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Superfluid Phase Transitions 
and Effects of Thermal Pairing 
Fluctuations in Asymmetric Nuclear 
Matter
Hiroyuki Tajima1*, Tetsuo Hatsuda1,2, Pieter van Wyk3 & Yoji Ohashi3

We investigate superfluid phase transitions of asymmetric nuclear matter at finite temperature (T) and 
density (ρ) with a low proton fraction (Yp ≤ 0.2), which is relevant to the inner crust and outer core of 
neutron stars. A strong-coupling theory developed for two-component atomic Fermi gases is 
generalized to the four-component case, and is applied to the system of spin-1/2 neutrons and protons. 
The phase shifts of neutron-neutron (nn), proton-proton (pp) and neutron-proton (np) interactions up to 
k = 2 fm−1 are described by multi-rank separable potentials. We show that the critical temperature Tc

nn 
of the neutron superfluidity at Yp = 0 agrees well with Monte Carlo data at low densities and takes a 
maximum value Tc

nn= 1.68 MeV at ρ ρ = ./ 0 140  with ρ0 = 0.17 fm−3. Also, the critical temperature Tc
nn of 

the proton superconductivity for Yp ≤ 0.2 is substantially suppressed at low densities due to np-pairing 
fluctuations, and starts to dominate over Tc

nn only above ρ ρ = ./ 0 700 (0.77) for Yp = 0.1(0.2), and (iii) the 
deuteron condensation temperature Tc

d is suppressed at Yp ≤ 0.2 due to a large mismatch of the two 
Fermi surfaces.

Superfluidity in strongly interacting Fermi systems has attracted much attention both theoretically and exper-
imentally. For reviews, we refer to refs. 1,2 in nuclear physics, refs. 3–5 in astrophysics, as well as refs. 6–10 in con-
densed matter physics. It has also been recognized that the dilute neutron matter and two-component ultracold 
atomic fermions near the unitarity have close similarity. This is due to the strong pairing interactions associ-
ated with the large negative neutron-neutron scattering length as = −18.5 fm and relatively small effective range 
reff = 2.8 fm in the former (see refs. 6–10). In the latter atomic system, the pairing interaction can be described by a 
zero-range potential with a large scattering length11. In strongly interacting systems, such as neutron matter and 
the unitary Fermi gas, effects of pairing fluctuations near the superfluid phase transition are particularly impor-
tant. Such effects have extensively been studied in cold Fermi gas physics through the observations of various 
quantities, such as the single-particle excitation spectrum, specific heat, superfluid phase transition temperature 
(Tc), shear viscosity, and spin susceptibility10,12,13. Three of the present authors have recently shown14 that a strong 
coupling theory, being based on the one developed by Nozières and Schmitt-Rink (NSR)15 can provide a unified 
description of neutron matter and an ultracold Fermi gas in the unitary regime. This indicates that the latter 
atomic gas system can be used as a quantum simulator for neutron star interiors at subnuclear densities.

There are, however, some issues to be overcome for better understanding of the physics of neutron star interi-
ors: Besides neutrons, one should also include a non-zero fraction Yp of protons. To deal with this, one needs to 
extend a strong-coupling theory developed for a two-component atomic Fermi gas to the four-component case 
involving spin and isospin degrees of freedom. In such a system, not only a neutron-neutron (nn) interaction but 
also a proton-proton (pp) interaction, as well as a neutron-proton (np) interaction, must be taken into account. 
In particular, the np interaction in the deuteron channel is stronger than the other interactions, so that it is 
expected to affect the onset of proton superconductivity. Furthermore, the short-range repulsion of the nuclear 
force is important to describe the pairing phenomena around the nuclear saturation density. In this paper we will 
consider all these points, and study the critical temperature of the superfluid phase transitions in asymmetric 
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nuclear matter around the nuclear saturation density ρ0 = 0.17 fm−3, by including the nn, pp and np pairng fluc-
tuations. In this paper, we set  = =k 1B , and the system volume is taken to be unity, for simplicity.

