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Abstract: Lunasin is a plant derived bioactive peptide with both cancer chemopreventive 

and therapeutic activity. We recently showed lunasin inhibits non-small cell lung cancer 

(NSCLC) cell proliferation in a cell-line-specific manner. We now compared the effects of 

lunasin treatment of lunasin-sensitive (H661) and lunasin-insensitive (H1299) NSCLC 

cells with respect to lunasin uptake, histone acetylation and integrin signaling. Both cell 

lines exhibited changes in histone acetylation, with H661 cells showing a unique increase 

in H4K16 acetylation. Proximity ligation assays demonstrated lunasin interacted with 

integrins containing αv, α5, β1 and β3 subunits to a larger extent in the H661 compared  

to H1299 cells. Moreover, lunasin specifically disrupted the interaction of β1 and β3 

subunits with the downstream signaling components phosphorylated Focal Adhesion 

Kinase (pFAK), Kindlin and Intergrin Linked Kinase in H661 cells. Immunoblot  

analyses demonstrated lunasin treatment of H661 resulted in reduced levels of pFAK, 

phosphorylated Akt and phosphorylated ERK1/2 whereas no changes were observed in 

H1299 cells. Silencing of αv expression in H661 cells confirmed signaling through 

integrins containing αv is essential for proliferation. Moreover, lunasin was unable to 

further inhibit proliferation in αv-silenced H661 cells. This indicates antagonism of 
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integrin signaling via αv-containing integrins is an important component of lunasin’s 

mechanism of action. 

Keywords: lunasin; lung cancer; integrin signaling; histone acetylation; cell proliferation; 

Akt signaling 

 

1. Introduction 

Lunasin, a peptide present in crude soy protein, has been proposed to be an important 

chemoprevention agent in soy [1–3]. Lunasin is a 43-44 amino-acid peptide encoded within the 

soybean GM2S-1 gene [4,5]. It contains a 22 amino acid N-terminal sequence with no known function 

followed by a putative helix domain proposed to target lunasin to chromatin, and a C-terminal end that  

includes a RGD cell-adhesion motif followed by a poly-aspartic acid tail [4,6]. Lunasin’s potential 

chemoprevention activity was established by studies showing lunasin prevented cellular transformation 

by chemical carcinogens and viral oncogenes [6–9]. More recent studies have shown lunasin can  

inhibit the growth of breast [10,11], leukemia [12], colon [13] and lung cancer [14] cells in vitro and  

in vivo. Taken together, these results suggest lunasin may have the potential to be used as a cancer 

therapeutic agent. 

The mechanism of action (MOA) responsible for lunasin’s anticancer activity is currently not clearly 

defined. Once lunasin is internalized [15], it enters the nucleus and binds to hypoacetylated regions of 

chromosomes such as the telomeres [1,9]. Lunasin binds to the deacetylated core histones H3 and H4  

in vitro and current hypotheses on lunasin’s MOA suggest this is critical for the anticancer effects of 

lunasin [7,8,16–19]. Current models of lunasin’s MOA focus on the disruption of normal histone 

acetylation and a concomitant disruption of cell cycle regulation or induction of apoptosis [20,21].  

Lunasin-induced apoptosis in cancer cells may be through the intrinsic pathway [12,13] and involve the 

tumor suppressor phosphatase and tensin homolog (PTEN) [22]. Lunasin also has anti-inflammatory 

activity that may be mediated by suppression of the nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) pathway [23,24]. Gene expression studies indicate lunasin affects a number 

of signaling pathways in different cell types, thus, some of the observed biological effects of lunasin 

may be independent of histone acetylation [21,25]. 

Since lunasin contains a RGD domain, it has been suggested in some cell types, lunasin may  

bind to integrins that recognize this cell adhesion motif [1,15,26,27]. Integrins are heterodimeric  

cell-surface proteins that play critical roles in adhesion to the extracellular matrix and transmitting 

extracellular signals that affect cell migration and the regulation of signaling pathways involved in cell 

survival and proliferation. Although these studies on lunasin’s interaction with integrin pathways and 

modulation of histone acetylation provide important clues into the potential mechanisms whereby 

lunasin influences cell proliferation and viability, the current models are highly speculative and 

functional studies are required to clearly delineate lunasin’s MOA. We have recently shown that 

lunasin has cell-specific effects on the proliferation of non-small cell lung cancer (NSCLC) cells and 

that NSCLC line H661 is sensitive to lunasin whereas H1299 is resistant when cultured under adherent 

culture conditions [14]. The inhibition of proliferation H661 cells by lunasin was found to be due to  
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a block at the G1/S phase that was caused by disruption of regulatory phosphorylations of the 

retinoblastoma protein. Here, we demonstrate lunasin’s ability to block the G1/S phase transition in  

non-small cell NSCLC H661 cells is due at least in part to its ability to bind specific integrins and 

inhibit integrin signaling pathways. 

