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Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in
motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis
were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude
analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40
neuropathic individuals and 40 controls.The number of turns, amplitude between turns, signal energy, and “permutation entropy”
were used as features for support vector machine classification. Results. The obtained results proved the superior classification
performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features.The lowest
accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation
entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of
polyneuropathies examined by needle electromyography.

1. Introduction

Qualitative visual analysis of MUPs and interference patterns
may be useful for diagnosis when there are clear changes, but
this approachmay bemisleading in patients withmore subtle
lesions [1]. Computational processing helps clinicians draw
conclusions from large data sets, such as complex waveforms
acquired from EMG. Performing single motor unit potential
(MUP) analysis during a weak muscle contraction a is time-
consuming test. For some of the examined subjects, it is
difficult to maintain a constant weak contraction. The ideal
solution for a description of the EMG signal would be perfect
decomposition of the action potentials of motor units to
determine an interference curve. In clinical practice, the
precise decomposition of intramuscular EMG signals still has
limited applications. In most cases, the signal is not fully
decomposed or only a few representative action potentials
are collected. One way of quantifying the electromyographic

interference pattern is by measuring the number of turns and
the mean amplitude change between successive turns. A turn
occurs at a peak at which the signal changes direction and
differs by at least 100 𝜇V in amplitude from the previous and
following turns [2]. A disadvantage of the Willison analysis
is that it does not appear to be as sensitive as single MUP
analysis. In axonal polyneuropathy, there is a loss of motor
units, which leads to simplification of EMGcurves.Therefore,
reductions in signal entropy and energy are expected. While
muscle contraction increases, more motor units are firing.
This leads to an increase in signal entropy.

The aim of this study is to compare the performance
of classification based on “turns-amplitude” analysis with
classification derived from an extended number of features,
including “permutation entropy” and signal energy. Subse-
quently, a supervised learning method called the “support
vector machine” is used for binary classification of the
data.
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2. EMG Data Acquisition

2.1. Data Acquisition. This study focuses on an analysis of
needle EMG signals from 40 reference and 40 neuropathic
individuals. All signals were acquired with the sampling
frequency Fs = 12,5 kHz during voluntary muscle contrac-
tion lasting 4 seconds. The maximum force in the tibialis
anterior muscle was measured before EMG needle insertion
by a dynamometer. Electrical activity during 30% muscle
contraction was recorded by a concentric needle electrode
with a leading-off area of 0.07mm2. The filter setting was in
a range between 5Hz and 10 kHz with an amplitude setting
from the 100 𝜇V/division to 2mv/division and a sweep speed
of 10ms/division.

Motor nerve conduction studies (NCS) of median and
peroneal nerves, sensory NCS of median and sural nerves,
and needle EMG from the tibialis anterior muscle were
performed using a standard technique with an Alien EMG
device. Additional nerve conduction testing was performed
as indicated by the pattern and severity of abnormal findings
to determine sensory, motor, axonal, and demyelinating
features of the polyneuropathy. The study was approved and
supervised by the Local Ethics Committee.

2.2. Data Set. Thenormal controls (18–64 years old) included
40 patients examined for paraesthesias of central origin (scle-
rosis multiplex), restless legs syndrome, and gait instability
with no neuropathic problems. The neuropathy set involved
40 patients (19–74 years old) diagnosed with polyneuropathy
based on a combination of clinical signs, neuropathic symp-
toms, and electrodiagnostic findings as established by the
American Association of Neuromuscular Electrodiagnostic
Medicine [3]. This set included patients with a history
of chronic alcohol abuse, with a history of chemotherapy
(vincristine, paclitaxel), and with hereditary motor sensory
neuropathy.

3. Data Processing

3.1. Signal Analysis. Values obtained by evaluating the prop-
erties of EMG waveforms were used as inputs for machine
learning to sort the data into two groups. Mathematical
methods were studied and proposed for the estimation of
characteristic features of an EMG signal 𝑥(𝑛)𝑛=1𝑁 of length𝑁 obtained with a sampling frequency 𝐹𝑠 or sampling time𝑇𝑠 = 1/𝐹𝑠 which included the following calculations.

3.1.1. Turns and Amplitude Analysis. TA analysis is a widely
used method of interference pattern analysis developed by
Willison in the 1960s.The principle is to compare the number
of turns over time that are defined as positive or negative
potential changes greater than a selected threshold (usually
100 𝜇V).

The Willison rate is defined by the relation 𝑊rate = (1/𝑇𝑠𝑁)(∑𝑘=1𝑁−1𝑓(𝑘)), where (𝑓(𝑘)=𝑑(𝑘)>THRESH)𝑘=1𝑁−1
forms a sequence for differences (𝑑(𝑘)=|𝑥(𝑘+1)−𝑥(𝑘)|)𝑘=1𝑁−1
[4–6].