Methods
Effective hamiltonian.  We introduce the pair operator Sm (



T ) in the spin-singlet–isospin-triplet (spin-tri-
plet–isospin-singlet) channel with the relative momentum k and the center of mass momentum q:
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here ck,λ,i is the fermion annihilation operator with momentum k, spin index λ(λ′) = ↑, ↓ and isospin index i = p, 
n. The Clebsch-Gordan coefficients in the spin and isospin spaces lead to the projection of the pair operator to 
appropriate channels.

The effective Hamiltonian in these pairing channels can be written as
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where Vs(t) is a spin-singlet (triplet) interaction depending on the momentums, k and k′. ξ μ= −i M ip
p

, 2 i

2
 is the 

kinetic energy, measured from the nucleon chemical potentials μi, and Mi is the nucleon mass. The explicit form 
of Eq. (3) is given by
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Effective S-wave interaction.  Throughout this paper, we neglect the isospin symmetry breaking in the 
interaction Vs(t), and use the averaged nucleon mass, Mp = Mn = M = 939 MeV. Furthermore, we only retain the 
S-wave part of Vs(t) at low energies and introduce a multi-rank separable potential16–22

∑ η γ γ′ = ′α α α α
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where γα,N(k) > 0 is a form factor with the suffix α = s,t representing the spin-singlet (α = s) and spin-triplet 
(α = t) channels, respectively. ηα,N = ±1 determines the sign of the interaction (e.g., ηα,N = −1 is attractive). We 
note that the partial wave expansion of the potential reads π′ = ∑ ′ ′α α

ˆ ˆk k k kV V k k Y Y( , ) 4 ( , ) ( ) ( )L M
L M

LM LM,
( , )  with 

α = s(t). Equation (5) is a separable approximation of the S-wave contribution, ′αV k k( , )(0,0) . Such a separable 
potential has been successfully applied to various nuclear systems14,23–33.

The simplest case is the rank-one separable potential (SEP1), which is given by setting jmax = 1 and ηα,1 = −1 
in Eq. (5). A typical example of SEP1 is the Yamaguchi potential16,
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The parameters uα,1 and Λα,1 are determined such that the observed values of the scattering length and the 
effective range in the 1S0 channel (as, rs) = (−18.5 fm, 2.80 fm), and those in the 3S1 channel (at, rt) = (5.42 fm, 
1.76 fm) are reproduced:
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We summarize the evaluated values of uα,1 and Λα,1 in Table 1, as well as the resulting phase shifts denoted by 
the dashed lines in Fig. 1(a,b). The filled black circles in the figure represent the phase shifts obtained from the 
high-precision phenomenological potential, AV1834. In the low-momentum region (  −k 1 fm 1), a reasonable 
agreement between SEP1 and AV18 is obtained in both 1S0 and 3S1 channels, while substantial deviation is seen in 
the high-momentum region, k 1 fm−1 in both channels.

A better agreement with AV18 in the high momentum region is obtained in the rank-three separable potential 
(SEP3), which is given by setting Nmax = 3, (ηα,1, ηα,2, ηα,3) = (−1, 1, 1) and the form factors as,
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In Table 1, we summarize the SEP3 parameters determined so as to reproduce the AV18 phase shifts in the 
range 0 fm−1 ≤ k ≤ 2 fm−1, as well as the empirical scattering lengths and effective ranges. As shown in Fig. 1(a), 
the SEP3 potential (the red line) well reproduces the 1S0 phase shift δ, even beyond .k 1 75 fm−1, where δ 
becomes negative. On the other hand, the SEP3 potential overestimates the phase shift δ in the 3S1 channel (the 
red line) in Fig. 1(b) when k 1 fm−1.

To further improve the agreement, we introduce a SEP3′ potential for the 3S1 channel with the parameters in 
Table 1. Here, the AV18 phase shift is fitted in the range 0 fm−1 ≤ k ≤ 2 fm−1, without stringent constraint on the 
empirical value of rt. Although the effective range and the deuteron binding energy, in SEP3′ differ from the 
empirical values by about 9% and 4%, respectively, (see Table 2), one sees in Fig. 1(b) that SEP3′ (blue dash-dotted 
line) gives good agreement with AV18 to k 2 fm−1. In the following, we employ SEP1, SEP3 and SEP3′, to study 
the superfluid instabilities of asymmetric nuclear matter.

