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Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans
(CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including
axon guidance, fasciculation, conductance, and myelination. Prior work suggested the
possibility that these functions may, at least in part, be carried out by specialized CSPG
structures surrounding axons, termed axonal coats. However, their existence remains
controversial. We tested the hypothesis that NG2 and BCAN, known to be associated
with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in
the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from
healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and
unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats
and measure the percentage of myelinated axons associated with them. In a subset of
donors (n = 3), we used electron microscopy to analyze the spatial relationship between
axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show
that a substantial percentage (∼64%) of large and medium myelinated axons in the
human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy
studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with
larger axons displaying greater association with axonal coats. These findings represent
the first characterization of NG2 and BCAN axonal coats in the human brain. The large
percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal
guidance, fasciculation, conductance, and myelination suggest that these structures
may contribute to several key axonal properties.

Keywords: axonal coat, brevican, NG2, extracellular matrix, thalamus

INTRODUCTION

In recent years, a large number of studies have demonstrated the importance of the extracellular
matrix (ECM) in the regulation of developmental and adult brain processes, including synaptic
plasticity and receptor trafficking (Dityatev et al., 2006; Gundelfinger et al., 2010; Frischknecht
and Gundelfinger, 2012), neuronal migration (Charvet et al., 1998; Klausmeyer et al., 2011), axon
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guidance (Snow et al., 2003; Kwok et al., 2012), oligodendrocyte
differentiation (Ichihara-Tanaka et al., 2006; Bekku and Oohashi,
2010; Kucharova and Stallcup, 2010), and regulation of nodes of
Ranvier (Bekku et al., 2009; Dours-Zimmermann et al., 2009).
In addition, ECM dysregulation has been implicated in several
brain disorders, including schizophrenia (Pantazopoulos et al.,
2010; Consortium, 2014), bipolar disorder (Cichon et al., 2011;
McGrath et al., 2013; Steullet et al., 2018), and Alzheimer’s disease
(Bruckner et al., 1999; Morawski et al., 2010; Yang et al., 2017).

The brain ECM surrounds all cells, occupying a volume
fraction of approximately 20% of the adult brain (Thorne and
Nicholson, 2006; Sykova and Nicholson, 2008). It is composed of
aggregates of hyaluronan and chondroitin sulfate proteoglycans
(CSPGs) connected by glycoproteins (Yamaguchi, 2000; Rauch,
2004). CSPGs consist of core proteins with varying numbers
of chondroitin sulfate (CS) glycosaminoglycan chains. The
chemical composition and representation of CSPGs are regulated
throughout development and adulthood, modulating properties
required for regulating cell migration, myelination, and axon
growth (Bandtlow and Zimmermann, 2000; Wang et al., 2008;
Giger et al., 2010; Maeda, 2010). In addition to a loosely organized
lattice, the ECM forms highly organized structures, including
pericellular ECM aggregates called perineuronal nets (PNNs),
described as early as 1898 (Golgi, 1898; Celio et al., 1998).
PNNs form around subsets of neurons typically during critical
periods, regulating synaptic plasticity (Pizzorusso et al., 2002;
Gogolla et al., 2009; Mauney et al., 2013). These structures have
been the primary focus of studies establishing the importance
of CSPGs in adult neural functions. However, evidence for the
existence of other ECM structures, such as periaxonal aggregates,
has also been reported (Bruckner et al., 2008; Morawski et al.,
2010; Lendvai et al., 2012). Periaxonal aggregates were first
described by Bruckner et al. who named them “axonal coats”
(Bruckner et al., 2008; Morawski et al., 2010). These findings were
later reconsidered by these authors, who suggested that in the
human lateral geniculate nucleus, these structures may instead
correspond to perisynaptic aggregates (Lendvai et al., 2012).
However, preliminary observations by our group suggested that,
at least in the mediodorsal nucleus of the thalamus (MD), CSPGs
do form tubular structures surrounding axons. These preliminary
findings prompted further investigations.

Indirect but compelling evidence for the presence of axonal
coats comes from a growing body of literature supporting the
involvement of the ECM in axonal functions. For example,
CSPGs regulate myelination, fasciculation, saltatory impulse
conduction, and synaptic functions during development and
adulthood. During developmental stages, CSPGs are involved
in axonal guidance, including cortico-thalamic axons, and
changes in CS sulfation have profound effects on this process
(Viapiano and Matthews, 2006; Miyata et al., 2012; Berretta
et al., 2015; Fawcett, 2015). Furthermore, several CSPGs
play key roles in oligodendrocyte maturation, which in
turn impacts myelination of cortico-thalamic axons (Sim
et al., 2006; Faissner et al., 2010; Takahashi et al., 2011).
During development, glia-derived CSPGs have been shown to
regulate axon growth, axon guidance, and axonal fasciculation
(Wilson and Snow, 2000; Snow et al., 2003; Ichijo, 2004;

Klausmeyer et al., 2011). Importantly, during late development,
CSPGs are key contributors to the powerful inhibition that CNS
myelination exerts on neurite outgrowth, thus instating a mature
phase of restricted structural plasticity (Dours-Zimmermann
et al., 2009; Giger et al., 2010).

