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Mild cognitive impairment (MCI) is an intermediate stage between normal aging and dementia. Researchers tend to discuss its
early state (early MCI, eMCI) due to its high conversion rate of dementia and poor treatment effect in the middle and late stages.
Currently, the research on the disease evolution of the brain functional networks of patients with MCI has gradually become a
research hotspot. In this study, we compare the differences in dynamic functional connectivity among eMCI, lateMCI (lMCI), and
normal control (NC) groups, and their graph theory indicators reveal the integration and segregation of functional connectivity
states. Firstly, dynamic functional network windows were constructed based on the sliding time window method, and then these
window samples were clustered by k-means to extract the functional connectivity states. 0e differences in the three groups were
compared by analyzing the graph theory indicators, such as the participation coefficient, module degree distribution, clustering
coefficient, global efficiency, and local efficiency, which distinguish the functional connectivity states. 0e results reveal that the
NC group has the strongest integration and segregation, followed by the eMCI group, and the lMCI group has the weakest
integration and segregation.We conclude that with the aggravation ofMCI, the integration and segregation of dynamic functional
connectivity states tend to decline.0e results also reflect that the lMCI group has significantly more brain functional connections
in some states, such as IPL.L-MTG.R and DCG.R-SMG.L, than the eMCI group, while the lMCI group has significantly less
OLF.L-SPG.L than the NC group.

1. Introduction

Mild cognitive impairment (MCI) is a form of cognitive
impairment that occurs between normal aging and de-
mentia. It is marked by age-related memory loss. However, it
does notmeet the criteria for Alzheimer’s disease (AD) [1, 2].
Recent studies reported that patients diagnosed with MCI
have a high probability of converting to AD, with an annual
conversion rate of 6%∼25% [3]. In the research on chronic
neurodegenerative diseases, many clinical cases have proved
that the treatment effect of the patients with cognitive
dysfunction is not satisfactory at the middle and late stages.
In recent years, researchers have turned to the diagnosis and

preventive intervention of its early stage [4–6]. People with
early MCI (eMCI) are unaffected in their daily lives and
cannot be distinguished from normal people by the naked
eye [7, 8]. 0ere are no obvious differences between their
brain functional networks, and it is difficult to extract some
specific features. However, the brain functional networks of
patients with late MCI (lMCI) are significantly different
from that of normal people. 0erefore, it is of great sig-
nificance to analyze the evolution of the brain functional
networks from normal people to patients with earlyMCI and
to patients with late MCI.

Spontaneous fluctuations represent the basic mechanism
of nerve signals, which can be explained to a large extent by
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fMRI data [8, 9]. Functional connectivity is considered as a
static phenomenon in most resting-state fMRI (RS-fMRI)
studies. It is calculated following the statistical dependence
on brain regions during the whole scanning process [3, 10].
Some studies have suggested that functional connectivity of
MCI patients has significant changes compared with normal
people [11]. However, multiple fMRI and electrophysio-
logical experiments have shown that functional connectivity
fluctuates within a short time range of a few seconds [11].
Currently, more and more scholars adopt the method of
detecting dynamic functional connectivity [12, 13], which
reflects how the functional connectivity of the brain changes
over time [14]. Some studies have found that diseases can
change the dynamic characteristics of functional connec-
tivity, which can be used as a physiological index for disease
research [15], and has important theoretical and practical
value for the study of the dynamic characteristics of brain
functional networks. Dynamic functional connectivity can
more accurately represent the dynamic features of the brain
[11], whereas static functional connectivity also helps to
understand brain correlations.

Nowadays, the commonly used dynamic network re-
search methods of neuroscience include sliding time win-
dow analysis, single-frame coactivation pattern analysis,
and time-frequency analysis [16, 17]. Among them, the
sliding time window method repeatedly evaluates the
paired connections between brain regions or voxels to
obtain nonoverlapping time windows of data [6], and these
windows can express the dynamic characteristics of
functional connectivity. 0e sliding time window method
plays a dominant role in dynamic functional connectivity
analysis at present, due to its simplicity and ability to re-
trieve the significant features of functional connectivity.
However, the sliding time window method has some sig-
nificant limitations. First, the choice of window length has
long been a topic of debate. On the one hand, if the window
length is too short, it will increase the risk of introducing
clutter into the observed dynamic functional connectivity.
On the other hand, the excessively long window will hinder
the detection of time changes in the region of interest
[18, 19]. Hence, the window length is generally selected
between 30 s and 60 s to maintain specificity and sensitivity
[20].

