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Abstract: The pentose phosphate pathway (PPP) is a branch from glycolysis that begins from
glucose-6-phosphate (G6P) and ends up with fructose-6-phosphate (F6P) and glyceraldehyde-3-
phosphate (GADP). Its primary physiological significance is to provide nicotinamide adenine din-
ucleotide phosphate (NADPH) and nucleotides for vital activities such as reactive oxygen species
(ROS) defense and DNA synthesis. Glucose-6-phosphate dehydrogenase (G6PD) is a housekeep-
ing protein with 514 amino acids that is also the rate-limiting enzyme of PPP, catalyzing G6P into
6-phosphogluconolactone (6PGL) and producing the first NADPH of this pathway. Increasing evi-
dence indicates that G6PD is upregulated in diverse cancers, and this dysfunction influences DNA
synthesis, DNA repair, cell cycle regulation and redox homeostasis, which provides advantageous
conditions for cancer cell growth, epithelial-mesenchymal transition (EMT), invasion, metastasis
and chemoresistance. Thus, targeting G6PD by inhibitors has been shown as a promising strategy
in treating cancer and reversing chemotherapeutic resistance. In this review, we will summarize
the existing knowledge concerning G6PD and discuss its role, regulation and inhibitors in cancer
development and chemotherapy resistance.
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1. Introduction

Basic metabolism, including lipid metabolism, glucose metabolism, protein metabolism
and so on, is a basic characteristic of life activity that is essential in achieving material
interchange, self-renewal and homeostasis maintenance. Glucose metabolism is one of the
major energy sources whose complete oxidation, including glycolysis and the tricarboxylic
acid cycle (TCA cycle), can release 2840 kJ of energy. Glucose absorbed extracellularly
or transformed from other macromolecules is one of the primary carbon sources, and its
catabolism mainly includes glycolysis, the TCA cycle and the pentose phosphate pathway
(PPP). The catabolism of glucose not only provides nicotinamide adenine dinucleotide phos-
phate (NADPH), nucleotides and ATP but also supports lipid and amino acids synthesis
for a variety of biological activities. PPP, also known as pentose phosphate shunt, is unlike
glycolysis and the TCA cycle, because ATP is not produced in this pathway. Instead, it is
the main source of NADPH, which is the primary reducing equivalent source for reactive
oxygen species (ROS) defense and DNA synthesis. Glucose-6-phosphate dehydrogenase
(G6PD) is the first and the rate-limiting enzyme of PPP, which has many essential biochem-
ical functions. G6PD catalyzes glucose-6-phosphate (G6P) into 6-phosphogluconolactone
(6PGL) with NADPH production. The dysfunction of G6PD is involved in many diseases,
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among which cancer is the most common ones. In this review, we will discuss the charac-
teristics of G6PD, roles of G6PD in the development of cancer, inhibitors of G6PD and the
mechanisms behind chemotherapy resistance caused by G6PD.

2. Historical Perspective of G6PD

Differential glucose metabolism between normal and tumor cells was observed by Otto
Warburg in the early 19th century, which uncovered the research on cancer metabolism [1]
In the 1930s, Warburg noticed that, in addition to the glycolytic cascade, G6P could also be
metabolized by another oxidative pathway in which NADP+ was used for the oxidation
of G6P. It was not until the 1950s, however, that the entire PPP was elucidated by Frank
Dickens, Bernard Horecker, Fritz Lipmann and Efraim Racker, in which G6PD was demon-
strated as the first enzyme of this pathway [2]. In 1956, human G6PD was first discovered
by Carson et al., and its function was to produce NADPH for reduction [3]. In the same
year, a G6PD deficiency was discovered in hemolytic anemia erythrocytes because of its low
activity [4]. Further, a cloning study demonstrated that mutations existed on G6PD. The
research on G6PD deficiency and its role in cancer began in 1965 when Beaconsfield was
studying the relationship between areas and G6PD deficiency and G6PD-related cancer [5].
The cDNA of human G6PD was first cloned by Persico et al. in 1986, and the entire amino
acid sequence was also uncovered, making the first step for the structural analysis of G6PD
variants and beginning to know the enzyme features [6]. The structure of the G6PD protein
was first observed in 1994, showing that this protein is a dimer [7], and there was no
coenzyme binding sites except for catalytic sites. However, this protein was separated
from Leuconostoc mesenteroides, whose glycolysis pathway was not complete [8,9]. G6PD
separated from Leuconostoc mesenteroides can use both NAD+ and NADP+ [10,11] as coen-
zyme, which is different from advanced living organisms [12,13]. It took a long time and
much effort to obtain the human G6PD tetramer due to its microheterogeneity. Margaret J.
Adams and her colleagues obtained the crystallization [14], and in the following year, the
human G6PD tetramer was revealed from a recombinant protein of the Canton variant [14].
This discovery solved the important question of whether the second NADP+ existed.