In adulthood, CSPGs interact with oligodendrocyte
progenitor cells (OPCs), mature oligodendrocytes, and
myelinated axons. Plasticity of myelin sheaths during adulthood
has been proposed as an ongoing, activity-dependent process
important for learning, through which neural circuit activity is
fine-tuned in response to environmental experience (McKenzie
et al., 2014; Xiao et al., 2016; Hill et al., 2018; Hughes et al.,
2018). CSPGs potently regulate OPC differentiation and
oligodendrocyte process outgrowth and myelination and are
strongly expressed by OPCs themselves (Ichihara-Tanaka et al.,
2006; Trotter et al., 2010; Lau et al., 2012). Several CSPGs,
including BCAN and NG2, are key components of the nodes of
Ranvier, where they regulate axonal conductance (Huang et al.,
2005; Melendez-Vasquez et al., 2005; Dours-Zimmermann et al.,
2009; Hunanyan et al., 2010). NG2, a CSPG involved in key brain
functions such as instructive guidance cues, synaptic plasticity,
regulation of the nodes of Ranvier as well as blood-brain-barrier
biology, has long been used as a specific OPC marker (Butt et al.,
1999; Yang et al., 2006; Kucharova and Stallcup, 2010, 2015;
Ferrara et al., 2016; Serwanski et al., 2017). BCAN is secreted by
OPCs during active myelination, consistent with its involvement
in regulating this process (Bekku and Oohashi, 2010).

Despite their potential broad implications in the regulation of
axonal functions, the existence of axonal coats in the adult human
brain remains unconfirmed. We tested the hypothesis that BCAN
and NG2 form axonal coats, i.e., ECM structures ensheathing
axons in the healthy adult human brain. To this end, we focused
on the MD, a brain region containing abundant axons, easily
identifiable within its pars fasciculata, where they are arranged
in large bundles.

MATERIALS AND METHODS

Human Subjects
Tissue blocks containing the whole thalamus from healthy
control donors were used for these investigations (n = 5
for dual immunofluorescence studies; n = 3 for electron
microscopy studies) (Table 1). All tissue blocks were
obtained from the Harvard Brain Tissue Resource Center
(HBTRC), NeuroBioBank site, McLean Hospital, Belmont,
MA, United States. Neuropathological assessment of
each donor did not show diagnostic findings. The cohort
did not include subjects with evidence for gross and/or
macroscopic brain changes, or clinical history, consistent with
cerebrovascular accidents or other neurological disorders.
Subjects with Braak and Braak stages III or higher were not
included. Review of extensive clinical records and family
questionnaires by HBTRC clinicians ruled out psychiatric
disorders. None of the subjects had significant history of
substance dependence within 10 or more years from death, as
further corroborated by negative toxicology reports. Absence
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of recent substance abuse is typical for samples from the
HBTRC, which receives exclusively community-based brain
tissue donations.

Tissue Processing
Tissue blocks containing the thalamus were dissected from fresh
brains and post-fixed in 0.1 M phosphate buffer (PB) containing
4% paraformaldehyde and 0.1 M Na azide at 4◦C for 3 weeks,
then cryoprotected at 4◦C for 3 weeks (30% glycerol, 30%
ethylene glycol, and 0.1% Na azide in 0.1 M PB), embedded in
agar, and pre-sliced in 2 mm coronal slabs using an Antithetic
Tissue Slicer (Stereological Research Lab., Aarhus, Denmark).
Each slab was exhaustively sectioned using a freezing microtome
(American Optical 860, Buffalo, NY, United States). Sections
were stored in cryoprotectant at –20◦C. Using systematic random
sampling criteria, sections through the thalamus were serially
distributed in 26 compartments (40 µm thick sections; 1.04 mm
section separation within each compartment). All sections within
one compartment/subject were selected for each marker, thus
respecting the “equal opportunity” rule (Coggeshall and Lekan,
1996; Gundersen et al., 1999).

Primary Antibodies
NG2 – rabbit polyclonal IgG anti-CSPG4 (55027-1-AP,
lot#09000034, Protein Tech Group Inc., Rosemont, IL,
United States) raised against a synthetic peptide corresponding
to human CSPG4/NG2, GenBank accession # NM_001897.

Brevican – rabbit polyclonal IgG anti-brevican (ab106615,
lot#GR163248-6, Abcam, Cambridge, MA, United States),
affinity purified, raised against a synthetic peptide corresponding
to amino acids 539–588 (PTETLPTPRE RNLASPSPST
LVEAREVGEA TGGPELSGVP RGESEETGSS) of Human
Brevican (NP_940819).

SMI-312 – mouse monoclonal IgG1 anti-SMI312 (ab24574,
lot# B226113), Abcam, Cambridge, MA, United States)

recognizing pan-neuronal neurofilaments commonly used as a
marker for axons (Ulfig et al., 1998).