Thermodynamic potential with pairing fluctuations.  We include strong pairing fluctuations 
originating from Vα=s,t at finite temperatures within the framework of NSR15. In this scheme, the so-called 
strong-coupling corrections δΩNSR to the thermodynamic potential Ω are diagrammatically given in Fig. 2. We 
note that effects of pairing fluctuations for pure neutron matter at zero temperature was previously discussed in 
ref. 14 by using a rank-one separable interaction. Considering the spin-unpolarized nuclear matter, we introduce 
the one-particle thermal Green’s function in the Hartree approximation, given by

uα,1 [fm−1] uα,2 [fm−1] uα,3 [fm−1] Λα,1 [fm−1] Λα,2 [fm−1] Λα,3 [fm−1]
1S0 (α = s, SEP1) 2.6683 0 0 1.1392 — —
1S0 (α = s, SEP3) 4.3097 4.5185 104.82 1.3952 2.3202 3.2578
3S1 (α = t, SEP1) 4.4592 0 0 1.4064 — —
3S1 (α = t, SEP3) 4.4619 0.1631 2.2085 1.4064 2.3455 3.0332
3S1 (α = t, SEP3′) 6.3578 1.0956 26.814 1.7071 2.9448 2.7045

Table 1.  Parameters of rank-one (SEP1) and rank-three (SEP3) separable potentials in 1S0 (α = s) and 3S1 (α = t) 
channels.

Figure 1.  Phase shifts of (a) 1S0 neutron-neutron and (b) 3S1 neutron-proton interaction. In each figure, black 
dots show the AV18 phase shift in ref. 34. SEP1 and SEP3 represent results of the rank-one and rank-three 
separable potentials, respectively.
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Here, the Hartree self-energy p( )i
HΣ  involves the contribution from the diagonal force V k k( , )D

SEP  in the isospin 
space originating from the nn and pp interactions, as well as that from the off-diagonal force V k k( , )OD

SEP  originat-
ing from the np interactions:
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where i  = p(n) for i = n(p), k = |p − p′|/2, and ωl = (2l + 1)πT is the fermion Matsubara frequency.
Introducing the Fermi momentum distribution for given momentum p in the Hartree approximation,
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one can write the thermodynamic potential Ω in the NSR theory as,
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Here, ξ μ= − + Σ p( )i M i ip,
H p

2
H2

 is the kinetic energy involving the Hartree self-energy Σ p( )i
H , measured from the 

chemical potential μi, and νl = 2πlT is the boson Matsubara frequency. δΩNSR in Eq. (14) is the strong-coupling 
correct ion to  Ω associated with pair ing f luctuat ions  in  the  1S 0 and 3S 1 channels ,  and 
η η η η= …α α α αˆ diag( , , , )N,1 ,2 , max

 Note that Tr is to take over the rank indices, N. The Nmax × Nmax matrix 

pair-correlation function ^ νΠ =α q i( , )
m

l
( )

νΠα ′q i{[ ( , )] }m
l N N

( )
,  consists of

aα [fm] rα [fm] Ed [MeV]
1S0 (α = s, SEP1) −18.50 2.80 —
1S0 (α = s, SEP3) −18.50 2.80 —
3S1 (α = t, SEP1) 5.42 1.76 −2.22
3S1 (α = t, SEP3) 5.42 1.76 −2.22
3S1 (α = t, SEP3′) 5.42 1.91 −2.15

Table 2.  Scattering lengths aα, effective ranges rα, as well as the binding energy Ed of deuteron for 3S1 channel 
with the parametrization shown in Table 1.

Figure 2.  NSR strong-coupling corrections δΩNSR to the thermodynamic potential Ω in asymmetric nuclear 
matter at nonzero temperatures. The solid and dashed lines denote the nucleon Green’s function Gi and the bare 
nucleon-nucleon interaction Vα(k, k′), respectively. k, k′, and k″ are relative momenta of nucleons and q is the 
center-of-mass momentum of each pair.
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where N, N′ = 1, 2, ..., Nmax.
Since we are considering the spin-unpolarized case, Eqs. (15–18) are spin-independent. We briefly note that 

the first order correction η νΠα α q iTr[ ( , )]
m

l
( )

^ ^  is already involved in the Hartree self-energy Σ p( )i
H 14, so that we have 

removed it in Eq. (14) to avoid double counting.