2. Results 

2.1. Lunasin Sensitivity Is Associated with Increased Lunasin Uptake 

Given that one potential mechanism for lunasin effects on cells is based on the interaction of lunasin 

with histones and modulating of histone acetylation, we performed detailed immunocytochemistry 

studies comparing the internalization of lunasin in lunasin-sensitive H661 and lunasin-insensitive  

H1299 cells. These studies utilized our mouse monoclonal anti-lunasin antibody, a fluorescently-labelled 

phalloidin probe to visualize actin, and 4',6-diamidino-2-phenylindole (DAPI) staining to identify 

nuclear regions. These analyses clearly show lunasin is internalized in both H661 and H1299 cells; 

however, significantly higher levels of lunasin were detected in H661 cells (Figure 1). Interestingly, a 

significant amount of the lunasin detected was located in the cytoplasm at 24 h. Thus, lunasin 

sensitivity is correlated with significantly higher levels of internalized lunasin. 

Figure 1. Internalization of lunasin into non-small cell lung cancer (NSCLC) cells.  

Cells were treated for 24 h with either vehicle (Control) or 100 µM lunasin prior to 

processing for immunocytochemistry. 
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2.2. Lunasin Binds Histones in Situ and Affects Histone Acetylation 

To determine if lunasin binds core histones in NSCLC cells and affects histone acetylation, we 

compared the response of the most sensitive line, H661, to a lunasin-resistant line, H1299. Cells were 

treated with 100 µM lunasin for 24 h and the binding of lunasin to histones H3 and H4 in situ was 

measured via proximity ligation assays (PLA, [28]). This concentration of lunasin has previously been 

shown to inhibit H661 proliferation by approximately 50% [14]. PLA assays demonstrated lunasin 

does indeed interact with both histones H3 and H4 in vivo (Figure 2). Lunasin-histone interactions 

were detected in both H661 and H1299 cells, with the amount of interaction with H3 being 

significantly higher in H661 cells. Interestingly, the amount of interaction of lunasin with H4 was 

lower than H3 and was similar in both H661 and H1299 cells. These results confirm and extend 

previous studies that lunasin interacts with core histones and demonstrates the amount of interaction 

with H3 is higher in lunasin-sensitive cells compared to lunasin-resistant NSCLC cells. 

Figure 2. (A) Interaction of lunasin with core histones H3 and H4 in NSCLC cells.  

Cells were treated with 100 µM lunasin for 24 h before performing proximity ligation 

assays (PLA) assays using antibodies specific for lunasin, H3 and H4; (B) Quantitation of 

PLA fluorescence in NSCLC cells. Fluorescence is expressed as relative fluorescence per 

cell. Data shown are the mean ± SD obtained in three independent experiments where  

40 cells per treatment were imaged in each experiment; asterisks indicate a statistically 

significant difference (p < 0.05) between treatments. 

 

Histone acetylation was then evaluated by isolating total histones and performing immunoblot 

analysis using antibodies specific for histone acetylation marks known to be important for modulating 

gene expression. Lunasin-treated H661 and H1299 cells exhibited significant changes in histone 

acetylation compared to buffer-treated controls (Figure 3). Both H661 and H1299 exhibited a similar 

significant decrease in acetylation at H4K8 and H4K12c compared to controls and neither cell line 
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showed a significant change in H3K9 acetylation after lunasin treatment. However, the acetylation of 

H4K16 was significantly higher in lunasin-treated H661 cells, whereas acetylation at this mark  

was not affected in H1299 cells. Thus, lunasin treatment does affect the acetylation status of both  

lunasin-sensitive and insensitive NSCLC cells and lunasin sensitivity is correlated with increased 

acetylation at H4K16. 

Figure 3. (A) Immunoblot analysis of acetylated histones in lunasin-treated and untreated 

NSCLC cells; (B) Relative histone acetylation in lunasin-treated and untreated NSCLC 

cells. Cells were treated with 100 μM lunasin or vehicle for 48 h. Total histones were 

isolated and subjected to immunoblot analyses using antibodies specific for the indicated 

histone acetylation marks. Relative histone acetylation was determined by image analyses 

of immunoblots using Image J software. Data shown are the mean ± SD of immunoblots 

obtained in three independent experiments; asterisks indicate a statistically significant 

difference (p < 0.05) between treatments. 