Dual Antigen Immunofluorescence
Antigen retrieval was carried out by placing free-floating sections
in Vector Antigen Unmasking solution (1:100 in 0.1 M PB;
Vector Labs, Burlingame, CA, United States) heated to 80 degrees
◦C for 1 h. For dual labeling, sections were co-incubated in
primary antibodies (NG2, 2 µl:1000 µl, BCAN, 2 µl:1000 µl;
SMI-312, 0.5 µl:1000 µl) in 2% bovine serum albumin (BSA) for
72 h at 4◦C. This step was followed by 4 h incubation at room
temperature in Alexa Fluor goat anti-mouse 594 (1:300 µl; A-
11005, Invitrogen, Grand Island, NY, United States) and donkey
anti-rabbit 488 (1:300 µl; A-21206, Invitrogen, Grand Island, NY,
United States), followed by 10 min in 1 mM CuSO4 solution (pH
5.0) to block endogenous lipofuscin autofluorescence (Schnell
et al., 1999). Sections were mounted and coverslipped using Dako
mounting media (S3023, Dako, North America, Carpinteria,
CA, United States).

Electron Microscopy:
Immunohistochemistry and Tissue
Processing
Antigen retrieval was carried out by placing free-floating sections
in Vector Antigen Unmasking solution (1:100 in 0.1 M PB;
Vector Labs, Burlingame, CA, United States) heated to 80 degrees
◦C for 1 h. Sections were then rinsed and incubated in 0.05 M
glycine (4◦C, 1 h, Sigma Millipore) to bind free aldehydes,
followed by rinses and blocking in preblocking solution, which
contained 10% normal serum of the secondary antibody host
animal, Triton-X100 (0.025%, Roche Applied Science; EM), and
cold-water fish gelatin (0.1%, Aurion; EM) for stabilization of
ultrastructure. Sections were then incubated in primary antibody
(NG2, 2 µl:1000 µl or BCAN, 2 µl:1000 µl) for 72 h at 4◦C. For

TABLE 1 | Sample demographic and descriptive characteristics of the cohort used for immunohistochemical investigations.

Samples for Immunofluorescence Studies

Case/age/sex Cause of death/Inflammation Brain weight (g) PMI (hrs) Hemisphere Time of Death

93/70/F Myocardial infarction (A, N) 1245 18.0 R 07:29

05/26/M Unknown 1250 18.3 R NA

25/53/F Cancer (C, N) 1330 24.0 R 08:32

20/74/M Cardiac Arrest (A, N) 1490 15.8 R 08:41

40/74/F Cardiac Arrest (A, N) 1100 23.0 L 11:30

Total/mean ± SD 59.4 ± 20.6/3F, 2M 1283 ± 142.3 19.8 ± 3.5 1L/4R

Samples for Electron Microscopy Studies

Case/age/sex Cause of death/Inflammation Brain weight (g) PMI (hrs) Hemisphere Time of Death

38/95/F Myocardial infarction (A, N) 1350 07.1 R 14:50

20/74/M Cardiac Arrest (A, N) 1490 15.8 R 08:41

92/61/M Cardiac Arrest (A, N) 1100 10.1 R 12:30

Total/mean ± SD 76.7 ± 17.2/1F, 2M 1313 ± 197.5 11.0 ± 4.4 3R

A, acute, no prolonged agonal period; C, chronic, with agonal period; I, infection/inflammatory condition present at time of death; N, no significant infection/inflammation
present at time of death.
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control sections, primary antibodies were omitted. Incubation
was enhanced by microwaving (2 min at 150 W, 4◦C). After
primary antibody incubation, sections were incubated in a gold-
conjugated secondary antibody (1:50; UltraSmall ImmunoGold
F(ab) fragment of goat anti-mouse IgG; catalog #800.266, Aurion;
[RRID:AB_2315632]) in a buffer solution (10% normal goat
serum, 10% BSA, 0.2% BSA-c, 0.025% Triton X-100 [Roche
Applied Science], and 0.1% cold water fish gelatin [Aurion] in
0.1 M PB), followed by silver enhancement of gold particles
(90 min, R-GENT SE-EM kit 500.033, Electron Microscopy
Sciences, catalog #255213), quenching with 0.1 M PB rinses, and
incubation in enhancement solution (Enhancement conditioning
solution 10 × 500.055, Electron Microscopy Sciences, catalog
#25830). Sections were photographed using a temporary 0.1 M
PB mount on an unsubbed glass slide before the remainder
of EM processing. We performed microwave postfixation (6%
glutaraldehyde, 2% PFA in 0.1 M PB, 150 W, 15◦C) until sample
temperatures reached 30–35◦C, then left the sections in the
fixative to come to room temperature for 30 min, which was
followed by 0.1 M PB rinses.

