotic status of a tissue are common and elicit a robust and 

coordinated molecular response. A hypertonic challenge activates membrane electrolyte 

transporters, which, by balancing intercellular and extracellular solute concentrations 

prevent large volume changes. This is a short-term fix, however, as the resulting change in 

osmotic pressure can influence or even damage protein and DNA structure and function and 

trigger autophagy, senescence or apoptosis (Cheung and Ko, 2013). To prevent these 

potentially damaging events, the transcription factor TonEBP drives the expression of a suite 

of genes, which facilitate the exchange of accumulated charged ions for small organic non-

ionic osmolytes. These well-described TonEBP targets include aldose reductase (AR), 

betaine-γ-amino butyric acid transporter (BGT1), sodium myo-inositol transporter (SMIT), 

and taurine transporter (TauT), which regulate the transport of sorbitol, betaine, myo-

inositol, and taurine across the plasma membrane, respectively (Yancey et al., 1982; Garcia-

Perez and Burg, 1991).While signaling events that immediately follow osmotic shifts and 

converge at TonEBP have been studied (Tsai et al., 2007; Gallazzini et al., 2011; Zhou et al., 

2013), the identity of upstream a cell surface osmosensor/s complex in mammals remains 

elusive. The TRPV4/AQP4 complex is proposed as an osmosensor in astrocytes, but, it 

responds only to hypotonic shifts (Benfenati et al., 2011). More relevant to this discussion 

are the findings that integrin α1β1, α6β4 (Jauliac et al., 2002; Moeckel et al., 2006) as well 

as stretching(Scherer et al., 2014) activate TonEBP signaling; suggesting that mechanical 

deformation can directly influence TonEBP. Regardless of the nature of upstream 

osmosensor, following hypertonic stress, TonEBP is activated via increased mRNA 

expression and stabilization (Cai et al., 2005) accompanied by a rise in overall protein 

abundance, nuclear shuttling (Woo et al., 2000), and C-terminal (AD1, AD2 and AD3) 

transactivation domain activity (Lee et al., 2003). In the nucleus, TonEBP homodimers are 

formed which preferentially bind to the tonicity responsive enhancer (TonE) consensus 

sequence in target gene promoters (López-Rodríguez et al., 2001; Stroud et al., 2002). The 

osmolarity of the environment determines TonEBP nuclear to cytoplasmic abundance, and 

in this way regulates the status of its activity and target gene expression (Woo et al., 2000; 

Tong et al., 2006).

Loading of the hydrostatically pressurized articular cartilage and the intervertebral disc 

results in minute-to-minute fluctuations in extracellular osmolarity (Urban, 1994; Roberts et 

al., 1998). From this perspective, it is not surprising that TonEBP is robustly expressed in 

both NP and AF tissues, as was first reported by our group (Tsai et al., 2006). In that study, 

following silencing of TonEBP, we demonstrated a decreased survival of NP cells exposed 

to hypertonic medium. This observation lent strong support to the hypothesis that this 

transcription factor is necessary for NP cell viability in the hypertonic milieu of the disc. 

Furthermore, hyperosmotic challenge led to increases in mRNA levels of some of the most 

well studied TonEBP target genes – SMIT, BGT1, and TauT. In this and later studies, our 

group defined critical matrix-related targets of TonEBP in the NP (discussed below) as well 

as the water channel protein AQP2 (Gajghate et al., 2009). Moreover, TonEBP has been 
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shown to be expressed in both human articular chondrocytes (van der Windt et al., 2010) 

and the chondrogenic cell line ATDC5 (Caron et al., 2013). Thus, TonEBP is a critical 

factor in the maintenance of cell health in the osmotically demanding environments of the 

NP and articular cartilage.

3.2. TonEBP regulates matrix genes in the intervertebral disc and articular cartilage

Importantly, aside from regulating intracellular osmolarity, TonEBP is a key regulator of the 

content and, therefore, osmotic status of the extracellular matrix. Tsai et al. identified a 

consensus TonE element in the promoter of the aggrecan gene that functionally interacted 

with TonEBP (Fig. 1) (Tsai et al., 2006, 2007). Suppression of TonEBP activity by 

dominant negative protein or siRNA dramatically decreased aggrecan promoter activity. 

This was the first evidence in NP cells that TonEBP transcriptionally regulates matrix genes. 