Critical temperature.  The critical temperatures of the 1S0 neutron superfluidity (Tc
nn), 1S0 proton supercon-

ductivity (Tc
pp), and 3S1 deuteron condensation (Tc

d), are obtained as functions of baryon density from the 
Thouless criterion35. Here, we introduce the Thouless determinant αD T( )m( )  defined by
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We briefly note that Eqs. (19–21) originate from a “block diagonalized” matrix pair-correlation function with 
respect to m = 0, ±1 so that the Thouless criterion is decomposed into the three Eqs. (19–21). We solve them, 
together with the particle number equation for the nucleon density,

ρ
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In this paper, we approximate Σ p( )i
H  to the value at the Fermi surface (for the theoretical background, see 

Supplementary Information). Then, we have
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where kF,i is the nucleon Fermi momentum. Introducing the effective chemical potential
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one can write the particle number equation in the form,
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NSR to the number equation involves the diagonal and off-diagonal component of the 
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This correction naturally arises from δΩNSR, whereas it was ignored in the previous work23,31,32,36. We note that 
Lij is related to the compressibility matrix Kij

H in the mean-field approximation as

https://doi.org/10.1038/s41598-019-54010-7


6Scientific Reports |         (2019) 9:18477  | https://doi.org/10.1038/s41598-019-54010-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑
ρ

μ
ω≡

∂

∂
= −

ω
K T G i L[ ( )] ,

(28)p
pij

i

j
i l ij

H
H

,
,

2

l

which indicates that Lij corresponds to the vertex correction to the density correlation function. The explicit form 
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We note that the particle number density ρi is generally obtained from the fully dressed Green’s function 
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~  with i( )p i, 

ωΣ  being the full self-energy. On the 
other hand, ρi in the NSR formalism given by Eq. (25) is equivalent to a truncated form of the Dyson series of G ip,

 :

∑ρ ω ω ω ω= + Σ .
ω

   



T G i G i i G i2 [ ( ) ( ) ( ) ( )]
(32)p

p p p pi i i i i
,

, , ,
NSR

,

Here i( )p i,
NSR



ωΣ  is the self-energy associated with thermal pairing fluctuations,

∑ω ν ν ω ν ν ωΣ = 
 − + − 


ν

− −
� � � �

� � �q qi T T k k i L G i i T k k i L G i i( ) ( , , , ) ( ) ( , , , ) ( ) ,
(33)

p
q

q p q pi ii l ii i l ii l ii i l,
NSR

,
, ,

l

where pk q
2

~ = − . The many-body T-matrices Tij(k, k′, q, iνl) are given by

∑ν γ η ν η γ′ =


















+ Π 



−














′
′

± −

′

′ˆ ˆ ˆq qT k k i k i k( , , , ) ( ) 1 ( , ) 1 ( ),
(34)

l
N N

N l

N N

Npp(nn)
,

s, s s
( 1) 1

s
,

s,

∑

∑ ∑

ν γ η ν η γ

γ η ν η γ

′ = + Π − ′

+ + Π − ′ .

−
′

= ±

−
′

′
′

′
′

ˆ ˆ ˆ

ˆ ˆ ˆ
(35)

q q

q

T k k i k i k

k i k

( , , , ) ( )[{[1 ( , )] 1} ] ( )

( )[{[1 ( , )] 1} ] ( )

l
N N

N l N N N

m N N
N

m
l N N N

np(pn)
,

s, s s
(0) 1

s , s,

0, 1 ,
t, t t

( ) 1
t , t,

The asymmetric nuclear matter can conveniently be characterized by the total baryon density ρ and the proton 
fraction Yp, respectively given by

ρ ρ ρ
ρ

ρ ρ
= + =

+
.Y,

(36)
n p p

p

n p

Below, we treat ρ and Yp as independent parameters, to study their effects on the critical temperatures, Tc
nn, Tc

d, 
and Tc

pp. We briefly note that, in real neutron star matter, the charge neutrality as well as the chemical equilibrium 
conditions among protons, neutrons, electrons and muons provide a constraint between ρ and Yp

37.