Dynamic functional connectivity contains relevant in-
formation about the presence of MCI, and other neuro-
imaging analysis methods are needed to help understand the
MCI brain network. Our first aim is to compare the dif-
ferences in dynamic functional connections between eMCI,
lMCI, and normal control (NC) groups in the same state by
static modeling. Pearson correlation coefficients and sliding
time windows are used to construct the dynamic functional
network, and k-means clustering is used to extract functional
connectivity states. Our second aim is to reveal the changes
in the integration and segregation of functional connectivity
states asMCI aggravates.0e graph theory method is used to
calculate the state indicators which distinguish the func-
tional connectivity states, while network-based statistic
(NBS) is adopted to detect functional connectivity
differences.

2. Data and Methods

2.1. Data Acquisition and Preprocessing. 0e data used in
this study were from the open data set of the Alzheimer’s
Disease Neuroimaging Program (ADNI) (http://adni.loni.
usc.edu). 0e fMRI data onto 160 subjects were used for the
study, including 48 eMCI patients, 45 lMCI patients, and 67
NC patients.

Before collecting fMRI data, it is necessary to understand
the physical state of subjects, sign the informed consent
confirmation of the subjects, ask the subjects to check
whether there are metal objects on the body, and remind the
subjects to keep awake and not to have any conscious
thinking activities [21].

In the experiment, 3.0 T Philips Achieva was used to
collect brain fMRI data: function images, 24 axial slices, layer
thickness� 4mm, repeat time TR� 2000ms, echo time
TE� 35ms, flip angle� 90°, and field of view
FOV� 230mm× 182mm; structure images: 3D sequence
layer number� 240, layer thickness� 0.6mm, repeat time
TR� 7.4ms, echo time TE� 3.4ms, flip angle� 8°, and field
of view FOV� 250mm× 250mm.

We use toolbox DPARSF (Data Processing Assistant for
Resting-State fMRI) in the MATLAB 2012a environment
(http://rfmri.org/DPARSF) to perform format conversion
and preprocessing for fMRI data [22]. 0e preprocessing
steps include interlayer correction, spatial registration,
standardization, and filtering. 0e filtering range is
0.01–0.08Hz (the standardized bounding box: [−90, −126,
−72; 90, 90, 108] and voxel size: [3 3 3]). Since it takes a
certain amount of time for both themachine and the subjects
to enter a stable state, the image data of the previous 10 time
points were removed during preprocessing [23, 24]. In the
process of interlayer correction, the subjects (2 subjects) with
large head movement (translation> 2.5mm, rotation> 2.5°)
were removed [25].

2.2.Overviewof theProposedFramework. Figure 1 shows the
flowchart of functional connectivity state extraction. 0e
dynamic brain functional networks are constructed based on
the preprocessed time series, and the functional connectivity
states are extracted by using two-stage clustering. Next, the
windowed dynamic functional connectivity matrices are
clustered to extract the initial clustering center. 0en, the
initial clustering centers are taken as the parameters of the k-
means clustering to continue the clustering of the windowed
matrices. It is worth noting that the windows of the clus-
tering center obtained at this time are only the initial
clustering centers, not the final clustering results. 0e spe-
cific steps are as follows:

(a) Extract the time series of the three groups of subjects.
A time series matrix of L∗M will be generated for
each subject, where L is the length of the time series
and M (M� 90) is the number of brain regions.

(b) Select n windows with the largest variance from N
windows of the time series of each subject as the
clustering windows, based on the sliding time
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window method, and place them into the same
group. Cluster all windowed functional connectivity
matrices in the group to extract k cluster center
windows using k-means clustering.