3. Characteristics of G6PD

Given the fact that G6PD a typical housekeeping protein, it is expressed in all kinds
of tissues and cells [15]. The gene encoding G6PD belongs to the X chromosome, and the
location is near the telomeric region of the distal arm [16] (Figure 1a). The functions and
structure of G6PD have been confirmed. The total length of this gene is about 18.5 kb, which
includes 13 exons and 12 introns, and the last exon contains a terminator [16] (Figure 1a).
The promoter of G6PD has been confirmed to be located at CpG land, and it has a sequence
of TTAAAT, as well as a great number of stimulatory protein 1 (Sp1) elements, which is
especially important for the activity of the promoter [16]. Exon and intron numbers and
the exon sizes and sequences are conserved in higher eukaryotes [16]. The 5′-UTR of G6PD
includes ATG codons that are out of the translation frame; additionally, the first ATG triplet
upstream to a long open reading frame was judged to be the translation initiation site, and
it was assigned position No. 1 [6]. mRNA produced by G6PD is 1545 bp [6]. The G6PD
gene product is a 59-KD protein with 514 amino acids [6].

Human G6PD is a kind of NADP+-dependent catalytic enzyme. Secondary and
tertiary structures have been revealed in the past few decades. Persico et al. determined
the primary structure of G6PD for the first time using the sequence of full-length cDNA
clones [6]. Ten years later, the structure and crystal of the mutant ∆G6PD enzyme, which has
similar kinetic properties to those of the wild-type enzyme but is more thermostable, was
demonstrated by Au et al. [14] The general tertiary structure of G6PD is a tetramer complex,
which is constructed predominantly by a hydrophilic dimer–dimer complex [17] (Figure 1c).
Each dimer contains two substrate sites and four NADP+—binding sites, two of which
act as structural NADP+—binding sites, and the others act as catalytic NADP+—binding
sites [6] (Figure 1b). According to the statistics provided by Wang et al., structural NADP+
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tightly bound to the corresponding sites, not being removed by the usual dialysis and
chromatographic procedures, and the true role of this NADP+ is believed to maintain long-
term stability [18]. Catalytic NADP+—binding sites are those that loosely bound NADP+ or
NADPH and were easily removed by dialysis [19]. Though tightly bound exists, structural
NADP+ still can be removed in the form of NADPH when G6P binds to the substrate
site. Once NADPH formed, it is easy to drop out of the structural NADP+—binding sites.
Mechanistically, the presence of G6P will change the location of one or two amino acid
residues (Asn 363-Lys 366 and Arg 393-Gln 395), each of which spans from the substrate site
to the structural NADP+—binding site to the other [17,18,20]. Numerous diseases caused
by a deficiency of G6PD affect people worldwide, and a high proportion of the clinical
mutations are related to this structural NADP+ site [18,21–23]. Monomer is inactive form;
however, dimer and tetramer are catalytically functional forms of G6PD [14]. The human
enzyme is in a dimer↔tetramer equilibrium, and its stability is dependent on the NADP+

concentration [14]. Conversion towards the dimer happens under high pH conditions [24].
In addition, EDTA, NADPH and G6P favor disruption of the dimer, whereas NADP+ or
certain metal ions favor the tetramer [14]. Additionally, the substrate-binding site and
the dinucleotide-binding fingerprint are conserved in human G6PD with the sequences
RIDHYLGKE (residues 198–206) and GxxGGDLA (residues 38–44), respectively [17].
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Figure 1. G6PD location on the chromosome and G6PD protein structure. (a) G6PD location is near
the telomeric region of the distal arm. The wide, deep blue represents exons, and the arrows means
the order of exons and introns. The first exon and intron are located on the right. For the protein
structure, different colors present different peptides. Tertiary structures are downloaded from the
website SWISS-MODEL and presented in the software PyMOL. (b) Dimer (a PDB:2bh9.1) of G6PD.
Orange dots construct catalytic NADP+—binding sites; purple dots construct G6P-binding sites; pink
dots construct structural NADP+—binding sites; gray sticks present sites Asn 363-Lys 366 and Arg
393-Gln 395. (c) Tetramer (b PDB:2bhl.1) of G6PD.

4. G6PD and Cancer

Cancer is one of the most common diseases in the world, and it remains a leading
cause of death worldwide every year. The causes of cancer are complicated, but common
features still exist between different kinds of cancer. One of the hallmarks of cancer is
reprogrammed energy metabolism [25], and decades ago, Warburg noticed that cancer cells
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were prone to metabolizing glucose through glycolysis with increased lactate production
rather than the oxidative phosphorylation pathway, even in the presence of oxygen, known
as the Warburg effect [26]. PPP flux is a main metabolic pathway of glucose, and the
dysregulation of proteins in this pathway may be involved in the development of cancer.
G6PD as the first and rate-limiting enzyme of PPP also plays an important role in the
development of cancer. Indeed, G6PD is upregulated in many cancers. Besides, G6PD
overexpression is associated with the degree and stage of cancer, including the size of
the tumor, depth of invasion, lymph node metastasis, distant metastasis, TNM stage, and
survival rate [27]. Rapid growth and proliferation demand massive biosynthesis and
protection from the severe environment. Cancer cells hijack the intracellular metabolic
pathway to maintain rapid replication and promote the synthesis of enormous essential
cellular components. PPP plays a vital role in metabolism, which can provide both R-5-P
for the synthesis nucleotide and NADPH for the redox equilibrium. The overexpression
of G6PD influences DNA synthesis, DNA repair, cell cycle regulation, redox equilibrium,
proliferation, EMT, invasion and metastasis to provide an advantageous condition for
cancer cells [28–32]. What is more, G6PD also acts as a biomarker in diverse cancer in
reflecting the clinical prognosis and chemoresistance.