Results and Discussion
We start from the superfluid phase transition temperature Tc

nn in pure neutron matter (Yp = 0) which has been 
studied before in different levels of theoretical sophistication. Figure 3(a) shows theoretical estimates of Tc

nn. We 
note that since the calculation of Tc

nn within SEP3 in the high density region kF,n ≳ 1.3 fm−1 of pure neutron matter 
is numerically demanding, we extrapolate them to kF,n = 1.73 fm−1 where Tc

nn invariably disappears because the 
phase shift at k = kF,n becomes zero there, by using the Padé approximation. The NSR result of the rank-three 
separable potential (“SEP3”) shows good agreement with the previous work of NSR with an effective 
low-momentum interaction Vlow−k based on the renormalization group36, as well as the result of the lattice 
Monte-Carlo simulations for the pionless effective field theory38 shown by the filled circle (where the interaction 
is chosen so as to reproduce the nn scattering length and the nn effective range).

To see effects of the effective range and the short-range repulsion in the 1S0 nn channel, we also plot in Fig. 3(a) 
the calculated Tc

nn of NSR with the contact-type interaction Vs(k, k′) = -us,1
2 (“contact”), where us,1 is chosen so as 

to reproduce as, and the rank-one separable interaction (“SEP1”). In the low-density regime (ρ/ρ0 < 0.01) includ-
ing the neutron drip density ρ ρ . × −

/ 1 5 10drip 0
3 (Ref. 2), all four theoretical calculations agree well with each 
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other and with the Monte Carlo data, indicating that the critical temperature is determined only by the scattering 
length. The non-zero effective range (rs = 2.8 fm) suppresses Tc

nn when ρ ρ ./ 0 10  [see Fig. 3(a)]. It can also be 
understood as effects of the momentum cut-off Λs,1 associated with the effective range14,39. In such a region, the 
Thouless criterion is approximately given by

 ∑ ξ

ξ








.V k k

T
1 ( , ) 1

2
tanh

2 (37)k k

k
s
SEP

F,n F,n
,n

,n

c
nn

From Eq. (37), one can find that the nn interaction strength on the Fermi surface V k k( , )s
SEP

F,n F,n  is of impor-
tance to evaluate Tc

nn. Figure 3(b) shows V k k( , )s
SEP

F,n F,n  of SEP1 and SEP3. Since ′V k k( , )s
SEP  of SEP1 and SEP3 are 

given by Eqs. (6) and (8), respectively, V k k( , )s
SEP

F,n F,n  decreases with increasing kF,n. The decrease of V k k( , )s
SEP

F,n F,n  
is associated with Λ  r3/2s,1 s. We briefly note that such a decrease does not occur in the case of the contact-type 
interaction which is momentum-independent. Moreover, the short-range repulsion of the nn interaction domi-
nates for ρ/ρ0 > 0.54 (near the crust-core transition density ρ ρ .~/ 0 50  (Ref. 3)) to further suppress Tc

nn as Vlow−k 
and SEP3 shown in Fig. 3(a). Indeed, the comparison of SEP1 and SEP3 interactions on the Fermi surface 
V k k( , )s

SEP
F,n F,n , shown in Fig. 3(b), indicates that the typical strength of the nn interaction decreases with increas-

ing neutron density, and becomes repulsive for kF,n > 1.39 fm−1. Good agreement of our SEP3 result with the 
previous Vlow−k result over the wide range of baryon density indicates the importance of the detailed interaction 
structure, as well as associated pairing fluctuations to obtain Tc

nn.
We proceed to the case of symmetric nuclear matter (Yp = 0.5). In this case, examining the Thouless criterion 

for the nn, pp and np pairing channels, we find that the highest critical temperature is always obtained in the 
deuteron np channel for ρ/ρ0 ≤ 2. Figure 4 shows the critical temperature of the deuteron condensation, Tc

d 
obtained by SEP3 and SEP3′ for np interaction with SEP3 for nn and pp interactions. The upper (lower) bound of 
the red solid band corresponds to SEP3 (SEP3′). The green dashed line represents the result of SEP1. For compar-
ison, we also plot in Fig. 4 the Bose-Einstein condensation temperature of an assumed noninteracting deuteron 
gas, given by31,32,40