(c) Cluster all windowed matrices with k initial clustering
centers to extract functional connectivity states.

2.3. Clustering Analysis. 0e sliding time window method
was used to construct the network to analyze the dynamic
brain functional connectivity [4]. First, the average time
series ofM brain regions of interest (ROIs) is extracted, and
then the average time series are repeatedly moved with a
certain step length by using the time windows, and the
correlation coefficient between brain regions is calculated
each time to obtain a group of dynamic functional con-
nectivity matrices [18, 19]. Specially, Si(t), t � 0, 1,􏼈

. . . , N, i � 1, 2, . . . , M} is used to represent the time series,
where t is the moment and i is the brain region. 0e cor-
relation coefficient r is close to −1 or 1 when Pearson
correlation coefficient is employed as functional connec-
tivity. 0us, the increment of variance will become smaller,
which affects the efficiency of analysis. We carried out Fisher
R-Z transformation on the correlation coefficient to make it
follow the normal distribution in order to stabilize the
variance [4]:

FZ rij(s)􏼐 􏼑≜
1
2
ln

1 + rij(s)

1 − rij(s)
􏼠 􏼡, (1)

where rij(s) is the Pearson correlation coefficient between
regions of interest i and j at time s, and FZ(·) represents
Fisher R-Z transformation.

k-means clustering is used to identify short-term re-
curring connection patterns, which we describe as functional
connectivity states. Functional connectivity states are

predicted by models of large-scale neural connectivity. 0e
k-means algorithm is an unsupervised clustering algorithm,
which is widely used because of its simplicity and accuracy.
For a given sample set, the samples are divided into k clusters
according to the distance between the samples. 0e nodes
within the cluster are connected as closely as possible, and
the distances between the clusters are as large as possible.
0erefore, the goal of the k-means algorithm is to minimize
the square error E [24–26]:

E � 􏽘
k

i�1
􏽘

x∈Ci

x − μi

����
����
2
2, (2)

where x is all the sample vectors in the sample set, Ci is the
sample set whose sample vectors belong to the ith class, and
μi is the mean vector of the cluster, which is also called as the
center of mass. Its expression is

μi �
1
Ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
x∈Ci

x. (3)

0e k-means ++ algorithm is used to repeat k-means
clustering for several times to avoid local minimum [27].
Since the sample is high-dimensional data, L1 distance
function (Manhattan distance) has a more effective simi-
larity measure than L2 distance function (Euclidean dis-
tance), so we adopt L1 distance function [28]. 0e
Manhattan distance formula is as follows:

c � xi − xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yi − yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (4)

where c is the Manhattan distance, xi and yi are the co-
ordinate of the node i in the plane, and xj and yj are the
coordinate of the node j.

0e elbow rule of the clustering effectiveness index is
used to determine the cluster number (k) for group-level

Brain region

(a)

• • •

(b)

(c)

Initial clustering center

States exacted by 
clustering

Time series

Sliding time 
windows

Figure 1: Flowchart of functional connectivity state extraction: (a) extracting the time series; (b) calculating the functional connectivity
matrix within each sliding window; (c) using the k-means clustering for the windowed functional connectivity matrices to extract different
functional connectivity states.
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clustering and subject-level clustering, and the calculation
methods are used to determine the ratio of intracluster
distance to intercluster distance [28, 29]. 0e basic idea of
the elbow rule is that with the increase of the cluster number
k, the sample division will be more refined, the degree of
integration of each cluster will be enhanced, and the square
error E will gradually become smaller. When the k value is
less than the true clustering value, the increase of k will
greatly increase the degree of integration of each cluster, so
that E will greatly decrease. On the contrary, if the k value is
greater than the true clustering value, so that the sample
division is too refined and the decline of E is small.
Resampling can not only reduce the redundancy of the
functional connectivity matrix but also reduce the amount of
calculation [30, 31]. Like EEG microstate analysis [17, 32],
we select 6–8 windows with the largest variance as samples
for each subject. 0e k-means algorithm (randomly ini-
tializing the center node) was used to cluster these test
samples, and the clustering was performed several times to
avoid the local minimum as much as possible. 0e resulting
center nodes are used as the initial center nodes for k-means
clustering of all windows. Compared with randomly
selecting the center nodes, selecting the center nodes
through resampling has a better effect on clustering.