 

2.3. Interaction of Lunasin with Specific Integrin Subunits 

Since lunasin contains an RGD domain and earlier studies suggested lunasin may bind integrins, we 

used immunoblotting analyses to measure the levels of specific integrin subunits in H661 and H1299 

cells to see if there was a significant difference in their integrin expression profiles. Both cell lines 

expressed all of the integrin subunits that were probed; however, there were significant differences in 

the relative levels expressed in each cell line (Figure 4A). H661 expressed higher levels of αv and α5 

compared to H1299, with the αv and α5 subunits being dramatically lower in H1299 cells. The β1 and 

β3 subunits were expressed at similar levels in both cell lines, with β1expression being higher than β3. 

The β5 subunit was expressed at a relatively low level in both cell lines, but was more highly 



Int. J. Mol. Sci. 2014, 15 23710 

 

 

expressed in H1299 cells. Based on these results, we performed a series of PLA studies to determine  

if lunasin interacts with specific integrin subunits in vivo. Cells were treated with 100 µM lunasin for 

24 h and subjected to PLA using antibodies specific for lunasin and the integrin subunits αv, α5, β1 

and β3. PLA signals that were significantly higher than the background levels observed in vehicle treated 

cells were observed for all four integrin subunits tested (Figure 4). The extent of lunasin interactions with 

α5 and β1were similar in both H661 and H1299 whereas the extent of lunasin interactions with αv and β3 

were higher in H661 compared to H1299. Thus, lunasin sensitivity correlated with increased interactions 

with αv and β3. 

Figure 4. (A) Analysis of integrin subunit expression in NSCLC cell lines H661 and 

H1299. Protein extracts were subjected to immunoblot analysis using antibodies specific 

for the indicated integrin subunits; (B) Detection of lunasin interactions with specific 

integrin subunits in situ. Left-hand panels show representative PLA analyses of lunasin 

and the indicated integrin subunit; Right-hand panels show the quantitation of fluorescence  

for each interaction. Fluorescence is expressed as relative fluorescence per cell. Data 

shown are the mean ± SD obtained in three independent experiments; asterisks indicate 

statistically significant difference (p < 0.05) from the vehicle-treated control. 
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2.4. Lunasin Disrupts Integrin Signaling 

Since lunasin was found to interact with specific integrin subunits, we used two approaches to 

investigate whether lunasin had any effects on integrin signaling. We first used PLA to determine if 

lunasin treatment affected the interaction of integrin β subunits with the downstream signaling effectors 

pFAK, Integrin Linked Kinase (ILK) and Kindlin. These studies clearly demonstrate the interaction of 

integrins containing either β1 or β3 with all three signaling partners were significantly reduced in H661 

cells, but not in H1299 cells (Figure 5). Based on fluorescence measurements, the interaction of both β1 

and β3 with pFAK, ILK, and Kindlin was inhibited by 50%–70% in H661 cells by lunasin treatment. 

To confirm lunasin disrupted integrin signaling in H661 cells, we performed immunoblot  

analyses to measure the levels of several downstream signaling components including FAK, ILK, Akt,  

ERK1/2 and GSK3-α/β. Lunasin treatment of the lunasin-insensitive H1299 cells did not have  

a significant effect on the steady-state levels of any of these signaling components, nor were there any 

effects on the phosphorylation of FAK, Akt, ERK1/2 or GSK3-α/β. Similarly, lunasin treatment of the  

lunasin-sensitive H661 cells did not significantly affect steady-state levels of any of these signaling 

components; however, reductions in FAK, Akt, and ERK1/2 phosphorylation were reproducibly observed 

(Figure 6). These results confirm lunasin does suppress integrin signaling in lunasin-sensitive H661 cells. 

2.5. The Alpha-v Integrin Subunit Is Required for NSCLC H661 Cell Proliferation 

Since our PLA studies demonstrated lunasin sensitivity was correlated with higher levels of lunasin 

interaction with the αv integrin subunit, we hypothesized that lunasin’s ability to inhibit proliferation in 

H661 cells was due at least in part, on disruption of signaling through αv-containing integrins such αvβ3. 

We first tested whether lunasin treatment altered the expression of the αv subunit. Immunoblot analysis 

confirmed H1299 cells does indeed express significantly lower levels of αv protein (Figure 7A), which is 

consistent with the previous immunoblot studies (Figure 4A) and PLA assays (Figure 4B) that detected 

lower amounts of lunasin-αv interaction. To functionally test whether the αv integrin subunit was required 

for lunasin action, we utilized siRNAs to silence αv expression in H661 and H1299 cells. Three different 

siRNA constructs were found to efficiently silence αv expression at the protein level in H661 cells, and  

the combination of all three siRNAs reduced αv protein accumulation to undetectable levels in H661  

cells (Figure 7B) and by approximately 75% in H1299 cells (Figure 7D). To determine the effects of αv 