5. The Regulation of G6PD in Cancer

The expression and activity of G6PD are tightly regulated, through transcription,
post-transcription, translation, post-translation modification and interactions with other
proteins [33] (Table 1).

Table 1. G6PD expression in different cancers and their effects on cancer.

Cancer Type G6PD Expression Effects of High/Low Expression

Lung adenocarcinoma
[34] High Advanced stage,

Metastasis, Invasion
Glioma

[35] High Poor survival

Colorectal cancer
[36] High Poor prognosis, Poor outcome of chemotherapy

Acute myeloid leukemia
[37] Low Reduced chemotherapy-resistance

Clear cell renal cell carcinoma
[29] High Invasion and ECM

Breast
carcinoma

[38]
High Chemotherapy-resistance

Esophageal
squamous cell carcinoma

[39]
High Metastasis, Poor survival

Hepatocellularcarcinoma
[33,40] High Growth, Invasion, ECM, Migration

Gastric cancer
[27] High Invasion, ECM, Migration, Poor survival

Melanoma
[41] Low Decreased proliferation, Enhanced apoptosis

Pituitary cancer
[42] Low Decreased glycolysis

5.1. Impacts on Cancer at Transcriptional Level

Networks regulating G6PD are complicated in cancer cells and there are multiple
cis/trans-regulatory elements controlling G6PD expression [43–45]. Simmons et al. re-
ported that the 1, 25-VD/vitamin D receptor (VDR) binds to the vitamin D response
elements (VDREs) located at the first intron of the G6PD genome to enhance the G6PD
mRNA level [43]. Wu et al. suggested that the transcription factor yin yang 1 (YY1) also
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positively regulates G6PD at the transcriptional level by directly binding to the G6PD
promoter, thus activating PPP and causing metabolic reprogramming [44]. Yin et al. found
that c-MYC regulated by the ID1/Wnt/β-catenin axis binds to the promoter of G6PD and
promotes G6PD transcription and encourages tumor proliferation and oxaliplatin chemore-
sistance in hepatocellular carcinoma (HCC) [45]. The Signal Transducer and Activator
of Transcription 3 (STAT3) is a transcription factor that is upregulated in many cancers.
Zhang et al. found that p-STAT3 activated G6PD gene expression via binding to the G6PD
promoter [46]. What is more, Sun et al.’s study showed that PIKE-A induces the expression
of G6PD through the binding of STAT3 at the G6PD promoter, thereby promoted glioblas-
toma cell growth [47]. There have been studies that revealed that the SREBP1 element exists
on the G6PD promoter and increases its expression, which is regulated by mTOR1 [48,49].
TAp73, a structural homolog of the tumor suppressor p53, is frequently upregulated in
human tumors [31,50]. TAp73 enhances the expression of G6PD by directly binding to the
p53 family protein response element (RE) on the second intron of G6PD [31] (Figure 2).
These studies indicate that a regulation expression of G6PD at the transcription level and
targeting transcription factors maybe a promising therapeutic method.
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5.2. Impacts on Cancer at Post-Transcriptional and Translational Level

Generally, eukaryotic genes are split genes containing introns and exons. Therefore,
mRNA from the DNA template usually needs specific splicing for functional protein trans-
lation [51]. According to the work of Hong et al., T-cell leukemia 1 (Tcl1) can promote G6PD
pre-mRNA splicing and protein expression by interacting with heterogeneous nuclear
ribonucleoprotein (hnRNPK), finally leading to the development of liver cancer (Figure 3a).
In addition, the phosphatase and tensin homolog (PTEN) decreased G6PD expression by
inhibiting its pre-mRNA splicing through not only interacting with hnRNPK but inacti-
vating Tcl1 through glycogen synthase kinase-3β (GSK3β)-mediated phosphorylation [52]
(Figure 3b). This illustrates that PTEN controls G6PD expression through two steps by
inhibiting G6PD pre-mRNA splicing, which suggests that G6PD is a key regulatory factor
of PTEN in controlling tumor progression and implies that G6PD is a valuable target for
anticancer treatments.
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MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate gene
expressions by directly binding to mRNA to suppress the translation or degrade mRNA.
Recently, there has been a growing body of evidence revealing that micro RNAs change
metabolism, especially aerobic glycolysis to regulate tumorigenesis. A few microRNAs can
bind to mRNA of G6PD to degrade G6PD mRNA, influencing the proliferation, migration
and invasion of cancer cells. Some kinds of microRNAs play a vital role in regulating the
translation of G6PD [28,42,53–56], which is also involved in controlling cancer progression.