2.4. Functional Connectivity States. 0e temporal charac-
teristics of dynamic functional connectivity states are
studied by calculating the mean dwelling time and the
number of transitions from one state to another. Mean
dwelling time is defined as the number of successive win-
dows of a state, and the number of transitions between states
represents the stability of a state. Functional connectivity
tends to be assigned to a single state over a long period of
time, with short transitions. A two-sample t-test was used for
detecting the group differences in mean residence time and
conversion times among the normal control group, the
eMCI group, and the lMCI group (P< 0.05) [32]. 0e three
groups were matched for age, sex, and education.

In addition, an NBS toolbox was used to calculate the
differences in functional connectivity between different
groups. Brain region nodes of AAL template were used as
input nodes, and z-scores of correlation coefficients were
used as input edges. 0e toolbox uses a permutation test to
randomly swap the group to which each subject belongs and
retests it in each permutation to confirm the null hypothesis.

Brain connectivity toolbox (https://sites.google.com/
site/bctnet/) is applied to the analysis of network graphic
feature (global and local). 0e sparsity threshold needs to be
fixed in order to ensure the same range of edges in graphs
from different groups [33]. 0e sparsity value is defined as
the number of connections between nodes in the network
divided by the total number of possible connections in the
network.

Typical indicators of brain network segregation are
average clustering coefficient, modularity, etc. Clustering
coefficient is defined as the number of triangles around a
single node; that is, two adjacent nodes of a node are ad-
jacent nodes to each other, which expresses the universality

of clustering connectivity around each node [34]. It is
usually used to describe the functional isolation of network
local information processing [35], reflecting the clustering
tightness of the adjacent nodes of each node [36]. Modu-
larity is a more complex measure of network separation,
which not only describes densely interconnected regional
groups but also finds out the size and composition of these
individual groups [37]:

CC �
1
n

􏽘
i∈N

CCi �
1
n

􏽘
i∈N

2ti

ki ki − 1( 􏼁
, (5)

where N is the data set of all nodes in the network and n is
the number of nodes.CCi is the clustering coefficient of node
i, ti is the number of triangles around node i, and ki is the
degree of node i.

Typical indicators of brain network integration are av-
erage shortest path length and global efficiency. As shown in
formula (6), the average shortest path length is defined as the
average distance between any two nodes, and it is the most
common method to measure network integration. Global
efficiency is defined as the efficiency with which information
is transmitted throughout the network. Since paths between
disconnected nodes are considered infinite and the efficiency
is zero, so global efficiency makes sense in disconnected
networks [38]:

L �
1
n

􏽘
i∈N

Li �
1
n

􏽘
i∈N

􏽐j∈N,j≠idij

n − 1
, (6)

where L is the average shortest path length, Li is the average
distance between node i and all other nodes, and dij is the
distance between node i and node j.

A common indicator of centrality of brain networks is
degree. Degree has a direct neurobiological explanation: a
node with a higher degree interacts structurally or func-
tionally with many other nodes. In a modular network,
degree-based measures of intramodule and intermodule
connections help to group nodes into different groups. 0e
within-module degree z-score is the localized intramodule
version of degree centrality [39], and the participation co-
efficient (intermodule connections) evaluates the number of
intermodule connections of a single node. On one hand, the
nodes with high within-module degree z-score but low
participation coefficient are called provincial hubs, which
play a role in promoting module segregation. On the other
hand, as connectors hubs, the nodes with a high partici-
pation coefficient can promote global integration. Local
efficiency is defined as the efficiency of transferring infor-
mation from one node to other adjacent nodes [14, 17], as
shown in the following formula:

Eloc �
1
n

􏽘
i∈N

Eloc,i �
1
n

􏽘
i∈N

􏽐j,h∈N,j≠iaijaih djh Ni( 􏼁􏽨 􏽩
− 1

ki ki − 1( 􏼁
, (7)

where Eloc,i is the local efficiency of node i, aij is the con-
nectivity state between node i and node j, and aij is 1 when
there is a connection between node i and j; when there is no
connection between node i and j, aij is 0. djh(Ni) is the
shortest path length between node j and node h.