silencing on the ability of lunasin to inhibit proliferation of H661 and H1299 cells, the growth of control 

siRNA-treated cells with αv-silenced cells were compared with and without lunasin treatment. As 

previously observed [14], lunasin treatment of cells transfected with the control siRNA caused a significant 

reduction in proliferation of H661 cells over a 72 h treatment period (Figure 7C, Supplementary Figure S1) 

whereas lunasin did not affect proliferation of H1299 cells. H661 cells transfected with αv siRNAs showed 

a significant reduction in proliferation that was not further increased by lunasin treatment. H1299 cells 

transfected with αv siRNAs showed a 30% reduction in proliferation that also was not further increased by 

lunasin treatment. These results clearly demonstrate the αv integrin subunit is required for maximum 

proliferation of H661 cells and that lunasin cannot further inhibit proliferation in the absence of  

αv-containing integrins. Proliferation of H1299 cells appears less dependent on αv expression and 

modifying the amount of αv present does not change the lunasin-insensitive phenotype of this cell line. 
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Figure 5. Detection of integrin β subunit interactions pFAK, Kindlin and ILK. Left-hand 

panels show representative PLA analyses of lunasin and the indicated integrin subunit. 

Right-hand panels show the quantitation of fluorescence for each interaction. Fluorescence 

is expressed as relative fluorescence per cell. Data shown are the mean ± SD obtained in 

three independent experiments; asterisks indicate statistically significant difference  

(p < 0.05) from the vehicle-treated control. 
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Figure 6. (A) Immunoblot analyses of integrin signaling pathway components in  

lunasin-treated NSCLC cells. Analyses were repeated in three independent experiments 

and representative data from one experiment is shown; (B) Integrin signaling pathway 

showing effects of lunasin treatment in H661 cells. RTKs, Receptor Tyrosine Kinases; 

SFKs, Src Family Kinases. Proteins shown in red indicate signaling steps negatively 

affected specifically in H661 cells by lunasin treatment; (C) Relative expression levels of 

integrin signaling proteins. Immunoblots shown in (A) were analyzed using ImageJ 

software v1.45 (National Institutes of Health, Bethesda, MD, USA). Data represent the 

mean ± SD for three independent experiments. The asterisk (*) indicates a significant  

(p < 0.05) difference in expression levels relative to the vehicle control. 
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Figure 7. Effects of silencing the αv integrin subunit in NSCLC H661and H1299 cells.  

(A) Immunoblot analyses of αv subunit levels in H661 and H1299 cells treated with either 

vehicle or lunasin. Cells were treated for 24 h with 100 µM lunasin or 50 mM NaPO4,  

pH 7.4; (B) Immunoblot analysis of αv expression in H661 cells transfected with a control 

siRNA or three different siRNAs designed to silence αv expression individually or in 

combination. β-actin was used as a loading control; (C) Proliferation of control siRNA 

transfected H661 cells and H661 cells transfected with a combination of three αv-specific 

siRNAs; (D) Immunoblot analysis of αv expression in H1299 cells transfected with a 

combination of three αv-specific siRNAs; (E) Proliferation of control siRNA transfected 

H1299 cells and H1299 cells transfected with a combination of three αv-specific siRNAs. 

Proliferation assays were initiated 48 h after transfection with siRNAs; cells were treated 

with either 50 mM NaPO4, pH 7.4 (vehicle) or 100 µM lunasin. Data shown are the  

mean ± SD obtained in three independent experiments. 

 

3. Discussion 

A growing body of evidence strongly suggests lunasin has the ability to inhibit the growth of  

several diverse cancers [3,29] and our recent studies have extended lunasin’s potential use to treating  

NSCLC [14]. We have now taken advantage of the differential lunasin sensitivity of two NSCLC cell 

lines in adherent culture to investigate several potential mechanisms that may be important for 

mediating lunasin’s effects. Immunofluorescence localization studies demonstrated lunasin accumulated 
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to higher levels in the lunasin sensitive H661 cells compared to the lunasin-insensitive H1299 cells at 

24 h after lunasin treatment. Most of the lunasin accumulated in the cytoplasm of both cell lines at this 

treatment time, which is consistent with previous studies in colon cancer cells [27] and the rapid 

uptake of lunasin in macrophages [15]. The initial accumulation in the cytoplasm is likely related  

to lunasin uptake being mediated via integrin binding and endocytosis through clathrin-coated  

vesicles [15]. One interesting and important unanswered question is if and how lunasin is released 

from the endocytic pathway so that it might interfere with histone acetylation [16,19,21]. 