Sections were processed for EM using a protocol optimized
for scanning/transmission EM and high-throughput block-face
imaging, as described previously (Garcia-Cabezas et al., 2016;
Zikopoulos et al., 2018; Liu et al., 2020). Briefly, we postfixed
tissue sections for 36 min in 2% osmium tetroxide (Electron
Microscopy Sciences) with 1.5% potassium ferrocyanide in 0.1 M
PB under vacuum with an initial microwave session (100 W
at 4◦C, 6 min). After three dH2O rinses, we incubated the
tissue sections for 30 min in 1% thiocarbohydrazide in dH2O
(Sigma Millipore), followed by another three dH2O rinses. We
then incubated tissue sections in a second osmium solution
(2% osmium tetroxide in dH2O), under vacuum, with an initial
microwave session (100 W at 4◦C, 6 min), for a total of 36 min.
Sections were rinsed in three dH2O rinses and stained overnight
at 4◦C in 1% uranyl acetate (Electron Microscopy Sciences) in
dH2O. The next day, we rinsed the sections with dH2O 3 times,
and then incubated them in lead aspartate solution (0.066 g
lead nitrate, Electron Microscopy Sciences, in 10 ml of 0.4%
L-aspartic acid in dH2O, titrated to pH 5.5 using 20% potassium
hydroxide solution, Sigma Millipore) for 30 min at 60◦C. We then
dehydrated the sections in ascending graded ethanol solutions
(50, 75, 85, 95, and 100%, 3 min × 5 min each). Sections
were then infiltrated with propylene oxide (2 min × 10 min,
Electron Microscopy Sciences), followed by a 1:1 mixture of
LX112 resin (LX112 Embedding Kits, Ladd Research Industries)
and propylene oxide for 1 h, and finally with a 2:1 mixture of
LX112 and propylene oxide at 25◦C overnight. The following
day, the sections were infiltrated with pure LX112 resin for 4 h
under vacuum, and then flat embedded in LX112 resin between
sheets of Aclar (Ted Pella), and cured for at least 48 h at 60◦C.
Using a stereoscope, we dissected small cubes of Aclar-embedded
tissue, using the photographs of each section taken before EM
processing to identify fiduciary landmarks (e.g., blood vessels)
and precisely locate our regions of interest, and prepared LX112
resin blocks. These blocks were then cured for ≥48 h at 60◦C.
For block-face imaging, aluminum pins containing cubes of
tissue were prepared using conductive epoxy glue (Chemtronics,

catalog #CW2400). We used an ultramicrotome (Ultracut UCT,
Leica Microsystems) to expose the surface of the tissue in resin
blocks and pins. After exposing the tissue, pins for block-
imaging were painted with conductive silver paint (Ted Pella,
catalog #16035), which reduces charging artifacts in the scanning
electron microscope (SEM). After the tissue was exposed on the
resin blocks for the TEM, we cut ∼50 nm ultrathin sections and
collected them sequentially on pioloform-coated copper slot grids
to form a series of 20–300 sections.

Data Collection
Dual-Immunofluorescence Confocal Microscopy
Quantification
A Zeiss Axio Imager M2 with a Lumencor SOLA LED lamp
interfaced with StereoInvestigator 10.0 (Microbrightfield Inc.,
Williston, VT, United States) was used for analysis. The
borders of the MD thalamus were delineated using a 1.6×

objective according to cytoarchitectonic and myeloarchitectonic
criteria as described by Hirai and Jones (1989). Adjacent
Nissl and luxol blue stained sections were used as references
for delineation of each immunostained section. One set
of 40 µm thick serial sections per subject representing
the rostral to caudal extent of the MD thalamus (10–12
sections/subject; 1.04 mm section separation within each set)
was used for stereology-based quantification. A sampling grid
was randomly placed over the MD on each section using
the Stereo-Investigator optical fractionator sampling method
in order to obtain counting frame sampling sites in a
systematic random sampling manner (Gundersen et al., 1999;
Dorph-Petersen et al., 2000).

A pilot study was used to determine the optimal grid
and counting frame size. On the basis of this pilot study,
we chose a grid size of 800 µm × 800 µm and a
counting frame size of 300 µm × 300 µm. Using a 63×

oil immersion objective (Zeiss Plan Apochromat No. 440760;
numeric aperture 1.4; working distance 0.19 mm), we counted
all cross-sectional SMI-312-immunoreactive (IR) axons with
or without axonal coats, and all NG2- or BCAN-IR axonal
coats within each counting frame. Confocal images obtained
using a Leica TCS-SP8 confocal microscope with a 100×

oil immersion objective were used for confirmation and for
measurements of axonal diameter and axonal coat thickness.
High-resolution confocal images were scanned at 1 µm
intervals through the extent of the z-axis, resulting in 26–32
scans per image.

Electron Microscopy
Electron microscopy (EM) images were obtained using an
80 kV transmission electron microscope (TEM, 100CX, JEOL)
at 2000–26,000×. ROIs were sampled systematically, and
images were captured for analysis using a digital camera
(DigitalMicrograph, Gatan). EM stacks were aligned manually
in Reconstruct (Fiala, 2005). For block-face imaging, pins were
mounted into the 3View 2XP System (Gatan) coupled to a
1.5 kV scanning electron microscope (GeminiSEM 300, Carl
Zeiss). The surface of the pin was imaged using a backscatter
detector at 6.5 nm/pixel resolution. A built-in automated
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FIGURE 1 | NG2 and BCAN form coats surrounding axons in the human MD thalamus. Photomicrograph of a luxol blue stained section depicting the subregions of
the human mediodorsal nucleus sampled for quantification of axonal coats (A). Myelinated fiber bundles were sampled from the parvocellular (PVC), the
magnocellular (MC), caudodorsalis (CD) regions of the MD. (B) Low magnification (10×) confocal image of NG2 labeling (red) and BCAN labeling (green) in the
mediodorsal nucleus of the human thalamus. Labeling for both CSPGs was observed in structures resembling myelinated fiber bundles. Higher magnification images
(C) revealed that these CSPGs labeled tube-like structures apparently surrounding openings that were consistent with the diameters of single axons. Scale bar
equals 30 µm. Confocal micrographs of dual immunofluorescence labeling revealed that these CSPG structures resembling axonal coats, labeled with NG2 (red),
surrounded SMI-312 immunoreactive axons (green). (D) Low magnification (10× objective) image showing NG2 axonal coats around SMI-312 axons in transverse
and cross-section slices of the axons. (E) An intermediate magnification image depicting an example of cross-sectional SMI-312 axons surrounded by NG2 coats.
Pink arrows indicate axons surrounded by NG2 coats, yellow arrows indicate axons without NG2 coats. (F) High-resolution imaging allowed for measurements of the
diameter of these axons (3.95 and 3.99 µm) as well as the thickness of the NG2 axonal coats [892 and 856 nanometers; (G)]. Scale bars equal 4 µm for D–G.