4 Contrast Media & Molecular Imaging

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/


3. Experiments and Results

3.1. Construct Functional Connectivity State. Figure 2 shows
the state number and state visualization results of con-
structing functional connectivity states. As shown in
Figure 2(a), the ratio of intraclass distance to interclass
distance keeps changing with the clustering number k from 2
to 10. 0e vertical axis of the image decreases slowly, which
meets the requirement of the elbow rule to determine the
cluster numbers when k� 4. Accordingly, we select k� 4 as
the cluster number. Figure 2(b) shows the result of clustering
analysis of eMCI, lMCI, and NC groups. As can be seen, four
matrices represent four functional connectivity states. Each
state represents the center of mass of the cluster and reflects
the pattern that exists stably in the data set. We use the
resampling method to improve the efficiency of the ex-
periment. Among them, both State 2 and State 3 accounted
for higher proportions, 35.02% and 38.56%, respectively.
Table 1 shows the analysis of the basic indicators of the four
states, and the states are sorted from the highest mean value
to lowest. All four states have small standard deviations.
Negative connectivity is present in States 3 and 4.

0ere were 160 subjects performed multiple-bootstrap
resample in order to verify the validity of these states.
Bootstrap resample is used to verify the accuracy and un-
certainty of the prediction model. It randomly selects a few
samples of observed values from the original data set to
evaluate the model [19]. 0e clustering result in Figure 2(b)
is repeated in the bootstrap resample for several times [4],
and the proportion of the number of states in the multiple
resampling shows no significant changes. As shown in
Figure 3, States 1 to 4 of the bootstrap resample are ranked
from the highest to the lowest mean value. 0e clustering
results of each bootstrap resample are displayed for each
row. Among them, the average value of the first state reaches
0.6, the average value of the last state is around 0.2, and the
sum of percentage of the appearance times of State 2 and
State 3 reaches more than 70%. 0e results like the states in
Figure 2(b) have appeared many times in the sampling
experiment of bootstrap resample, which can be proved that
the states we extracted are highly accurate.

Figure 4 shows the differences in the functional con-
nectivity states of three groups of subjects. Figure 4(a) shows
the proportion of three groups of subjects’ dwelling time in
each state. 0e proportion of three groups of subjects’
dwelling time in State 2 and State 3 is both more than 0.3,
followed by State 1, and State 4 takes up the least proportion.
0e proportion of State 1 in the NC group is higher than that
in the other two groups, while the proportion of State 2 is
lower. 0e proportion of State 3 of the lMCI group is sig-
nificantly higher than that in the other two groups.
Figure 4(b) shows the differences between the state transi-
tions of three groups of subjects. 0e NC group, the lMCI
group, and the eMCI group were ranked from the lowest to
the highest mean times of transition of each subject. 0e
double-sample t-test was conducted for the mean times of
transition of the three groups. 0e times of transition are
significantly different from the NC group and the lMCI
group (t� 8.138, P< 0.01), and the times of transition are

also significantly different from the eMCI group and the
lMCI group (t� 5.479, P< 0.01). 0ere is no significant
difference for transition times between the control group
and the eMCI group (t� 1.49, P � 0.14).