In esophageal squamous cell carcinoma (ESCC), Su et al. found that miR-613 sup-
presses migration and invasion by decreasing the G6PD expression. Furthermore, they
revealed that miR-613 directly binds to the 3′-UTR region of G6PD mRNA, leading to
decreased G6PD mRNA [28] (Figure 3c). Hu et al. [53] and He et al. [42] found that miR-1
downregulates endogenous G6PD by directly binding to the 3′-UTR region and inhibit-
ing proliferation and promoting apoptosis in high-risk papillomavirus-associated human
cervical cancer and pituitary tumor cells (Figure 3d). Statistics from Barajas et al. [54]
displayed for the first time that there are two conservative binding sites for combinations
with miR-122 on the 3′-UTR region of G6PD mRNA in liver cancer cells, and interactions
between miR-122 and G6PD mRNA reduce the G6PD mRNA and protein levels (Figure 3e).
In HR-HPV-positive cervical cancer cells, miR-206 targets the 3′-UTR of G6PD mRNA and
blocks its expression as well [55]. Besides, miR-206 is directly responsible for downregulat-
ing G6PD, which influences the growth of rhabdomyosarcoma cells [56] (Figure 3f). Thus,
these results indicate that G6PD may serve as a therapeutic target for cancer treatment. In
addition, micro RNAs not only downregulate G6PD expression individually but can also
show a synergistic effect on inhibiting G6PD [54].
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5.3. Impacts on Cancer at Post-Translational Modification Level

In eukaryotes, post-translational modifications decide the activities and functions
of proteins, which also exist in G6PD [57–61]. G6PD acetylation inhibits its function,
while deacetylation reverses it [32,57–59]. Aspirin can acetylate G6PD at many functional
sites and inactivates G6PD in HCT116 cells. The mass spectrometry analysis revealed
that 14 lysine residues were acetylated which include essential catalysis sites K235 (in
isoform a) and K205 (in isoform b). Acetylation of these two pivotal sites prevents the
combination between G6PD and its substrate G-6-P, and acetylation at other lysine residues
may decrease the activity of G6PD, leading to the decreased synthesis of ribose sugars
and NADPH [57] (Figure 4a). According to the work of Xu et al., silent information
regulator 2 (SIRT2) deacetylates G6PD at lysine 403 (K403) and consequently activates it
to support the proliferation and clonogenic activity of leukemia cells. Chemical inhibitors
against SIRT2 suppress G6PD activity, leading to the reduced cell proliferation of leukemia
cells [58]. Elongator acetyltransferase complex subunit 3 (KAT9/ELP3) is identified as
a potential acetyltransferase of G6PD, which participates in G6PD K403 acetylation [59]
(Figure 4b). Besides, the work of Ye et al. suggests that the binding between G6PD and
SIRT2 is enhanced by heat shock protein 27 (Hsp27), leading to the deacetylation and
activation of G6PD [32] (Figure 4c). These studies indicate that the acetylation state of
G6PD is important in metabolic reprogramming and tumor inhibition or proliferation.
O-GlcNAcylation modification also actives G6PD, which can enhance the binding affinity
of NADP+ to G6PD and form a higher oligomeric state [60] (Figure 4d). The enhanced
activity of G6PD supports cell survival under oxidative stress, and this indicates that O-
GlcNAcylation is a key metabolic regulator of the glucose flux. The phosphorylation of
G6PD also plays a vital role in regulating G6PD activity. Polo-like kinase1 (Plk1) can bind
to and phosphorylate G6PD to positively affect the formation of an active dimer promoting
cell cycle progression [61] (Figure 4e). Other modification enzymes need to clarify its role on
G6PD and their effects in cancer development. What is more, the additional modifications
of G6PD and their function warrant further investigation. Whether modification crosstalk
exists on G6PD is still an open question.
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Figure 4. Regulation of G6PD at the post-translational modification level. (a) Aspirin acetylates G6PD
and inhibits its activity. (b) Oxidative stress regulates G6PD acetylation by SIRT2 and KAT9/ELP3.
(c) Hsp27 promotes the interaction between SIRT2 and G6PD, enhancing G6PD deacetylation caused
by SIRT2 under oxidative stress or the DNA damage condition. (d) O-GlcNAcylation activates G6PD
activity by promoting the interaction between G6PD and its co-factor NADPH under hypoxia. (e) Plk1
promotes the phosphorylation of G6PD to stimulate dimer formation during cell cycle progression.