Given earlier reports supporting effects of lunasin on histone acetylation as being a primary 

mechanism for lunasin action, we investigated whether the differential sensitivity of the NSCLC cell 

lines was related to histone binding and histone acetylation. PLA studies demonstrated the amount  

of lunasin-H3 interaction was significantly higher in the lunasin-sensitive H661 cells compared to 

H1299. In contrast, the amount of lunasin-H4 interaction was similar in both cell lines. Strikingly,  

the observation that lunasin-histone interactions were clearly localized in the cytoplasm opens  

up the possibility that lunasin may modulate histone function by interfering with cytoplasmic  

post-transcriptional processes such as acetylation and chaperone binding that are important for proper 

folding and nuclear transport of histones [30,31]. 

The interaction of lunasin with histones was associated with alterations in histone acetylation on 

H4, whereas the acetylation mark interrogated on H3 (H3K9Ac) was not affected by lunasin treatment.  

With respect to H4 acetylation, lunasin treatment reduced the levels of H4K8Ac and H4K12Ac to 

similar levels in both H661 and H1299, whereas, the level of H4K16Ac was not affected in H1299 but 

was significantly higher in H661. These effects on H4K8Ac and H4K12Ac levels are in agreement 

with studies on lunasin’s effects on the breast cancer cell line MDA-MB-231; however, in contrast to 

H661, MDA-MB-231cells exhibited a modest 8% decrease in H3K9Ac [19]. Other studies on the 

effects of lunasin on a immortalized prostate epithelial cells and tumorigenic prostate cancer cells 

showed H4K8 acetylation was unchanged in both cell lines [21]. However, similar to our results, 

lunasin did cause an increase in H4K16 acetylation in both the prostate epithelial cell line and the prostate 

cancer cell line. Interestingly, analysis of the acetylation state H4K16 in the promoter of a pro-apoptotic 

gene, THBSI, revealed hyperacetylation at this mark in the normal epithelial cells but not in the 

prostate cancer cells [21]. Based on the specific histone acetylation marks affected by lunasin and 

direct in vitro assays, it is likely that lunasin effects on histone acetylation are due at least in part on 

inhibiting the activity of the histone acetyltransferases PCAF, p300, and HAT1A [19,21,32]. To date, 

no functional data are available to clearly demonstrate effects on histone acetylation are important for 

lunasin effects. However, the specific lunasin-modulated histone acetylation marks have been shown 

to be important for controlling gene expression and cell proliferation, as well as having potential  

roles in cancer [33–36]. One potentially functionally important histone acetylation effect of lunasin is the 

reduction in H4K12Ac levels. Increased H4K12 acetylation has been associated with poor clinical 

responses in breast cancer patients [37] and in prostate tumors from patients with metastatic disease [38]. 

Thus, lunasin’s ability to reduce H4K12Ac levels may reduce the aggressiveness of tumors with the 

high H4K12Ac phenotype. 

Besides effects on histone acetylation, we demonstrated lunasin had cell-line-specific expression 

patterns for several integrin subunits and distinct interaction profiles with specific integrin subunits 

that correlated with differential effects on lunasin uptake and integrin signaling. Lunasin interactions 
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with the integrin subunits αv, α5, β1 and β3 were significantly higher in the lunasin-sensitive H661 

cells compared to the lunasin-insensitive H1299 cells and were associated with the selective disruption 

in H661 cells of the interactions of β1 and β3 with pFAK, Kindlin and ILK, key factors required for 

the initial steps of integrin signaling [39,40]. Immunoblot analyses confirmed lunasin selectively 

inhibited integrin signaling in H661 cells by reducing levels of pFAK, pAkt, and pERK1/2 compared 

to controls. These results are consistent with previous studies that demonstrated lunasin interacts with 

αvβ3 integrin and inhibits Akt activation in human macrophages [15] and that lunasin interacts with 

α5β1 and inhibits FAK/ERK/NF-κB signaling in colon cancer cells [27]. Given that lunasin disrupted 

interactions of both β1- and β3-containing integrins with the signaling partners pFAK, ILK and Kindlin 

in H661 cells, it is possible that lunasin effects in H661 cells involve integrins αvβ3, αvβ1 and α5β1. 