In addition, the NBS method is used to calculate the
differences in functional connectivity among different
groups in the same state. Considering the high proportion of
dwelling time for State 2 and State 3, the functional con-
nections in the two states are compared. As shown in
Figure 5, in State 2, the functional connection of the lMCI
group: OLF.L-SPG.L (t� 3.87, P< 0.05, P value corrected by
FDR) is significantly lower than that of the NC group. 0e
functional connections POCG.R-SMG.R (t� 3.71, P< 0.05)
and AMYG.L-FFG.R (t� 3.9, P< 0.05) of the eMCI group
are significantly lower than those of the NC group. In State 3,
there are significant differences in functional connections
between the eMCI group and the lMCI group: IPL.L-MTG.R
(t� 3.51, P< 0.05) and DCG.R-SMG.L (t� 4.56, P< 0.05),
and the functional connections in eMCI group are signifi-
cantly less than the lMCI group. IFGtriang.L-PAL.R
(t� 4.42, P< 0.05) of the NC group is significantly more than
those of the eMCI group. 0e experimental results indicate
that in States 2 and 3, both the eMCI group and the lMCI
group have significantly less functional connections than the
NC group, while the lMCI group also has significantly more
functional connections than the eMCI group.

3.2. Analyze State Indicators and Module Partition Results.
0e brain functional connections lower than 0.3 are regarded
as disconnected connections when calculating these graph
theory indicators, and the default value is 0. Figure 6 shows the
top 20 brain regions or regions of interest about node degree of
each state. Ten brain regions, PCUN.L, SMA.L, MTG.L,
DCG.L, CUN.R, PreCG.L, SFGDOR.R, MOG.L, LING.L,
and PCL.L, were found to rank high in four states. 0e
degree of a single node is equal to the sum of the weights of
connections connected to the node, and the degree value
represents the centrality of the node in the network [1]. As
can be seen from the figure, the degree value shows a
downward trend from State 1 to State 4. 0e degree value of
the top nodes in State 1 reaches 60, while the degree value of
these nodes in State 4 is about 15.

We calculated the participation coefficients and within-
module degree z-score in each state in order to analyze the role
of these nodes in the dynamic brain functional network. As
shown in Figure 7, the participation coefficient in State 1 is the
highest and the within-module degree z-score is also high. 0is
phenomenon indicates that these nodes play the role of con-
nector hubs in the brain functional network, which in turn leads
to a strong integration of the functional connectivity states. In
State 2, nodes’ within-module degree z-score decreases, indi-
cating a decreased integration. In State 3, the within-module
z-score and the participation coefficient are significantly de-
creased, indicating a decreased integration and an enhanced
segregation. In contrast, the participation coefficient of State 4
further decreases, while the within-module degree z-score
significantly increases. It indicates that these nodes have begun
to play the role of provincial hubs in the network.
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Figure 2: Brain function connectivity states. (a) 0e elbow rule is used to determine the number of functional connectivity state. (b)
Visualization results of functional connectivity states formed by clustering brain functional network windows in the NC group, the eMCI
group, and the lMCI group.

Table 1: 0e indicators of the four functional connectivity states clustered by k-means.

State 1 State 2 State 3 State 4
Mean 0.5824 0.3925 0.2470 0.2002
Standard deviation 0.0474 0.0366 0.0323 0.0568
Maximum 2.0263 1.7329 1.5108 1.6001
Minimum 0 0 −0.1094 −0.4471
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Figure 3: Continued.
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Table 2 shows the proportions of the eMCI group, NC
group, and lMCI group in different states. It is not difficult to
find that the proportions of the three groups of subjects in
States 2 and 3 are higher, while the proportions in States 1 and 4
are lower. 0e differences in the three groups are mainly the
number of State 1 and State 2. 0e proportion of State 1 of the
NC group is the highest (0.2053), followed by the eMCI group
and the lowest (0.1169) of the lMCI group. Moreover, the
proportion of the eMCI group in State 2 is the highest (0.3833),
followed by the lMCI group, and the lowest of the NC group
(0.3175). It is hereby inferred that the proportion of States 1 and
2 changed significantly during the disease evolution.

Figure 8 shows the analysis of global indicators of func-
tional connectivity states, including global efficiency, local
efficiency, clustering coefficient, and shortest path length [40].