microtome then cut a 50 nm section from the surface of
the pin, and the ROIs were imaged again. This way, long
series of ≥300 sections were imaged in sequence at each
ROI. For series obtained using block-face imaging, we used
an algorithm for alignment (GMS3.0, Gatan). EM images and
stacks were imported into Reconstruct (Fiala, 2005), where
we exhaustively outlined all myelinated axons, identified the
distribution of labeling in distinct compartments of the axon,
and estimated the major diameter of each axon. Some labeled
axons were followed in very long series and reconstructed into
3D models using Reconstruct and Studio Max (Autodesk) for
basic smoothing.

RESULTS

NG2 and Brevican Form Tubular
Structures Surrounding Axons in the
Human Mediodorsal Thalamus
Multiplex immunocytochemistry combined with high-resolution
confocal microscopy was used to assess the relationship between
SMI-312-IR axons and NG2- and BCAN-IR in the human MD
thalamus. NG2- and BCAN-IR were concentrated within axon
bundles in the MD (Figure 1A). Within these bundles, NG2- and
BCAN-IR were found to co-localize within tube-like structures,
resembling myelin sheaths (Figure 1). Dual-labeling with the
axonal marker SMI-312 shows that BCAN/NG2-IR tubular
structures tightly surround axons (Figure 1). They are referred
to here as ‘axonal coats.’ High-resolution confocal microscopy
measurements show that the diameter of axonal coats within the

human MD is 3.95–3.99 µm and the thickness of their walls is
856–892 nm (Figures 1E,F).

Axons Within the Human Mediodorsal
Thalamic Nucleus Are Predominantly
Associated With Axonal Coats
Unbiased stereology-based sampling in 5 control subjects was
used to quantify the percentage of axons in the human MD
surrounded by NG2-IR and BCAN-IR axonal coats. Our results
show that 64.78% (standard deviation ±3.3%) of axons were
surrounded by NG2-IR coats and 64% (standard deviation
±2.7%) by BCAN-IR coats, consistent with predominant
colocalization of these CSPGs. Conversely, 35.22% (standard
deviation ±3.3%) and 36% (standard deviation ±2.7%) of axons
were not associated with NG2-IR and BCAN-IR axonal coats,
respectively (Figure 2).

Ultrastructural Characteristics of NG2-
and Brevican-Immunoreactive Axonal
Coats
Electron microscopy analysis of BCAN- and NG2-IR axonal coats
in the human MD was carried out on a total of 24,148 cross-
sections of axon segments from randomly selected sections. We
focused on the location of each CSPG with respect to the axon
and its myelin sheath and measured the incidence BCAN- and
NG2-IR within the axon cytoplasm, just below the myelin sheath
outside the axoplasm, or above the myelin sheath on the surface
of the myelinated axon.
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FIGURE 2 | Percentage of Axons surrounded by NG2 or BCAN Coats. Stereology-based sampling was used to quantify the number of SMI-312 immunoreactive
axons and axonal coats within bundles of the MD (A) approximately 65% (standard deviation ±3.3%) of axons were associated with NG2 immunoreactive coats (B)
and 64% (standard deviation ±2.7%) were associated with BCAN immunoreactive coats (C).

Distribution of Axonal Coat Labeling With Respect to
Axonal Segments
In randomly selected photomicrographs of sections labeled for
BCAN, 17% of the axon segments showed BCAN-IR interleaved
between myelin layers or associated with axon membrane, 10%
of axon segments had BCAN-IR on the surface of the myelin
sheath, and 73% of axon segments had no BCAN expression. In
sections immunolabeled for NG2, 15% of axon segments showed
NG2-IR interleaved with the myelin layers or associated with
the axon membrane, 6% of axon segments had NG2-IR on the
surface of the myelin sheath, and 79% of axon segments had
no NG2 expression. Note that discrepancies between confocal
and electron microscopy regarding the percentages of axons
associated with BCAN-IR and NG2-IR are explained by the
fact that EM detects axons with diameters below 0.1–0.2 µm,
which are below the resolution of optical microscopy. Studies
from our group and others have reported that EM detects 30–
50% more myelinated axons compared to confocal microscopy
(Zikopoulos and Barbas, 2010; Liewald et al., 2014; Wegiel et al.,
2018; Zikopoulos et al., 2018).