Based on the observations that H1299 cells expressed very low levels of the αv subunit; the 

intensity of lunasin-αv interactions were higher in H661 cells compared to H1299 cells; and both cell 

lines had similar levels of lunasin-α5β1 interactions, we hypothesized that integrins containing the αv 

subunit were the major mediators of lunasin’s ability to inhibit proliferation in H661 cells. To test this 

possibility, we utilized siRNAs specific for the αv subunit in both H661 and H1299 cells. Silencing αv 

subunit expression in H661 cells caused a dramatic reduction of cell proliferation, demonstrating 

signaling through αv-containing integrins is important for cell growth in this NSCLC line. However, 

integrin αv silencing did not completely inhibit cell proliferation, and lunasin was unable to further 

reduce proliferation in αv-silenced H661 cells. This result in conjunction with the PLA results suggests 

that in H661, lunasin is antagonizing signaling through αvβ3 and αvβ1. In contrast, silencing the αv 

subunit in H1299 cells had more modest effects on proliferation, indicating αv-containing integrins are 

not as important for the in vitro proliferation of this cell line. As expected, lunasin did not have an 

effect in αv-silenced H1299 cells since this line is resistant to lunasin when grown in adherent culture 

conditions. These results provide the first functional verification that lunasin interactions with integrins 

are important for its biological activity and confirm αv-containing integrins are a potential target for 

the development of therapeutics for treating NSCLC. Integrins containing αv have previously been 

proposed to be important targets for a number of cancer types [41,42] including in glioblastoma [43], 

prostate cancer [44], melanoma [45], ovarian cancer [46], and lung cancer [47,48]. Integrins are 

particularly important in mediating cell-matrix interactions and modulating epithelial-mesenchymal 

transitions during metastasis [49–51], thus lunasin may be useful in this context. Initial studies using 

colon cancer cells indicate this is indeed the case [27]. 

Our results taken together with previous studies strongly support the notion that lunasin has the 

ability to inhibit proliferation of cancer cells by serving as an integrin antagonist and by modulating histone 

acetylation. The effects on integrin signaling appear to involve suppression of phosphorylation-mediated 

activation of Akt. This effect may serve as a link between inhibition of integrin signaling and histone 

acetylation given recent studies demonstrating Akt-dependent regulation of histone acetylation in 

gliomas and prostate cancer [38]. Additional functional studies are required to clearly define the 

specific lunasin-induced changes in cancer cells responsible for lunasin’s therapeutic effects and to 

what extent lunasin’s multiple modes of action are linked. 

A major open question relating to the use of lunasin as a chemotherapeutic for the treatment of 

cancer is whether it is sufficiently potent and bioavailable for clinical use. For these studies, we 

utilized a concentration of 100 µM lunasin, which is relatively high and not likely to be achievable in 
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animals or humans. This was necessary due to the fact that NSCLC cells are significantly more 

resistant to lunasin treatment when grown in adherent culture conditions compared to non-adherent 

colony forming assays where the IC50 for lunasin is 1.3 µM [14]. Thus, standard in vitro assays useful for 

conducting mechanistic studies such as those in this report underestimate the potential in vivo activity of 

lunasin. This has been borne out in studies using mouse models where lunasin has exhibited significant 

anticancer effects at doses of 4–30 mg lunasin/kg body weight [11,14,27]. These doses are comparable to 

those of other biologics used clinically and suggest that lunasin may have therapeutic potential. 

4. Experimental Section 

4.1. Cell Lines 

Human NSCLC cell lines H661 and H1299 were obtained from the American Type Culture 

Collection (Rockville, MD, USA). The NSCLC cells were maintained in RPMI 1640-GlutaMAX 

(Invitrogen, Grand Island, NY, USA) containing 10% FBS, 1 mM sodium pyruvate, 100 IU/mL 

penicillin and 100 mg/mL streptomycin sulfate at 37 °C in 5% CO2. 

4.2. Reagents 

All chemicals were of reagent grade or better and purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Lunasin was purified by as previously described [4] and was >99% pure. 

4.3. Lunasin Uptake Immunocytochemistry 

H661 and H1299 cells were plated in Nunc™ Lab-Tek™ II 8-well chamber slides (Thermo 

Scientific, Rockford, IL, USA) at 20,000 cells/cm2 in 400 µL medium and incubated overnight at  

37 °C in 5% CO2 humidified atmosphere. After treatment for 24 h with vehicle (50 mM sodium 

phosphate, pH 7.4) or 100 µM lunasin, cells were fixed, permeabilized, blocked and stained (1:100 

mouse monoclonal anti-lunasin [4] v/v, 1:100 Alexa Fluor® 488-conjugated AffiniPure goat anti-rabbit v/v, 

1:40 Alexa Fluor® 594-conjugated phalloidin v/v, 1 µg/mL DAPI using traditional immunocytochemisty 

techniques. Slides were placed overnight in the dark at 4 °C and analyzed the following day by 

fluorescent microscopy utilizing the Axio Observer.A1 inverted fluorescent microscope and 

AxioVision v4.6.3.0 software (ZEISS Microscopy, Thornwood, NY, USA). 