5.4. Impacts on Cancer under Interaction with Other Proteins

It has been reported that many proteins bind to G6PD, and regulatory interactions
with G6PD mainly inhibit the formation of the active oligomeric state [40,62]. Bcl-2 asso-
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ciated athanogene 3 (BAG3) directly interacts with G6PD and consequently inhibits its
dimerization and activity, leading to suppression of the PPP flux and the proliferation of
hepatocellular carcinomas (HCCs) [40] (Figure 5a). p53 binds to G6PD and prevents the
formation of the active dimer, thus inhibiting the PPP flux [62] (Figure 5a). p21-activated
kinase 4 (PAK4) can also interact with G6PD and increase G6PD activity via enhancing
Mdm2-mediated p53 ubiquitination degradation, resulting in increased colon cancer cell
growth [63] (Figure 5b). As mentioned above, PTEN is closely associated with G6PD
expression. The authors also discovered that the PTEN protein could directly interact
with G6PD and inhibit its activity through preventing the formation of a dimeric G6PD
holoenzyme [52] (Figure 5a). ATM phosphorylates Hsp27 and promotes the combination
of Hsp27 with G6PD, thus activating G6PD [64] (Figure 5b). These results suggest that
interfering interactions between G6PD and other proteins may be an effective therapeutic
approach in inhibiting cancer.
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shape represents post-translational modification. (a) Proteins such as PTEN, BAG3 or p53 bind
to G6PD and inhibit G6PD active dimer formation, leading to the inhibition of cell proliferation
and downregulation of DNA synthesis. (b) G6PD is activated through binding with Hsp27 and
separating with p53, resulting in an enhanced cell proliferation rate and DNA synthesis. Hsp27 can
be phosphorylated by ATM. p53 is ubiquitinated and degraded by the PAK4 pathway.

5.5. Other Pathways Related to G6PD in Cancer

It has been demonstrated that G6PD regulates many signaling pathways [65–67]. The
study of Wang et al. suggests that the inhibition of G6PD is associated with invasion,
metastasis and EMT of oral squamous cell carcinoma (OSCC) through activating JNK,
which enhances the E-Cadherin expression level and regulates MGAT3 expression tran-
scriptionally to promote the bisecting GlcNAc-branched N-glycosylation of E-Cadherin [65]
(Figure 6a). Chen et al. [66] revealed that the knockdown of G6PD induces intracellular
apoptosis through upregulating the cleaved caspase-3, -7 and -9 levels and suppresses the
phosphorylated-AKT/AKT pathway, whose activation will phosphorylate Bcl2 and inhibit
apoptosis (Figure 6a). Liu et al. demonstrated that the knockdown of G6PD promotes
glucose-limitation-induced cell death in solute carrier family 7 member 11 (SLC7A11)-
overexpressing cells. What is more, in kidney papillary cell carcinoma (KIRP), high
SLC7A11 with high G6PD expression predicted a far worse clinical outcome than either
parameter alone [67] (Figure 6b). Therefore, aiming to target G6PD may be a potential way
to treat cancer, particularly in cases with high G6PD expression.
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Figure 6. Regulation of G6PD by other pathways and their effects on tumors. Elliptical shape
represents a protein. Circle shape represents post-translational modification. (a) Inactive G6PD
will inhibit EMT through regulation of the JNK and Akt pathways. (b) Knockdown of G6PD
promotes glucose-limitation-induced cell death in SLC7A11-overexpressing cells. (c) HPD promotes
the expression of G6PD through the AMPK/HDAC10 pathway, thus enhancing cell proliferation.
(d) G6PD exists in the exosome and mediates tumor development.

G6PD is also regulated by metabolic process, such as the catabolism of amino acids.
Shan et al. revealed that 4-hydroxyphenylpyruvate dioxygenase (HPD) promotes a PPP flux
through increasing the expression of G6PD mediated by controlling the histone acetylation
levels on the G6PD promoter, which were mediated by the HPD-LKB1-AMPK-HDAC10
axis and increasing the acetyl-CoA levels [30] (Figure 6c).

Besides its intracellular function, G6PD may also be involved in cell-cell communi-
cations. G6PD is detected in the exosome and mediates metabolic transformation that
accounts for tumor development in two late-stage ovarian cell lines, and it could act
as a diagnostic, poor prognostic and therapeutic target of late-stage ovarian cancer [68]
(Figure 6d).