Axonal Coats Are Associated With Medium- and
Large-Size Axonal Coats
We assessed whether the relationship between BCAN- and
NG2-IR axonal coats and myelin sheaths varies with axon
size (Figure 3). BCAN-IR axonal coats were not detectable
in myelinated axons with a diameter below 0.63 µm on
average. In contrast, medium-size axons (average diameter
of 0.76 µm), showed a layer of BCAN-IR surrounding the

myelin sheaths. Larger axons, with an average diameter of
0.9907 µm, predominantly showed BCAN-IR interleaved with
myelin lamellae or associated with the axon membrane. A similar
pattern was observed for NG2-IR axonal coats. Small myelinated
axons, with a diameter of 0.53 µm or smaller, did not display
NG2-IR axonal coats. Axons with an average diameter of
0.61 µm, showed NG2-IR surrounding the myelin sheets. In
larger axons, with an average diameter 0.70 µm, NG2-IR was
interleaved with the myelin sheaths or associated with the axon
membrane. These findings indicate that BCAN- and NG2-IR
axonal coats are predominantly associated with medium- and
large-size axons, and that their spatial relationship with the axon
and its myelin sheets varies according to the axon size.

Spatial Relationships Between Axonal Coats, Axons,
and Myelin
To further explore the spatial relationship between axonal coats
and myelinated axons, we analyzed 231 axon segments whose
length could be studied across at least 300 nanometers. BCAN-IR
was detected within the cytoplasm in 38% of the time, between
the myelin lamellae 33% of the time, and on the surface of
the myelin sheaths 29% of the time (Figures 3, 4). We then
examined longer segments (>10 µm) of four axons in 3D to
show the pattern of BCAN-IR with respect to myelinated axons.
To do this, we reconstructed each axon electronically ‘transected’
longitudinally to show the location of BCAN-IR (Figure 4). The
results show a regular pattern of BCAN-IR, weaving from the
surface of the myelin coating to the inside of the axon with a
period of approximately 2 µm.
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FIGURE 3 | NG2 and BCAN labeling is associated with larger axons. (A) Electron microscopy image depicting a cross-sectional axon with myelin labeling and
interweaved immunoreactivity for NG2. (B) Two-dimensional quantitative analysis of 24,000 axon segments revealed that BCAN and NG2 labeling within the
cytoplasm was more frequently observed in larger axons. The * symbol indicates location of the axon.

DISCUSSION

In the human MD, our results show that the CSPGs BCAN and
NG2 form tubular sheaths enveloping large- and medium-sized
myelinated axons. The term ‘axonal coats,’ originally suggested
by Bruckner et al. (2008) and Morawski et al. (2010), aptly
describes these ECM/CSPG structures. We describe, to our
knowledge for the first time, the ultrastructure of axonal coats,
showing that they associate predominantly with medium to large
size axons, forming complex structures in relation to myelin
sheaths. These findings add to existing evidence for structural
relationships between the ECM and neural axons and further
point to the involvement of CSPGs in axonal functions. We show
that BCAN and NG2 are present not only in the axon initial
segment and nodes of Ranvier, where they are thought to regulate
neuronal excitability and saltatory conduction, respectively (Butt
et al., 1999; John et al., 2006; Bekku et al., 2009; Giger et al.,
2010; Hunanyan et al., 2010), but they also surround the axons
and interleave with myelin sheaths. In the context of growing
support for CSPG functions in the regulation of axon guidance,
fasciculation, and myelination, our findings provide evidence for
axonal coats as an ECM structure potentially underlying these

functions. Speculatively, given the dynamic role of myelination in
the adult brain, where rapid activity-dependent changes in axon
myelination support neural plasticity, we put forth the hypothesis
that axonal coats may serve to stabilize myelin sheaths in a
manner analogous to the role played by PNNs and perisynaptic
ECM aggregates in synaptic regulation.

Brevican- and NG2-Immunoreactive
Axonal Coats: Association With Medium
and Large Axons
NG2- and BCAN-IR axonal coats within the human MD were
primarily associated with medium and large axons (Figure 3).
This relationship suggests that axonal coats containing these
CSPGs may contribute to the high conductance velocity and
spike frequencies typical of larger axons, which are mostly
involved in long-range pathways (Arbuthnott et al., 1980;
Friede et al., 1984; Perge et al., 2009, 2012; Horowitz et al.,
2015). Well-established CSPG functions such as regulating ionic
homeostasis and providing structural support offer further
evidence for this possibility. Interestingly, the predominant
association of axonal coats with medium and large axons
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FIGURE 4 | 3D reconstruction of BCAN labeling in a single axon segment. (A) Single axonal segment (Axon 3) 11.63 µm long, depicts the outside aspect of the
axon. Reconstruction shows the same axon, electronically transected along its longitudinal axis to show the distribution of BCAN in the cytoplasm (red), beneath and
between the myelin sheaths (B). (C) Quantitative analysis of axon diameter and marker category percentage for each section. Y-axes depict percent surface area of
BCAN labeling in each axonal compartment category (left); legend: Purple, myelin; white-gray, cytoplasm; red, within cytoplasm; yellow, marker within deep myelin;
green, marker within superficial myelin, and the corresponding axon diameter of each section in microns (right), for each transected axon section analyzed as
indicated on the x-axis.
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parallels the reported OPC preference to repair minor myelin
damage in larger axons (Snaidero et al., 2020; Call and Bergles,
2021).