4.4. Histone Acetylation Analyses 

NSCLC H661 and H1299 cells were plated at a density of 5000 cells/cm2 in 150 cm2 dishes and 

treated 6 h later with 100 µM lunasin for 48 h. The cells were harvested and homogenized in hypotonic 

lysis buffer (10 mM Tris-HCl pH 8.0, 1 mM KCl, 1.5 mM MgCl2 and 1 mM dithiothreitol) with 

protease inhibitors (cOmplete Mini Protease Inhibitor Cocktail, 1 tablet/10 mL, Roche, Indianapolis, 

IN, USA), and histones were extracted using 0.4 N of H2SO4 as previously described [52]. Protein 

concentrations were determined using a bicinchoninic acid-based assay, (Pierce™ BCA Protein Assay 

Kit, Thermo Scientific) using bovine serum albumin (BSA) as a standard. Histone extracts were 

subjected to SDS-PAGE (10 μg total protein per sample) and immunoblots prepared by electroblotting 
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to polyvinylidene difluoride membranes. Immunoblots were probed with antibodies (EMD Millipore, 

Billerica, MA, USA) specific for histone H3K9 acetylation (#07-352), H4K8 acetylation (#07-328), 

H4K12 acetylation (#07-595) and H4K16 (#07-329) using standard methods. Luminescent detection 

was done using the chemiluminescent substrate SuperSignal® West Femto (Thermo Scientific) and the 

immunoblots imaged using a Kodak Image Station 4000R Pro equipped with Carestream Molecular 

Imaging Software v5.0.7.24 (Carestream, Rochester, NY, USA). Histone acetylation signal intensity 

was quantified by Image J analysis software [53]. 

4.5. In Situ Proximity Ligation Assays (PLA) 

H661 and H1299 cells were plated in 8-well chamber slides at 20,000 cells/cm2 in 400 µL medium 

and cultured for 6 h prior to a 24 h treatment with either vehicle or 100 µM lunasin. After treatments, 

cells were fixed with 4% paraformaldehyde for 10 min and followed by three phosphate buffered 

saline (PBS, 58 mM Na2HPO4, 17 mM NaH2PO4, 6.8 mM NaCl, pH 7.4) washes of 5 min each. Cells 

were permeabilized with 0.5% Triton X-100 in PBS for 10 min and the cells were washed with 0.05% 

Tween 20 in TBS three times, 5 min per wash. PLA was performed according to the manufacturer’s 

protocol using the Duolink Detection Kit (Olink Bioscience, Uppsala, Sweden). For each experiment, 

duplicate samples were incubated with the appropriate antibody combinations using the following 

antibodies: lunasin (mouse monoclonal, [4]) combined with the EMD antibodies for histone H3 (#06-755), 

histone H4 (#07-108), integrin β3 (#AB2984), the Cell Signaling Technology (Danvers, MA, USA) 

antibodies for integrin α5 (#4705), αv (#4711) or the Abcam (Cambridge, MA, USA) antibody  

forβ1 (#ab134179); or combinations of Kindlin (#ab68041, Abcam), p-FAK (Tyr397 phosphorylation, 

#ab4803, Abcam), or ILK (#3862, Cell Signaling Technology) with either integrin β1 (#ab24693, 

Abcam) or β3 (#ab7167, Abcam). Cells were visualized by fluorescent microscopy using an Axio 

Observer-A1 inverted fluorescent microscope and AxioVision v4.6.3.0 software (ZEISS Microscopy). 

All images were collected using identical exposure settings. The background fluorescence was subtracted 

from the images and the signal intensity was quantified by Image J analysis software [53] and is 

expressed as fluorescence intensity per cell. A minimum of 20 cells in each duplicate sample were 

analyzed for each experiment. Three independent experiments were done for each interaction assay. 

4.6. Integrin Subunit Analysis by Immunoblotting 

Both H661 and H1299 cells were grown under conventional anchorage-dependent conditions, 

harvested and prepared for SDS-PAGE and subsequent immunoblot analysis. Briefly, cells were plated 

at a density of 6000 cells/cm2 in T-75 flasks and incubated for 72 h. Cells were harvested by scraping 

in ice-cold Dulbecco’s PBS (DPBS), pelleted by centrifugation, and washed once with ice-cold DPBS. 