π ρ

ζ
=







 −









.T
m

Y
Y3 (3/2) 1 (38)

BEC
d n p

p

2
3

The obtained Tc
d with all separable interaction potentials approaches TBEC

d  in the low-density region. While our 
result for the symmetric case (Yp = 0.5) is qualitatively consistent with the previous work using different separable 
interactions within the NSR framework31,32, Tc

d has a peak structure at ρpeak/ρ0 > 1, which is in contrast to the 
previous work giving ρpeak/ρ0 = 0.3–0.8 (Refs. 31,32). In addition, we do not find a strange back bending behavior 
of Tc

d seen in refs. 31,32, irrespective of the use of SEP1, SEP3 and SEP3′. Clarifying these differences remains as our 
future work. We note that the treatment of the single-particle energy might be a possible origin.

To see the effect of thermal pairing fluctuations on nn and np parings in Figs. 3 and 4, comparisons between 
the results of NSR and mean-field (MF) approaches for Tc

nn in pure neutron matter (Yp = 0) and Tc
d in symmetric 

Figure 3.  (a) Calculated 1S0 neutron superfluid phase transition temperature Tc
nn as a function of a nucleon 

density ρ = ρn in pure neutron matter. kF,n = (3π2ρn)1/3 is the neutron Fermi momentum. The dotted, dashed, and 
solid lines denote the NSR results of the contact-type (“contact”), rank-one separable (“SEP1”), and rank-three 
separable (“SEP3”) interactions, respectively. “Vlow−k” (dot-dashed line) corresponds to the previous NSR work 
of the renormalization-group based low-momentum interaction36. The filled circles represent the result of the 
lattice Monte-Carlo simulation for the pionless effective field theory38. (b) The strength of the nn interaction on 
the Fermi surface, as a function of the neutron Fermi momentum.
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nuclear matter (Yp = 0.5) are shown in Fig. 5. For 1S0 nn pairing in pure neutron matter, we observe that the fluc-
tuation effect is not significant, which is consistent with the previous study (Ref. 36). In the case of the 3S1 np 
pairing in symmetric nuclear matter, a substantial modification can be seen, particularly at low densities. This is 
due to the thermal fluctuation of preformed pairs in the BEC regime which drives Tc

d to TBEC
d  defined in Eq. (38).

We note here that, both particle number equations and gap equations in our formalism incorporate the effect 
of quasi-particle correction in terms of the Hartree shift Σi

H. Also the effect of thermal pairing fluctuations is 
incorporated through the NSR self-energy i( )p i,

NSR


ωΣ  defined by Eq. (33) in thermodynamic quantities such as the 
particle number density. However, other quasi-particle corrections such as the effective mass and the 
wave-function renormalization are not considered in the gap Eqs. (19–21). Also, the induced two-body interac-
tions through density and spin fluctuations are not considered in the gap equations. Possible importance of these 
effects on the 3SD1 np pairing has been previously discussed in ref. 41 at finite temperature and in ref. 42 at zero 
temperature. In Sec. I of Supplemental Information, we also discuss the effective mass M* originating from the 
p-dependence of Σ p( )i

H  in the dilute neutron matter.
We now consider asymmetric nuclear matter within the same theoretical framework. We restrict ourselves to 

the case with the low proton fraction, = . .~Y 0 1 0 2p , (which is, however, still valid to the study of the neutron star 
cooling37,43,44). In this range of Yp, the absolute value of the relative momentum k = |k| between p and n is smaller 
than 1.29 fm−1, so that we use SEP3 (which gives better agreement with the empirical phase shift at low energies. 
The Thouless criterion for the nn, pp and np channels gives the highest critical temperature in the nn channel at 
low densities, while the pp pairing takes over above the nuclear saturation density. Note that, in the low-density 

Figure 4.  The deuteron condensation temperature Tc
d in the 3S1 channel in symmetric nuclear matter (Yp = 0.5). 

The upper and lower bounds of the solid band correspond to the results using the parameter sets shown in 
Tables 1 and 2, that is, SEP3 and SEP3′, respectively. TBEC

d  shows the Bose-Einstein condensation temperature of 
deuteron gases where the deuteron is approximated as a noninteracting boson.