NG2 is a transmembrane CSPG selectively expressed in the
brain OPCs and pericytes (Levine and Card, 1987; Stallcup
and Beasley, 1987; Levine et al., 1993; Karram et al., 2008;
Moransard et al., 2011; Huang et al., 2014; Stallcup, 2018; Li
et al., 2020; Melrose et al., 2021; Chelyshev et al., 2022). OPCs
are a major source of mature oligodendrocytes in the adult
brain – however, these latter cells are not known to express NG2.
Thus, although our study cannot exclude it, it is not likely that
the NG2-IR detected in axonal coats is simply a component of
the myelin sheaths.

Brevican is secreted into the ECM, where it plays a variety of
functional roles, from entering in the composition of PNNs to
regulating neuritic functions. The source of BCAN contributing
to axonal coats is more difficult to infer, as this CSPG is expressed
by neuronal and glial cells, including OPCs (Seidenbecher et al.,
2002; John et al., 2006). While BCAN is not expressed by fully
mature oligodendrocytes (Ogawa et al., 2001), it is secreted by
OPCs during active myelination, consistent with its involvement
in regulating this process (Bekku and Oohashi, 2010). Thus,
OPCs are also good candidates as a source of BCAN for axonal
coats. Notably, evidence supports a key role for BCAN in
bridging between the intracellular neuronal domain and the
ECM, as it attaches to the surface of the neuronal membrane and
interacts with the hyaluronan acid-based extracellular domain
(Seidenbecher et al., 2002). This property may be mediated by
the adhesion molecule neurofascin 186 kDa isoform (NF-186),
which directly links the intracellular cytoskeleton to BCAN-based
ECM (Desmazieres et al., 2014). Indeed, interactions between
NF-186 and brevican have been found to stabilize the axon initial
segment and node of Ranvier (Hedstrom et al., 2007; Kriebel
et al., 2012). Speculatively, these observations may account for
the axonal coat pattern observed at the ultrastructural level, as
BCAN-IR was found to interleave with myelin lamellae as well as
associated with the axon.

Ultrastructure of NG2- and
Brevican-Axonal Coats
Our ultrastructural analyses showed an intriguing BCAN- and
NG2-IR distribution pattern, with a regular wave-like pattern
moving from the surface of the myelin sheath, through the myelin
layers, within the axon and back to the surface of the myelin
sheath (Figure 4). This pattern was more frequently associated
with larger axons, suggesting that its functional significance
may perhaps be related to structural support. The interleaving
pattern formed by axonal coats and myelin lamellae showed
a striking regularity, with a period of 2 µm, suggesting a
tightly regulated geometric relationship between these structures
(Figure 4). Such a short, 2 µm, period is not compatible with
the possibility that sites where the axonal coats associate with
the axon may correspond to the nodes of Ranvier. This is
because the distance between two nodes is expected to be greater,
reported to be between 27 and 154 µm at least in the mouse

cortex (Chong et al., 2012; Tomassy et al., 2014; Arancibia-
Carcamo et al., 2017). Furthermore, the myelin sheath is clearly
visible above the sites where BCAN- and NG2-IR are within
or on the surface of the axonal membrane (Figure 4). We put
forward the hypothesis that, in larger axons, the interleaving
pattern formed by axonal coats and myelin sheaths may help
to anchor and stabilize these latter with respect to the axonal
cytoskeleton. Speculatively, this function may be analogous to
the role played by PNNs and perisynaptic ECM aggregates
around active synapses (Faissner et al., 2010; Frischknecht et al.,
2014; Ferrer-Ferrer and Dityatev, 2018). Growing evidence for
a dynamic, activity-dependent role of myelination, shown to
represent a critical aspect of plasticity, is consistent with this
hypothesis (McKenzie et al., 2014; Xiao et al., 2016; Hill et al.,
2018; Hughes et al., 2018).

Axonal Plasticity and Axonal
Conductance
Myelin sheath plasticity occurs throughout adulthood to fine-
tune neural circuit activity in response to environmental
experience (McKenzie et al., 2014; Xiao et al., 2016; Hill
et al., 2018; Hughes et al., 2018). Several lines of evidence
suggest that axonal coats may contribute to this process.
During late development, CSPGs are key contributors to the
powerful inhibition that CNS myelination exerts on neurite
outgrowth, thus instating a mature phase of restricted structural
plasticity (Dours-Zimmermann et al., 2009; Giger et al., 2010).
Furthermore, several studies in rodents suggest that NG2-
OPCs contribute to axonal plasticity. For example, sensory
deprivation, either via whisker trimming or ocular deprivation,
causes changes in the number and distribution of NG2-OPCs in
these regions, and is associated with altered axonal conductance
(Mangin et al., 2012; Etxeberria et al., 2016).

Several CSPGs, including BCAN and NG2, are key
components of the nodes of Ranvier. In particular, BCAN
has been shown to play a role in determining the specialization
and composition of the ECM nodal matrix, particularly in large
diameter axons (Bekku et al., 2009). It is tempting to speculate
that there may be structural and functional relationships between
BCAN/NG2-IR axonal coats and these CSPGs within the nodes
of Ranvier. Although it is beyond the scope of the present study,
future investigations may assess such relationships and the
potential continuity between axonal coats and peri-nodal ECM.