As can be seen from Figure 8, the characteristic path length
decreases with the decrease of state mean value, while the local
efficiency, global efficiency, and clustering coefficient increase
from State 1 to State 4. 0e integration and segregation from
State 1 to State 4 became weaker and weaker according to the
measurement of integration and segregation proposed by
Rubinov [1]. It reveals that the NC group has the strongest
integration and segregation of functional connectivity states,
followed by the eMCI group and the lMCI group, considering
that the number of State 1 of theNC group is the highest as well
as that of State 3 of the lMCI group among the three groups.

3.3. Select Window Length Parameters. Figure 9 shows that
the window length selected in 30–60 s. 30 s, 40 s, 50 s, and
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Figure 3: Clustering results of bootstrap resample experiments. (a–d) 0e clustering results of four bootstrap resample experiments,
respectively.
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60 s is used as variables to calculate the four states about
functional connections, respectively [13]. As can be seen
from the figure, differences in the functional network
constructed by different window lengths are not obvious.
0en, we get similar results by calculating the mean value,

standard deviation, and maximum and minimum value of
each state of each window length (see Table 3). We believe
that the mean value and variance of the brain functional
connection network constructed by this window length
(30 s) are large enough for the subsequent analysis and
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Figure 5: Brain functional connections in eMCI, lMCI, and NC groups have significant differences. (a) 0e tripartite view with significant
differences in functional connections between groups in State 2. OLF.L-SPG.L is the functional connection with significant difference
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Figure 6: Degrees of important node in different states. (a) State 1, (b) State 2, (c) State 3, and (d) State 4.
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Figure 7: Participation coefficient and within-module degree z-score of important nodes in different states. In (a), each node has the highest
within-module degree z-score and high participation coefficient. (b) is similar to (a). 0e participation coefficients of (c) and (d) are
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Table 2: 0e proportion of different states in the three groups.

State 1 State 2 State 3 State 4
eMCI 0.1612 0.3833 0.3737 0.0818
Normal 0.2053 0.3175 0.3816 0.0956
lMCI 0.1169 0.3634 0.4033 0.1165
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Figure 8: Global indicators of functional connectivity states. (a) 0e characteristic path length of the four states, (b) the global efficiency of
the four states, (c) the local efficiency of the states, and (d) the clustering coefficient of the states.
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Figure 9: Correlation matrices of functional connectivity states extracted by different window lengths. (a–d) are the correlation matrices of
functional connectivity states formed when the window length is 30 s, 40 s, 50 s, and 60 s, respectively.

Table 3: Characteristics of functional connectivity states constructed by different window lengths.

Window length (s) State 1 State 2 State 3 State 4

Mean

30 s 0.5824 0.3925 0.2470 0.2002
40 s 0.5605 0.3858 0.2484 0.1984
50 s 0.5523 0.3875 0.2536 0.1957
60 s 0.5554 0.3954 0.2667 0.1935

Standard deviation

30 s 0.0474 0.0366 0.0323 0.0568
40 s 0.0462 0.0366 0.0320 0.0584
50 s 0.0452 0.0369 0.0322 0.0577
60 s 0.0449 0.0381 0.0324 0.0488

Maximum

30 s 2.0263 1.7329 1.5108 1.6001
40 s 1.9935 1.7233 1.5120 1.6123
50 s 1.9803 1.7315 1.5141 1.6194
60 s 1.9938 1.7429 1.5289 1.5827

Minimum

30 s 0 0 −0.1094 −0.4471
40 s 0 0 −0.1148 −0.4562
50 s 0 0 −0.1102 −0.4488
60 s 0 −0.0019 −0.1013 −0.3586
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research when 30 s is selected as the window length. A large
number of windows ensure sufficient data for the
experiment.

4. Discussion

In summary, the dynamic brain functional networks are
constructed based on the sliding time window method, and
the correlation matrices of few substates are extracted by
clustering these networks twice. Compared with the random
selection of the initial clustering centers, this method per-
forms one more clustering and adds some computational
complexity, but it significantly improves the accuracy of
clustering. In addition, on this basis, the differences in brain
functional networks of eMCI, lMCI and NC groups are
compared through graph theory analysis of these states. 0e
results demonstrate that there are significant differences in
brain functional connections between the lMCI group and
the NC group, while there are no significant differences in
the brain functional connectivity between the eMCI group
and the NC group.