6. G6PD and Chemotherapy Resistance

Among clinical treatments of cancer, chemotherapy is the still the standard of care
for many types of cancer. At the beginning of a cure, this therapy can inhibit the growth
and proliferation of cancer cells. However, the development of chemotherapy resistance
frequently leads to therapy failure. Molecular mechanisms contributing to drug resistance
are largely unknown, and it is urgently needed to find ways to overcome these obstacles.
The inhibition of G6PD is demonstrated to be useful in reversing chemotherapy resistance.
Drug resistance is related to the intracellular redox equilibrium. GSH and G6PD producing
NADPH play an important role in maintaining this balance. Manuela et al. observed
that the G6PD expression level and GSH level were upregulated in doxorubicin-sensitive
HT29 cells. Treating cells with G6PD inhibitor dehydroepiandrosterone (DHEA) or 6-
aminonicotinamide (6-AN) could decrease G6PD and GSH and reserve a multiple drug
resistance [69]. This implicates that active PPP and enhanced G6PD activation are essential
for MDR cells to maintain a high GSH level. What is more, another article also improved
this perspective [27]. Compared to cisplatin- sensitive cells, more glutamine-derived gluta-
mate can be used for GSH biosynthesis, and G6PD expression and activity are upregulated
in cisplatin-resistant cells. Therefore, enhanced G6PD activity maybe induce the resistance
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of cancer cells to chemotherapeutic drugs [70]. Feng et al. provide perspective on how
G6PD links to GSH and contributes to chemotherapy-resistance. Paclitaxel-resistant ovar-
ian cancer cells showed an enhanced PPP flux in which G6PD was overexpressed. The
knockdown of G6PD or using G6PD inhibitor 6-AN could improve the therapeutic efficacy
of paclitaxel. Further experiments have demonstrated that the downregulation of protein
arginine methyltransferase 6 (PRMT6), which methylates H3R2me2a on the promoter of
G6PD cause an upregulation of G6PD. Overexpressed G6PD successively enhances the
expression of glutathione S-transferase P1 (GSTP1), leading to the conjugation of GSH and
paclitaxel (Figure 7). Thus, paclitaxel is exported, and its therapy efficacy is poor. The
inhibition of G6PD by shRNA or 6-AN could reverse the resistance to paclitaxel [71].
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7. Inhibitor of G6PD

There is ample evidence that GP6D is overexpressed and promotes cancer progression
in many tumors [66,72]. Thus, the inhibition of G6PD has emerged as a potential therapeutic
strategy for treating cancer. The competitive G6PD inhibitor 6-AN and uncompetitive G6PD
inhibitor DHEA have been widely used in various cancer studies. In addition, some natural
or synthetic compounds can also inhibit G6PD (Table 2 and Figure 8).
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Table 2. G6PD inhibitors in different cancer(cell) types.

Compounds Cancer (Cell) Type Reference

6-aminonicotinamide (6-AN) Acute myeloid leukemia cells, melanoma cells, bladder
cancer cells [66,72,73]

Dehydroepiandrosterone (DHEA) Cervical cancer cells, breast cancer cells [74,75]

Polygonin

Lung cancer cells (A549 and NCI-H1975), nasopharyngeal
carcinoma cells, epidermal carcinoma cells (A-431), breast cancer

cells (MCF-7), ovarian cancer cells (OVCAR-8), cervical
carcinoma cells (HeLa), osteosarcoma cells, orthotopic and

metastatic model of oral cancer (mice)

[76–78]

Zoledronic acid
Lung cancer (patients), orthotopic implantation model of

pancreatic cancer (mice), mammary cancer (mice), pancreatic
cancer cells, bladder cancer cells

[79–81]

Aspirin Hepatobiliary and colorectal carcinoma (patients), colorectal
cancer cells [36,82,83]

RRX-001 Colorectal cancer cells (CACO-2, HT-29), hepatoma cells (HepG2) [84]

Phytol
Hepatoma cells (HepG2), breast cancer cells (MCF-7,

MDA-MB-231), prostate cancer cells (PC-3), colorectal cancer cells
(HT-29), lung cancer cells (A-549), melanoma cells (Hs294T)

[85,86]

Wedelolactone Ovarian cancer cells (Ovcar3), breast cancer cells (MDA-MB-231),
colon cancer cells (WiDr), prostate cancer cells [87,88]

Butyrate Colon cancer cells (HCT116, LoVo, SW480, HT29) [89–92]

7.1. 6-AN

6-AN, an analog of nicotinamide, competitively inhibits G6PD [73]. Previous studies
have demonstrated that the suppression of G6PD by 6-AN can restore the sensitivity of
cancer cells to chemotherapy, so it is widely used in the treatment of cancers [72]. For
example, G6PD inhibition with 6-AN not only sensitizes leukemic cells to cytarabine
treatment by inducing cytotoxicity against acute myeloid leukemia cells but also makes
melanoma cells sensitive to metformin treatment through enhancing the cytotoxicity of
metformin and resulting in increased apoptosis and necrosis [37,72]. In addition, G6PD
inhibitor 6-AN can also significantly reduce the proliferation of bladder cancer cells and
exert a synergistic anti-tumor effect with cisplatin [66]. However, some serious side effects
such as nerve injury and vitamin B deficiency appear after 6-AN treatment [93].