Axon Fasciculation
In the developing brain, CSPGs have been proposed to form
axon guidance pathways for thalamocortical axons (Bicknese
et al., 1994; Anderson et al., 1998). This function, related to
the CSPG inhibitory properties, has been proposed to be a
key aspect of axonal fasciculation (Bicknese et al., 1994; Snow
et al., 2003). In particular, NG2 and BCAN were reported to
have inhibitory effects on axonal growth (Davies et al., 2004;
Tan et al., 2005), supporting the hypothesis that BCAN- and
NG2-IR axonal coats may contribute to axon fasciculation. This
possibility may be particularly relevant in the context of our
study, which was focused on large axon bundles within the
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MD. Our findings suggest that the large percentage of axonal
coats detected in myelinated fiber bundles within the MD
may be related to their role in axon fasciculation, promoting
the adherence of axons into segregated fiber bundles. It is
possible that the high density of large, myelinated fiber bundles
in the MD, with a substantial representation of axonal coats,
may account for discrepancies between our findings and those
reported in the human lateral geniculate nucleus by Lendvai et al.
(2012).

Implications for Brain Disorders
Several lines of evidence point to a CSPG dysregulation in a
growing number of brain disorders. We previously identified
abnormal CSPG expression in the amygdala, entorhinal cortex,
prefrontal cortex, and thalamic reticular nucleus of subjects
with schizophrenia (Pantazopoulos et al., 2010, 2015; Mauney
et al., 2013; Steullet et al., 2018). Our group has also reported
widespread ECM abnormalities involving genes encoding for
CSPGs, matrix metalloproteases, link proteins, and semaphorins
in several cortical and subcortical brain regions (Pantazopoulos
et al., 2021). Recent genetic studies, including GWAS, have
reported associations of genetic polymorphisms for genes
encoding specific CSPGs, such as neurocan, neuroglycan-C, and
PTPRZ1, and molecules involved in the regulation of CSPGs
including matrix metalloproteases (Buxbaum et al., 2008; Dow
et al., 2011; Ripke and Consortium, 2011; Bespalova et al., 2012;
Muhleisen et al., 2012; McGrath et al., 2013; Consortium, 2014;
Ripke and Schizophrenia Working Group of the Psychiatric
Genomics, 2014), suggesting that CSPG abnormalities represent
core aspects of the neuropathophysiology of schizophrenia. NG2
has been implicated in this disorder in at least one study
(de Vrij et al., 2019).

Extensive evidence from functional imaging studies has
identified disrupted cortico-thalamic functional connectivity in
subjects with schizophrenia (Schlosser et al., 2003a,b; Marenco
et al., 2012; Anticevic et al., 2014; Saalmann, 2014; Canu
et al., 2015; Cho et al., 2015; Hoflich et al., 2015; Lui
et al., 2015). Impaired connectivity of this pathway is believed
to impact several clinical aspects of this disorder, including
psychosis, attention sensory motor integration, and emotional
processing. DTI/fiber tractography studies in subjects with
schizophrenia provide strong evidence for a disruption of
anatomical connectivity and white matter integrity between
cortical areas and thalamus (Rose et al., 2006; Kim et al.,
2008; Kito et al., 2009; Oh et al., 2009; Antonius et al., 2011;
Sui et al., 2011; Kubota et al., 2012; Marenco et al., 2012).
Furthermore, evidence for myelination deficits comes from
reports of altered expression of myelin-related proteins and
modest oligodendrocyte reduction in the MD and other thalamic
nuclei (Schmitt et al., 2004; Byne et al., 2006, 2008; Beasley et al.,
2009; Martins-de-Souza et al., 2010). In this context, deficits in
axonal coats composed of CSPGs from OPCs may contribute to
thalamo-cortical dysconnectivity in schizophrenia.

White matter and oligodendrocyte pathology have also been
reported in Alzheimer’s disease and proposed to precede disease
symptoms (Lee et al., 2016, 2018; Araque Caballero et al., 2018;
Nasrabady et al., 2018). Recent studies support a role for CSPG

abnormalities in Alzheimer’s disease, including PNN deficits,
CSPG expression in amyloid beta plaques, decreased CSF levels
of NG2, and increased levels of chondroitin-4-sulfate (Bruckner
et al., 1999; Baig et al., 2005; Morawski et al., 2010; Lendvai et al.,
2013; Nielsen et al., 2013, 2014; Vegh et al., 2014; Howell et al.,
2015; Yang et al., 2017; Cattaud et al., 2018; Schultz et al., 2018).
Potential decreases of axonal coats may therefore contribute to
white matter connectivity deficits in these diseases.

CONCLUSION

In summary, our data support the existence of a novel ECM
structure, axonal coats, in the human MD thalamus, composed
of the CSPGs NG2 and BCAN, interweaved between myelin
sheaths and axonal plasma membranes. CSPG axonal coats
may contribute to several aspects of axon regulation, including
fasciculation, axonal guidance, and stabilization of myelin
sheath. CSPG involvement in several brain disorders, including
schizophrenia and Alzheimer’s disease, raises the possibility
that axonal coat abnormalities may contribute to connectivity
dysfunction reported in these disorders.
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