Fuglsang–Frederiksen used the ratio of the number of
turns per second to the mean amplitude (peak-ratio method)

to distinguish myopathies from neuropathic disorders [4,
7]. In neuropathic subjects, the sensitivity of this method
approaches the sensitivity in MUAP analysis, whereas in
myopathic subjects it even exceeds it [8]. The threshold in
our study was set to 100 𝜇V. An amplitude was measured
between successive turns. A turn was defined as a change in
the direction of the signal of at least 100 microvolts.

3.1.2. Permutation Entropy. Permutation entropy (PE) is
a way of quantifying the complexity of data, which was
introduced in 2002 by Bandt and Pompe [9]. Unlike former
entropy approaches, PE has significant advantages, partic-
ularly in time series (i.e., robustness, lower computational
requirements, and easy calculation for chaotic and noisy
time series). The idea is to select all possible data sequences
of length 𝑛 (the order of permutation) and compare them
with all possible permutation patterns 𝜋1–𝜋𝑛! of n members
that represent the rank orders of data values. Apart from
pattern length 𝑛, there is a second parameter time lag (𝜏) that
describes the time delay between successive patterns (to avoid
error in data with a high frequency of equal values). Based on
the occurrence of permutation patterns within the data set, a
PE is calculated according to

𝐻𝑛 = −∑
𝑗=1

𝑛! (𝑝 (𝜋) (log 2 (𝑝 (𝜋)))) , (1)

where 𝑝(𝜋) stands for the relative frequencies of possible
permutation patterns. To be able to compare entropies with
different 𝑛, the following relation is defined [9, 10]:

ℎ𝑛 = 𝐻 (𝑛)(𝑛 − 1) . (2)

For the purposes of our study, the order of permutation(𝑛) and the time lag (𝜏)were set to 3 or 2, respectively, to allow
for the same rank for equal values.

3.1.3. Signal Energy. The signal energy is defined as the sum
of the absolute values of the samples per second.

3.2. Data Classification: Support Vector Machine. This meth-
od was developed in the 1960s when Vapnik introduced
an algorithm for linear binary separation of a data set that
works on a training set in which each data point 𝑥𝑖 is given
information about its classification (−1 or 1) [11]. Data are
separated by a hyperplane that is constructed so that it has a
maximum distance from the nearest points of both groups of
data (the support vectors), which creates the widest possible
zone (margin) where no data points occur. In case the data
are not linearly separable (e.g., if no such hyperplane exists),
we can use the “soft margin method” in which some data
points are accepted as errors. A slack variable is introduced
to determine the trade-off between margin maximization
and training error minimization [12]. In 1992, Boser, Guyon,
and Vapnik created a method for nonlinear classification
by applying a kernel trick that transforms the data to a
higher dimension where they can be linearly separated [13].
Projection of the hyperplane from high dimensional space



Computational Intelligence and Neuroscience 3

Table 1: Characteristics of the parameters used for SVM training.

Parameter Normal (mean ± SD) Neuropathic (mean ± SD) 𝑝 value
Number of turns/s 1496.50 ± 557.33 838.40 ± 345.67 1.33 ∗ 10−8
Interspike amplitude (𝜇V) 59.30 ± 52.21 99.99 ± 44.91 3.54 ∗ 10−4
Energy (mV/sec) 479.57 ± 199.20 304.37 ± 276.75 1.70 ∗ 10−3
Entropy 6.85 ± 0.70 7.25 ± 0.97 3.85 ∗ 10−2

Table 2: Comparison of the SVM classifier with different parameters for performance measures (all the SVM classifiers were trained with a
set of default parameters; see SVM under Data Processing). A leave-one-out cross-validation was performed for each result.

Performance measure Turns, amplitude Turns, amplitude,
entropy

Turns, amplitude,
energy

Turns, amplitude,
entropy, energy

TP 35.13 33.18 33.63 36.10
FN 3.88 5.83 5.38 2.90
FP 9.88 7.68 7.23 4.95
TN 29.13 31.33 31.78 34.05
Sn+ (%) 0.90 0.85 0.86 0.93
Sp+ (%) 0.78 0.81 0.82 0.88
Sn− (%) 0.75 0.80 0.81 0.87
Sp− (%) 0.88 0.84 0.86 0.92
Ac (%) 0.82 0.83 0.84 0.90
MCC 0.66 0.65 0.68 0.80