7.2. DHEA

DHEA is an endogenous steroid produced by the adrenal glands, which acts as a
metabolic precursor for the synthesis of androgen and estrogen [76]. As early as 1960, it
was reported to have an uncompetitive inhibition of G6PD activity [94]. As an effective
inhibitor of the G6PD targeting PPP of cancer cells, DHEA reduces the NADPH levels,
NADPH-dependent oxygen-free radical production and nucleic acid synthesis to inhibit
tumor development [74,95]. Fang et al. found that DHEA can inhibit the G6PD activity
of cervical cancer cells, induce the apoptosis of cancer cells and lead to the decrease of
cell migration and proliferation ability [75]. Yang et al. revealed that targeting G6PD by
DHEA destroys the redox balance to inhibit growth in breast cancer cells [96]. Although
several studies showed that DHEA has anti-cancer, anti-obesity and anti-inflammatory
effects on mouse and other rodent models [97,98] DHEA is readily converted into active
androgens in vivo, and clinical treatment requires a high oral dose, so its therapeutic effect
is limited [94].
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7.3. Polydatin

Polydatin (PD) is a resveratrol glycoside extracted from the root or rhizome of poly-
gonum cuspidatum [99]. PD has many biomedical properties, such as antimicrobial,
antioxidant and anti-inflammatory [99,100]. In recent years, the antitumor activity of PD
has been widely investigated. Previous studies have shown that PD can suppress the
growth of various cancer cells by inhibiting cell proliferation, cell cycle arrest, or inducing
apoptosis [77,78]. Mele et al. reported that PD can significantly reduce tumor growth and
lymph node metastases through directly inhibiting G6PD in orthotopic and metastatic
models of oral cancer [94].

7.4. Zoledronic Acid

Zoledronic acid is a kind of bisphosphonate that is commonly used for the treatment
of osteoporosis and bone metastasis in solid tumors [79,101]. Zoledronic acid has shown
anticancer activity in pancreatic cancer, colon cancer and other cancers by promoting
apoptosis and inhibiting cancer cell growth and invasion [79,80]. Zoledronic acid was
proven to block Ras signaling and reduce the stability of TAp73, thereby inhibiting the
expression of G6PD in bladder cancer cells [81].

7.5. Aspirin

Aspirin is a salicylic acid drug widely used for anti-inflammatory, analgesia and the
prevention and treatment of cardiovascular disease [102]. In recent years, mounting studies
have revealed that aspirin can inhibit many malignant tumors such as hepatobiliary and
colorectal carcinoma [82]. Aspirin can acetylate a variety of proteins in cancer cells, of
which G6PD is its acetylation target [36,83]. Ai et al.’s findings suggested that aspirin
suppresses G6PD activity in colorectal cancer cells by acetylation, resulting in the decreased
synthesis of nucleotide and NADPH [83]. Aspirin may exert anticancer effects via targeting
G6PD. However, long-term use of aspirin is associated with significant risks of serious side
effects, such as gastrointestinal and cerebral hemorrhage [103,104].

7.6. RRX-001

The dinitroazetidine derivative RRX-001 is a novel chemo-radiotherapy sensitizer
in clinical [36,105]. RRX-001 can increase the sensitivity of the tumor to radiation and
reverse the drug resistance properties to improve the therapeutic efficiency of chemo-
radiotherapy [84]. RRX-001 has a significantly G6PD activity inhibition effect on cancer cell
lines, including HepG2, CACO-2 and HT-29 [106]. Cell proliferation is further inhibited
by increasing the reactive oxygen/nitrogen species and decreasing ribose 5-phosphate
synthesis and glutathione [106,107]. Therefore, RRX-001 as an inhibitor of G6PD for cancer
treatment is particularly promising.

7.7. Phytol

A number of compounds have been used to inhibit the G6PD activity in vitro and
in vivo. Parth et al. found that phytol has a good binding affinity with G6PD and could
also inhibit the activity of G6PD during in silico molecular docking studies [108]. Natural
product phytol is an acyclic monounsaturated diterpene alcohol that widely exists in algae,
plants and bacteria [85,109]. Previous research has confirmed that phytol represents a
wide range of biological activities, such as an antioxidant effect, cytotoxicity and anti-
inflammatory and antimicrobial activities. It is worthwhile mentioning that phytol can
induce the apoptosis and necrosis of various cancer cells and inhibit the EMT process
in HepG2 cells but have little toxicity to normal cells, suggesting that phytol exhibits
considerable anticancer potential [85,86]

7.8. Wedelolactone

Wedelolactone, a small molecular compound isolated from Ecliptaalba and Wedelia
calendulacea has attracted much attention because of its extensive pharmacological activi-
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ties, including hepatoprotective, anti-oxidation, anti-inflammatory, immunomodulatory
and anti-fibrotic effects, etc. [87,110–112] Recent researches has shown that Wedelolac-
tone exhibited a potent anticancer activity against different solid tumors, such as breast,
colon and prostate cancers, through inhibiting multiple kinases, the androgen receptor,
5-lipoxygenase and the c-Myc protein [87]. Lately, Luo et al. identified Wedelolactone as
a G6PD inhibitor by the high-throughput screening assay. The study demonstrated that
it could not only inhibit G6PD significantly in a non-competitive and reversible way but
also suppress the proliferation of ovarian cancer cells, which suggests that Wedelolactone
affects the proliferation of ovarian cancer cells partly through blocking the enzyme activity
of G6PD [88].