Later investigations by our group showed that TonEBP also regulated the expression of 

β1,3-glucoronosyltransferase (GlcAT-I), an enzyme required for the synthesis of chondroitin 

sulfate chains of aggrecan (Hiyama et al., 2009). A follow-up study revealed that BMP-2 

and TGF-β-mediated induction of GlcAT-I was also dependent on TonEBP activity (Hiyama 

et al., 2010). Based on these findings, it is clear that by controlling the expression and 

synthesis of aggrecan, TonEBP permits disc cells to autoregulate and adapt to their 

hyperosmotic state (Fig. 2).

To date, there have been a limited number of investigations concerning the function of 

TonEBP in chondrocytes and the role of this transcription factor in the maintenance of 

cartilage structure. Van der Windt et al. examined the effect of osmolarity on human 

articular chondrocytes showing that physiological osmolarity (380 mOsm) improved the 

expression of multiple markers including aggrecan, sox9 and collagen II and suppressed the 

expression of collagen I (van der Windt et al., 2010). While the presence of TonE elements 

in these genes was not addressed, induction was found to be TonEBP-dependent. Similarly, 

in ATDC5 cells hyperosmotic conditions promoted the expression of sox9, collagen IIa1, 

collagen Xa1, Runx2, and aggrecan along with increased GAG content (Caron et al., 2013). 

Noteworthy, knockdown of TonEBP significantly decreased expression of these markers, 

indicating that an osmo-dependent TonEBP pathway was involved. Since Sox9 is a critical 

regulator of chondrocyte differentiation and transcriptionally controls aggrecan and collagen 

expression (Lefebvre and Smits, 2005), this study pointed to a role for TonEBP in 

development. Caron et al. (2013) noted that when TonEBP was silenced, the osmotically-

induced increase in Sox9 expression was blunted (Caron et al., 2013).While this study 

further implied a linkage between osmolarity and cartilage development, the details of that 

relationship require further clarification.

In summary, although it is clear that activity of TonEBP is linked to both cartilage and disc 

function, much remains to be learned concerning its regulation and matrix-related targets. It 

should be noted that two TonEBP null mice have previously been developed; however, 

perinatal lethality has mitigated their use for studies mentioned above (López-Rodríguez et 

al., 2004; Mak et al., 2011). A TonEBPfl/fl mouse has recently been developed which should 

add significantly to current knowledge of the function of this critical transcription factor in 

cartilage and the intervertebral disc (Wiig et al., 2013).
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4. Degeneration, inflammation, and the TonEBP-mediated response

Both degenerative disc disease and OA are characterized by decreased levels of aggrecan 

and collagen II along with increased expression of the pro-catabolic MMP and ADAMTS 

enzymes (Im et al., 2007; Le Maitre et al., 2007; Verma and Dalal, 2011; Wei et al., 2014). 

In the context of intervertebral disc degeneration, it is likely that the increase in activity of 

these enzymes is triggered by the pro-inflammatory cytokines IL-1, IL-6, TNF-α, and IL-17 

(Risbud and Shapiro, 2014); in OA, a similar increase in cytokines has been observed (Lee 

et al., 2013). As discussed earlier, a decline in water-binding aggrecan during degeneration 

causes NP tissue dehydration leading to functional deficits and, often, pain (Nguyen et al., 

2008; Fenty et al., 2013). Loss of water is also identified as an early feature of OA (Hani et 

al., 2014; Souza et al., 2014). Not surprisingly, a number of workers have explored the 

relationship between inflammation, environmental osmolarity, and activity of TonEBP (Fig. 

2).

Esensten et al. (2005) demonstrated that TonEBP drove the expression of a key pro-

inflammatory cytokine in hypertonic culture, binding to the TNF-α promoter via a TonE 

element (Esensten et al., 2005). In addition to TNF-α, hypertonicity-dependent induction of 

IL-6 has been shown (Ueno et al., 2013). It is important to note that since increased 

osmolarity influences expression of IL-6 in a post-transcriptional manner (Tew et al., 2011), 

it is likely that micro RNAs are involved along with TonEBP. Importantly, since these 

inflammatory cytokines and others promote degeneration by enhancing the chemotaxis of 

immune cells into the disc (J. Wang et al., 2013), it was not surprising to find that a 

functional TonE element was also present in the 5′ flanking region of the MCP-1 (CCL2) 

gene and that the expression was increased under hypertonic conditions (Kojima et al., 

2010). Expression of MCP-1 is closely tied to the pathogenesis of both disc degeneration 

(Phillips et al., 2013) and OA (Chou et al., 2013; Liu et al., 2013). This hypertonicity-

dependent increase in MCP-1 promoter activity was ablated when the TonE was deleted 

(Kojima et al., 2010). Küper et al. (2012) provided further support for MCP-1 as TonEBP 

target by demonstrating that an increase in glucose or mannitol concentration increased 

MCP-1 expression (Küper et al., 2012). This discovery, that TonEBP drives expression of 

pro-inflammatory targets in addition to osmoregulatory genes, may have important 

implications in tissues such as NP and articular cartilage, which experience large daily 

swings in both osmotic pressure due to changes in applied forces resulting from locomotion 

(Boos et al., 1993; Wuertz et al., 2007).