Firstly, there are 160 subjects resampled by the bootstrap
resample method. After clustering these resampled samples,
we found that their clustering results were very similar to the
previous clustering results, which strongly proved the ac-
curacy of clustering results. 0e whole sample presents four
different connectivity states, which are ranked in order of
mean value. What these three groups have in common is
there is a high proportion of State 2 and State 3 and a low
proportion of State 4.

Secondly, the average dwelling time and the number of
state transitions of three groups are calculated. It is found
that the NC group stays longer in State 1, while the lMCI
group stays longer in State 3.0e number of state transitions
in the NC group is the least, while there are a lot of tran-
sitions in lMCI and eMCI groups. 0is indicates that the
functional connectivity states of the NC group are stable,
while the functional connectivity states of MCI patients
fluctuate greatly. Previous studies [30] have proved that
changes in dynamic functional connections may be related
to the performance of cognitive ability, and the results of this
paper confirm this inference. Graph theory analysis is
carried out with the indicators such as within-module degree
z-score, participation coefficient, clustering coefficient, and
characteristic path length, to explore the differences in these
states. 0e results show that the node degrees of the main
nodes whose degrees rank high in all nodes from State 1 to
State 4 decrease continuously. 0ese high-degree nodes are
important to the whole network because they play a key role
in transmitting information. In addition, the main nodes in
State 1 play the role of the core of the network due to the high
within-module degree z-score and participation coefficient,
while the main nodes in State 3 have weak integration and
segregation of functional connectivity.

Meanwhile, we conduct a statistical test of functional
connections among groups in order to study the differences in
brain functional connections.0e results indicate that OLF.L-
SPG.L is absent from the lMCI group, while POCG.R-SMG.R
and AMYG.L-FFG.R are absent from the eMCI group in State

2. OLF.L-SPG.L is absent from the lMCI group and IFG-
traiang.L-PAL.R is absent from the eMCI group in State 3.
0is suggests that patients with MCI have some reduced
functional connections, which in turn affects the connectivity
of the entire brain’s functional network.

In practice, some limitations of the study must be
considered. We did not find biomarkers that differentiated
patients with eMCI from normal people, although finding
reasonable biomarkers is more helpful for the following
classification. In the field of dynamic brain connectivity, the
determination of reasonable functional connectivity states is
a key and controversial issue. 0e development and im-
provement to more effective methods of recognition of
connectivity states will be more conducive to the under-
standing of the pathophysiological mechanisms of mental
diseases. In addition, our sample size is relatively small,
which cannot fully represent the abnormalities of functional
networks of patients with large samples [17, 40, 41]. In future
work, we will focus on finding biomarkers that can be used
to classify patients with eMCI from normal people in dy-
namic functional network. In addition, we will also try to
adopt structural data to research and analysis in further
exploring the brain network of MCI patients [42–44].

5. Conclusion

We examined and analyzed various graph theory indicators
of functional connectivity states of the eMCI group, the
lMCI group, and the NC group. It is found that the lMCI
group has smaller participation coefficients, smaller within-
module degree z-scores, longer characteristic path lengths,
and lower local efficiency of brain functional networks than
the eMCI group and the NC group. 0erefore, it is con-
cluded that the NC group has the strongest integration and
segregation, followed by the eMCI group, and the lMCI
group has the weakest integration and segregation [1, 45, 46].
In addition, brain functional connections in some states such
as IPL.L-MTG.R and DCG.R-SMG.L of the lMCI group are
significantly more than those of the eMCI group, andOLF.L-
SPG.L of the lMCI group is significantly less than those of
the NC group. Exploring these abnormal connections can
help us better understand the differences in eMCI, lMCI, and
NC groups [47–49]. In future work, we plan to investigate
the changes of brain structural connectivity in patients with
eMCI and lMCI [50, 51], which will improve our under-
standing of dynamic brain connectivity. Furthermore, rel-
evant methods will provide enlightenment for an explainable
diagnosis of cognitive impairment caused by COVID-19
[52–54].
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