Cells were then lysed by resuspending the cell pellet in ice-cold RIPA buffer (50 mM Tris-HCl pH 8.1, 

150 mM NaCl, 1% v/v NP-40, 0.5% w/v sodium deoxycholate, 0.1% w/v SDS) supplemented with  

1 mM Na3VO4 and cOmplete Mini Protease Inhibitor Cocktail, and freezing for 1 h at −80 °C. Cell 

homogenates were then thawed on ice, sonicated for three cycles of 10 s each on ice and the protein 

concentration determined. Total protein was adjusted to 2 mg/mL in reducing sample loading buffer 

(62 mM Tris-HCl pH 6.8, 2.5% (v/w) SDS, 5% (v/v) β-mercaptoethanol, 10% (v/v) glycerol,  

10 µg/mL bromophenol blue). Samples (20 µg) were then subjected to SDS-PAGE, transferred by 
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electroblotting to polyvinylidene difluoride membranes and probed with the relevant antibodies using 

standard methods. The primary antibodies used were: Cell Signaling Technology antibodies for 

integrin α5 antibody (#4705), integrin αv antibody (#4711) and actin (#4970); Abcam antibodies for 

integrin β1 antibody (#ab52971), integrin β3 antibody (#ab119992), and integrin β5 antibody 

(#ab15459). Secondary antibodies were from Jackson ImmunoResearch (West Grove, PA, USA): 

horseradish peroxidase (HRP)-conjugated AffiniPure goat anti-rabbit IgG (#111-035-003), horseradish  

peroxidase (HRP)-conjugated AffiniPure sheep anti-mouse IgG (#515-035-003), alkaline phosphatase 

(AP)-conjugated AffiniPure goat anti-rabbit IgG (#111-055-003). Luminescent detection was done 

using the chemiluminescent substrate SuperSignal® West Femto while colorimetric detection utilized  

1-Step™ NBT/BCIP (Thermo Scientific). Immunoblots were imaged using a Kodak Image Station 

4000R Pro utilizing Carestream Molecular Imaging Software v5.0.7.24 from Carestream. 

4.7. Integrin Signaling Immunoblot Analyses 

H661 and H1299 were plated at 5000 cells/cm2 in 150 cm2 dishes and treated with 100 µM lunasin 

for 24 h. Cells were then washed with PBS, and lysed in RIPA buffer. The protein concentrations of 

each extract were determined and 40 μg total protein per sample were subjected to SDS-PAGE  

and immunoblot analysis as described above. Blots were probed with Cell Signaling Technology 

antibodies for integrin αv (#4711), ILK (#3862), p-Akt (S473 phosphorylation, #4060) Akt (#4691),  

p-ERK1/2 (Thr202/Tyr204 phosphorylation, #4370), ERK1/2 (#4695), p-GSK3-α/β (Ser21/9 

phosphorylation, #9331), and GSK3-α/β (#5676), and Abcam antibodies for p-FAK (Y397 

phosphorylation, ab4803), and FAK (abcam, ab40794). Immunoblots were imaged using a Kodak 

Image Station 4000R Pro equipped with Carestream Molecular Imaging Software v5.0.7.24. 

4.8. SiRNA-Mediated Knockdown of Integrin αv 

Integrin αv siRNAs (#3685) and a scrambled negative control siRNA (#SR30004) were purchased 

from Origene (Rockville, MD, USA). For transfection with siRNA, cells were plated 5000 cells/cm2 in 

six-well plates and transfected 24 h later using lipofectamin 2000 (Invitrogen) according to the 

manufacturer’s protocol. At 48 h after transfection, cells were harvested and replated at 5000 cells/cm2 

prior to treatment with 100 µM lunasin or vehicle (50 mM NaPO4 buffer, pH 7.4). 

4.9. Proliferation Assays 

Cell growth was assessed by a tetrazolium-based MTS assay (Cell Titer 96 Aqueous One Solution 

Assay, Promega, Madison, WI, USA). The cells were seeded in 96-well plates at a density of  

5000 cells/cm2, and treated with 100 µM lunasin for 24, 48 or 72 h. The MTS assay was performed 

according to the manufacturer’s instructions. Absorbance readings were made on a Synergy™ H1 

hybrid multi-mode microplate reader (BioTek®, Winooski, VT, USA). 

4.10. Statistical Analyses 

All studies included at least three independent experiments that included two or three replicates 

each and the data are expressed as the mean ± SD. Significance differences between treatments were 
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determined using the Student’s t-test and a p < 0.05 was used as the criterion for statistical 

significance. Statistical analysis was performed using SigmaPlot® v11.2 (Systat Software, Inc., 

Chicago, IL, USA). 

5. Conclusions 

We conclude lunasin inhibits NSCLC cell proliferation by functioning as an integrin signaling 

antagonist that targets αv-containing integrins; specifically αvβ3 and αvβ1 in H661 cells. Lunasin also 

has cell-line specific effects on histone acetylation that are correlated with lunasin sensitivity that may 

also be important for suppressing growth of NSCLC cells. Thus, lunasin exhibits two modes of action 

that may work in concert to exert lunasin’s therapeutic effects. 

Supplementary Materials 

Supplementary figure can be found at http://www.mdpi.com/1422-0067/15/12/23705/s1. 
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