Of equal importance in the context of both degenerative diseases is the discovery that 

TonEBP can be activated by conditions other than osmolarity (Hiyama et al., 2009; Gogate 

et al., 2012; Halterman et al., 2012) (Fig. 2). For example, TonEBP mediates the effects of 

Toll-like receptors (TLRs) in macrophages by up-regulating target genes including Nos2, 

Tnf and Il-6, essential for antimicrobial immunity (Buxadé et al., 2012). TLR is a family of 

receptors that mediate cellular response toward pathogenic molecules distinct from host 

molecules that are commonly referred to as pathogen-associated molecular patterns 

(PAMPs) e.g. LPS and endogenous host molecules arising from cell death and damage 

termed as danger associated molecular patterns (DAMPs) e.g. HMGB1. It is important to 

recognize that NP cells and chondrocytes express multiple TLRs of which TLR2 and TLR4 
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are studied the most (Liu-Bryan and Terkeltaub, 2010; Rajan et al., 2013). In addition, 

TonEBP influences a number of targets relevant to matrix homeostasis in response to LPS-

mediated TLR activation: Vcan, Has1, Fn1, Timp1, Tnc, and Mmp13 (Buxadé et al., 2012). 

TonEBP protein was shown to be up-regulated and localized to the nucleus in fibroblast like 

synoviocytes from rheumatoid arthritis patients and this expression was further enhanced by 

TNF-α or IL1-β (Yoon et al., 2011). Furthermore, TonEBP directly enhances the activity of 

the NF-κB pathway in response to LPS treatment and directly interacts with p65 under 

hypertonic conditions (Roth et al., 2010). These findings beg the question: Does TonEBP 

play a role in disease pathogenesis? Indeed, for OA cartilage, a connection between LPS and 

induction of MMPs and ADAMTSs has been well established (Kim et al., 2006; Lee et al., 

2013); likewise, in the intervertebral disc, the relationship between a broad range of pro-

inflammatory cytokines, LPS and matrix degeneration has been elucidated (Wang et al., 

2011; Fujita et al., 2012; Rajan et al., 2013; Tian et al., 2013; Maidhof et al., 2014). Based 

on these observations and studies of immune cell function, it is likely that TonEBP can be 

activated by at least two distinct mechanisms as follows: Firstly, the canonical pathway, 

which responds to changes in the osmotic status of the extracellular milieu. Secondly, 

TonEBP can be activated in response to receptor (TLR) activation. The possible pathways 

for activation are shown in Fig. 2. While the noncanonical pathways need to be verified for 

cartilage and the intervertebral disc, Kimet al. found that when macrophages were pretreated 

with LPS, the response of osmotic-response genes (AR, BGT1, SMIT) was mitigated. On 

the other hand, cells pretreated with hyperosmotic medium exhibited a blunted response to 

TLR-stimuli as measured by IL-6 levels (Kim et al., 2013). Should these findings be 

extended to the previously described osmo-dependent TonEBP targets in disc and cartilage, 

such as Aggrecan, Sox9, and GlcAT-I, it follows that their regulation may be disturbed in an 

inflammatory microenvironment, such as that present during degeneration.

Finally, it should be noted that unlike the tonicity-mediated shifts in electrolytes regulated 

by rate-limiting sodium transporters, TonEBP responds to hypertonic environments by 

driving the accumulation of small polyhydric alcohols (myoinositol and sorbitol), 

methylamines (betaine) and amino acids (taurine) through controlling expression of target 

genes that are involved in either the synthesis or transport of these molecules (Handler and 

Kwon, 2001). The advantage posed by this response is that these compounds do not perturb 

the activities of enzymes and macromolecules in the crowded cytosol. Indeed, the TonEBP 

system generates chaperons that serve to structurally protect osmotically-sensitive proteins 

(Woo et al., 2002; Tsai et al., 2006). From this perspective, the TonEBP system through its 

effects on extracellular matrix and osmoregulatory genes can be viewed primarily as a 

protective or homeostatic response to counteract the effects of chronic stress. Stress, either 

as a result of extended changes in tonicity or as an inflammatory response, would be 

expected to trigger pathogenic events that lead to system failure and tissue degradation. 