into two dimensions is depicted as a nonlinear curve that
efficiently separates the data points. Commonly used ker-
nels include homogenous and inhomogeneous polynomial,
Gaussian radial basis function, and hyperbolic tangent [14,
15]. The support vector machine is a powerful tool for
binary classification of data, which was successfully applied
in various branches ranging from handwritten digits and face
recognition to bioinformatics such as interpretation of DNA
expression [13, 14]. Another modification of this approach
can be used for regression analysis or for clustering of the
data into groups (unsupervised learning with unlabeled data
points) [16, 17]. Here, a cross-validated SVM classifier was
optimized using Bayesian optimization. The radial basis ker-
nel function was selected for separation of the data. Parame-
ters for balancing the error andmargin width were optimized
by quadratic programming. For binary classification, two
feature vectors were used. The Gaussian radial basis function
kernel had a scaling factor 1. The turns-amplitude classifier
was compared to turns-amplitude-entropy classifier, turns-
amplitude-energy classifier, and turns-amplitude-entropy-
energy classifier, as shown in Figure 1 and Table 2.

3.3. Performance Evaluation. To assess the performance of
SVM with different parameters, we used the following mea-
sures: the number of true positives (TP), the number of
false positives (FP), the number of true negatives (TN),
the number of false negatives (FN), sensitivity of positive
examples (Sn+), specificity of positive examples (Sp+), sen-
sitivity of negative examples (Sn−), specificity of negative
examples (Sp−), accuracy (Ac), and the Matthews correlation
coefficient (MCC). These measures can be defined as follows
[18]:

Sn+ = [ TP
(TP + FN)] ,

Sp+ = [ TP
(TP + FP)] ,

Sn− = [ TN
(TN + FP)] ,

Sp− = [ TN
(TN + FN)] ,

MOC

= [ [(TP × TN) − (FP × FN)]
√(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)] ,

TPR = [ TP
(TP + FN)] ,

FPR = [ FP
(FP + TN)] .

(3)

4. Results

Between the two groups, the differences in mean values of
all parameters were statistically significant (Table 1). The
accuracy of the turns-amplitude analysis was the lowest,
whereas a combination of all parameters had the highest
accuracy (Table 2).

5. Discussion

Permutation entropy is used to quantify the level of
order in EMG signals, while the peak-ratio method and
energy express the statistical properties of the signal. These
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Figure 1: “Turns-amplitude” analysis.

parameters are therefore mutually independent and can
be combined to achieve higher accuracy. In addition to
the process of waveform simplification after the loss of
motor units, there is also a formation process of large and
complex motor units during reinnervation. Surprisingly, this
second process has caused an increase in entropy in the
resulting EMG curve. Loss of motor units may also be
compensated for by an increase in the firing frequency.
However, this mechanism should not lead to an increase
in entropy because it is a repetition of the same pattern.
Another reason for the limited entropy benefit is the fact
that the group of polyneuropathic patients includes subjects
with various degrees of axonal loss. Significant alterations in
the number of changes and morphological changes of motor
units do not have to be present for moderate impairments to
arise.

6. Conclusion

Although the combination of permutation entropy and signal
energy with the peak-ratio method significantly improves
accuracy in classifying axonal polyneuropathy, the payoff of
using this methodology is limited. In terms of entropy, there
are probably two contradictory processes that lead to the loss
of motor units and the emergence of complex reinnervation
potentials.

Ethical Approval

All procedures were conducted according to the ethical
standards of the responsible committee on human experi-
mentation (institutional and national) and according to the
requirements of the Helsinki Declaration of 1964 and its
later amendments. Informed consent was obtained from all
patients who were included in the study.

Consent

Informed consent was obtained from all patients who were
included in the study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This study was partially supported by the grant projects of the
Ministry of Health of the Czech Republic (FN HK 00179906)
and of the Charles University in Prague, Czech Republic
(PROGRES Q40).

References

[1] J. R. Daube and D. I. Rubin, “Needle electromyography,”Muscle
& Nerve, vol. 39, no. 2, pp. 244–270, 2009.

[2] A. L. Rose and R. G. Willison, “Quantitative electromyogra-
phy using automatic analysis: studies in healthy subjects and
patients with primary muscle disease,” Journal of Neurology,
Neurosurgery & Psychiatry, vol. 30, no. 5, pp. 403–410, 1967.

[3] J. A. Leonard Jr., N.Abel, T. Cochrane et al., “Guidelines for ethi-
cal behavior relating to clinical practice issues in neuromuscular
and electrodiagnostic medicine,”Muscle & Nerve, vol. 42, no. 4,
pp. 480–486, 2010.

[4] R. D. Daube and R. Jasper, “Turns and amplitude analysis of the
interference pattern,” in Clinical Neurophysiology, B. E. Smith,
Ed., pp. 469–471, Oxford University Press, New York, NY, USA,
2009.
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