Figure 5.  Comparison between the NSR and mean-field (MF) approaches on the critical temperature Tc
nn for 

nn 1S0 pairing in pure neutron matter (PNM) and on Tc
d for np 3S1 pairing in symmetric nuclear matter (SNM).

https://doi.org/10.1038/s41598-019-54010-7


9Scientific Reports |         (2019) 9:18477  | https://doi.org/10.1038/s41598-019-54010-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

limit, TBEC
d  becomes dominant even in asymmetric nuclear matter 0 < Yp < 0.5 (see Supplementary Information). 

The deuteron pairing is remarkably suppressed due to imbalanced Fermi surfaces. Figure 6 shows Tc
nn and Tc

pp in 
the case of SEP337.

In Fig. 6, with increasing the proton fraction Yp, the peak of Tc
nn is found to gradually move to higher density. This 

is simply because the neutron density decreases as ρn = (1 − Yp)ρ, so that the whole curve of Tc
nn shifts to the right. 

The black circle in Fig. 6 indicates the density at which Tc
pp exceeds Tc

nn when Yp > 0. Beyond this, the pp interaction 
becomes more attractive, due to relatively small proton Fermi momentum kF,p = (3π2ρp)1/3 = (3π2ρYp)1/3, while the 
nn interaction is strongly suppressed by the short-range repulsion due to large neutron Fermi momentum kF,n =  
(3π2ρn)1/3 = [3π2ρ(1 − Yp)]1/3. At higher density, Tc

pp would also be suppressed, but it is beyond the applicability of the 
present formalism (see Supplementary Information).

To see effects of strong np interactions, we plot the critical temperatures Tc
nn, as well as, Tc

pp in Fig. 7(a). We 
also show the effective proton chemical potential μp

H which is defined in Eq. (24) (at T = Tc
nn, below 0.77ρ0 and at 

T = Tc
pp above 0.77ρ0), with and without the np interaction, VOD

SEP in Fig. 7(b). We find that while Tc
nn is insensitive 

to the strength of the np interaction, Tc
pp is substantially affected. The latter can be understood by the behavior of 

μp
H When VOD

SEP = 0, μp
H is always positive as shown in Fig. 7(b), indicating that the proton Fermi surface is formed, 

irrespective of the value of baryon density ρ, naturally leading to the proton superconductivity. On the other 
hand, when VOD

SEP≠0, the strong np interaction in the deuteron channel reduces μp
H in the low-density region, to 

eventually approach the deuteron binding energy Ed = −2.22 MeV in the low-density limit. As a result, pp pairing 
does not take place in this regime. In the low density limit with 0 < Yp < 0.5, one finds μ μ →~ 0n n

H  and 
μ μ →~ Ep p

H
d

40 as in the case of an asymmetric two-component Fermi atomic gas45.

Figure 6.  Calculated critical temperatures Tc
nn (solid) and Tc

pp (dashed) for 1S0 neutron superfluid and proton 
superconductivity. The circles represent the nucleon densities where both superfluid instabilities simultaneously 
occur.
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Figure 7.  (a) The critical temperatures Tc
nn(pp), and (b) the effective proton chemical potential μ μ= − Σp

H
p p

H, at 
Yp = 0.1 with and without the off-diagonal np interaction VOD

SEP. The horizontal dashed line in panel (b) 
represents the deuteron binding energy Ed = −2.22 MeV.
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Figure 8 shows the Thouless determinants αD T( )m( )  in Eqs. (19–21) for Yp = 0.1 at T = Tc
nn below 0.77ρ0, and at 