From this perspective elucidating the mechanism by which TonEBP influences tissue 

function will provide new insights into treatment of the commonest skeletal diseases.
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Fig. 1. 
Regulation of aggrecan gene promoter activity by TonEBP. A,DNA sequence of the 

promoter region of rat and mouse aggrecan gene. TonE consensus sequence is marked in 

bold and underlined. B, promoter organization of the rat aggrecan gene. The transcription 

start site is marked as + 1. TonE sites are shown as ovals on either side of a conserved Sox-9 

binding site. C, electromobility shift assay to examine functional binding of TonEBP to 

TonE motif in the rat aggrecan gene promoter. An oligonucleotide probe containing the 

TonE motif (−912 b) in the rat aggrecan promoter was incubated with nuclear extracts from 

rat nucleus pulposus cells cultured under isotonic and hypertonic (400 and 500 mosmol/kg) 

conditions, and binding was detected using chemiluminescence. Specificity was confirmed 

by inclusion of excess unlabeled wild type probe or a probe containing mutation in the TonE 

site (Mt probe) in the binding reaction. The binding signal is significantly diminished when 

either a wild type competitor probe or a mutant probe is used. D, nucleus pulposus cells 

were co-transfected with DN-TonEBP and aggrecan reporter plasmids. Twenty-four hours 

after transfection, cells were cultured in isotonic medium for 24 h and luciferase activity 

measured. Expression of DN-TonEBP results in decreased aggrecan promoter activity 

compared with control cells that receive empty backbone vector. E, aggrecan promoter 

construct was transiently transfected into siRNA expressing and control cells (C) and 

reporter activity measured in isotonic media. Compared with control cells, the silenced 
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nucleus pulposus cells elicit a marked reduction in aggrecan reporter activity. Data represent 

mean ± S.D. from three independent experiments, performed in triplicate (n= 3); *, p b 0.05. 

This research was originally published in The Journal of Biological Chemistry. Tsai TT, 

Danielson KG, Guttapalli A, Oguz E, Albert TJ, Shapiro IM, Risbud MV. TonEBP/OREBP 

is a regulator of nucleus pulposus cell function and survival in the intervertebral disc. J Biol 

Chem. 2006; 1;281(35):25416-24. © the American Society for Biochemistry and Molecular 

Biology.
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Fig. 2. 
Schematic representation of the osmotic response in healthy (left panel) and degenerative 

(right panel) disc or articular cartilage tissues. In healthy tissue, hyperosmolarity results 

from high negative charge of proteoglycans resulting in influx of NaCl. Hyperosmolarity 

results in robust increase in TonEBP mRNA, protein, and nuclear shuttling. TonEBP binds 

to TonE sites in target promoters to drive expression of osmotic response genes (blue) (AR, 

BGT1, SMIT, TauT), protecting against cellular damage during hypertonic stress. Similarly, 

TonEBP induces transcription of genes involved in matrix homeostasis (green) (ACAN, 

GlcAT-I, AQP2, Sox9) to autoregulate the extracellular osmotic environment. In the 

pathological state, activation of TLR or NF-κB pathways induce TonEBP to act on a 

specific set of targets (red). Activity on osmoadaptation targets (blue) is decreased with this 

type of activation. Osmotic stress may also induce TonEBP activation of pro-inflammatory 

targets (green). It should be noted that in disc and cartilage relationship between 

pathological stimuli and TonEBP has not been studied yet. *Studies have not addressed 

whether TonEBP binds TonE in Sox9. AR, aldose reductase; BGT1, betaine-g-amino 

butyric acid transporter; SMIT, sodium myo-inositol transporter; TauT, taurine transporter 

(TauT); ACAN, Aggrecan; GlcAT-I, β1,3-glucuronosyl transferase 1; AQP2, Aquaporin 2; 

TLR, Toll-like receptor; TNF-a, tumor necrosis factor-a; IL-6, interleukin 6;NOS2, nitric 

oxide synthase 2; VCAN, versican; MMP-13, matrix metallopeptidase 13. Targets in dashed 

border indicate results that have not been verified in NP cells or chondrocytes.
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