T = Tc
pp above 0.77ρ0. When αD T( )m( )  becomes smaller to vanish, pairing fluctuations become stronger and even-

tually diverge at the second-order superfluid/superconducting phase transition. Such diverging fluctuations can 
be seen in the 1S0 nn channel for ρ < 0.77ρ0, as well as in the 1S0 pp channel for ρ > 0.77ρ0. On the other hand, 
pairing fluctuations in the 1S0 np channel are weak, compared to the other channels. The Thouless determinant in 
the 3S1 np channel is close to zero over the entire density, but the deuteron condensation does not occur when 
Yp = 0.1, because of the large difference of the chemical potentials between neutrons and protons. Nevertheless, 
strong pairing fluctuations in the deuteron channel play a crucial role for Tc

pp, as seen in Fig. 7.
Before ending this section, we discuss the possibility of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state46–49 

in the deuteron channel for 0 < Yp < 0.2 (which is relevant for neutron stars). The FFLO state may occur, when 
two kinds of fermions attractively interact with each other in the presence of population imbalance. In such a 
case, the Cooper pairs with a non-zero center-of-mass momentum are formed. In the present case, the Thouless 
determinant at a non-zero momentum50,51, q qD T i( , ) det[1 ( , 0)]lt

(0, 1)
t t

(0, 1)
η ν= + Π =± ±
^ ^  is an appropriate meas-

ure. Figure 9 shows the center-of-mass momentum (q = |q|) dependence of ± qD T( , )t
(0, 1)  at =T Tc

nn(pp) in asym-
metric nuclear matter with Yp = 0.2. We find that qD T( , )t

(0, 1)±  takes a minimum at a non-zero momentum q* in 
the high-density region (ρ > ρ0). Indeed, q* at ρ = ρ0 in Fig. 9 is close to the typical momentum of the FFLO 
pairing, μ μ− = − .k k m k(2 ) (2m ) 0 7F,n

eff
F,p
eff

n
H 1/2

p
H 1/2

F,n. Although ± ∗qD T( , )t
(0, 1)  is still far away from zero, it 

may be interpreted as a precursor of the FFLO state at larger Yp.

Conclusion
In this paper, we have extended the Nozières-Schmitt-Rink approach to four-component fermion system, to 
examine the superfluid phase transition at finite temperatures in asymmetric nuclear matter at nuclear and sub-
nuclear densities. Including pairing fluctuations in the S-wave neutron-neutron, proton-proton, and 
neutron-proton channels, we evaluated the critical temperature of 1S0 neutron superfluidity Tc

nn and proton super-
conductivity Tc

pp. We clarified effects of strong neutron-proton pairing fluctuations in the deuteron channel. 
While resultant Tc

nn in pure neutron matter agrees well with the previous Monte Carlo data in the low 
baryon-density region, it is remarkably suppressed around the nuclear saturation density ρ0, due to the 
short-range nn repulsion. We found that Tc

pp at low-density is substantially suppressed by the neutron-proton 
pairing fluctuations.

There are several future directions to be explored on the basis of the framework developed in this paper.

	 1.	 We have focused on the superfluid/superconducting instability in the normal phase throughout the paper. 
However, the present model together with the framework of ref. 14 can be combined to study the superfluid 
phase below the critical temperature, such as equation of state, as well as magnitude of the pairing gap.

	 2.	 To improve the accuracy of Tc
nn,pp,d, we need to include the coupled 3S1-3D1 channel potential beyond the 

present 3S1 channel potential. Such a channel-coupling introduces extra in-medium effect associated with 
the Pauli blocking by the intermediate 3D1 state.

	 3.	 There are correlations which are ignored in the present paper, such as Gorkov and Melik-Barkhudarov 
(GMB) screening52–55, as well as the competition between the screening and anti-screening 
corrections42,56,57.

Figure 8.  Thouless determinants, αD m( ) in all four channels as functions of the baryon density ρ with Yp = 0.1 at 
T = Tc

nn below ρ = 0.77ρ0 and at T = Tc
pp above ρ = 0.77ρ0. The dotted, solid, dashed, and dot-dashed lines 

represent αD m( ) of the 1S0 nn, 1S0 pp, 1S0 np, and 3S1 np channels, respectively.
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	 4.	 The nn pairing in the 3P2 channel3,58–60 would cause a dominant superfluid component in the liquid core of 
neutron stars. Introducing a separable interaction in the P-wave channel and applying the present frame-
work would be a first step toward the analysis of such unconventional superfluids.

	 5.	 Although we have used separable form of the nucleon-nucleon potential to study the effects of paring 
fluctuations, one could also apply more systematic chiral effective nucleon-nucleon interaction61 to our 
approach.
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