7.9. Butyrate

Butyrate is one of the short-chain fatty acids produced by the gut microbiota along
with acetic acid and propionic acid. Studies have shown that butyrate exerts several effects
in normal colon cells, including supplying energy, maintaining the gut barrier and reducing
inflammation [113–115], while it exhibits anti-tumorigenic activities through the induction
of apoptosis, inhibition of proliferation and promotion of autophagy in various cancer
types [89–91]. A recent study showed that butyrate can down-regulate the G6PD mRNA
and protein levels, reduce the DNA synthesis activity and further enhance the apoptosis
efficacy of 5-FU on colon cancer cells. It is reported that butyrate could also inhibit histone
deacetylases (HDACs) to depress a number of oncogenic signaling pathways [92]. As a
dual inhibitor of G6PD and HDAC, butyrate has great potential to become an anticancer
drug in the future.

8. Discussion

Metabolism is necessary for all organisms and cells depend on which provide nutrients,
protecting cells from stressed environments and meeting the demands of life. However,
increasing evidence has indicated that the metabolic pathways of cancer cells are changed
compared to normal cells. These alterations enable cancer cells to acquire more energy,
maintain excessive life demands or even transform into malignant cells and improve their
ability to translocate and escape from immunological surveillance. Therefore, identifying
additional metabolic changes of cancer cells and uncovering efficient methods to modulate
these changes may lead to novel cancer treatment. PPP as a glucose metabolism pathway
is essential in synthesizing nucleotides and providing NADPH. Targeting the PPP in
tumors is an effective approach in treating cancer and improving therapeutic efficacy.
Dysfunctions of enzymes in this pathway such as 6PGD contribute to the development
of cancer [116–118]. Expression changes of G6PD also promote cancer development. The
formation of malignant cancer needs many procedures. The beginning of cancer cells stems
from uncontrolled growth and continuous replication. Some of cancer cells then evolve the
abilities of metastasis and invasion. All of these steps are complicated and involve many
pathways. To be noticed, G6PD promotes many of these steps not only as a regulator but
also as an actor. In most cancers, G6PD expression is upregulated. The overexpression of
G6PD helps cancer cells in their growth, proliferation, EMT, metastasis and invasion. From
the normal role of G6PD, we can easily find that the overexpression of G6PD will produce
more NADPH and nucleotides. As we all know, NADPH protects cells from life stress,
which cancer cells confront a lot. Besides, producing nucleotides can meet the demand
of repaid growth and fast proliferation. All of these provide cancer cells with favorable
condition to live. Therefore, it is not a surprise that G6PD is involved in the pathways that
regulate the cell cycle, expression of cadherin, DNA synthesis and DNA repair. According
to several previous studies, the regulations on G6PD depend on multiple aspects from
the transcriptional level to the post-translational modification level. Interactions with
other proteins could also impact on the functions of G6PD. What is more, the mechanisms
regulating G6PD and the pathways regulated by G6PD impact each other and form a
circulation. This implied that networks regulating cancer cells are complicated, and G6PD
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is a promising target. The reverse abnormal expression of G6PD has shown positive effects
in inhibiting cancer. However, the roles of G6PD in cancer development mainly depend on
its metabolic function in producing NADPH to reduce ROS. Whether G6PD contributes to
the development of cancer independent of its metabolic and enzyme function needs to be
further discussed. The development of drug resistance is the main cause contributing to the
failure of chemotherapy, which is tightly related to the prognosis and survival of patients.
Inhibiting G6PD could reverse the chemo-resistance. PPP produces NADPH so that cancer
cells with hyper PPP activity have a different intracellular redox system, and this makes
drug-resistant cells less susceptible to oxidative stress induced by chemotherapeutic drugs.
Reversed chemo-resistance was achieved in the experiment performed by Hong et al.,
Feng et al. and Yang et al. Based on the essential functions in developing cancer, finding a
G6PD inhibitor may be an effective way of treating cancer. Several inhibitors have been
found and been proven to suppress the proliferation of cancer cells. However, problems
still exist. According to scientific reports, DHEA is an endogenous steroid hormone, and
it is a strong noncompetitive inhibitor that can suppress G6PD. Besides, it is the only
G6PD inhibitor that was used in vivo. Though DHEA could induce the apoptosis of cancer
cells through G6PD, clinical trials of DHEA have been hampered by the high oral dose
required and the hindering in the conversion of DHEA to active androgen. Therefore, its
effectiveness as a G6PD inhibitor remains controversial. Other chemicals such as polygonin,
zoledronic acid, RRX-001, Phytol, 6-AN, ect. inhibit G6PD activity or reduce the expression
level of G6PD as well. However, their effectiveness in vivo and whether they can be
further used in clinical are still unknown. What is more, whether these inhibitors are also
efficient in tumors with low G6PD expression, and whether these inhibitors can reverse the
chemoresistance of the current clinical drugs in treating cancer are questions that need to
be further explored. Developing more potential drugs aimed at G6PD is a promising but
still long and rough way in cancer treatment.

In conclusion, this review described the history and structure of G6PD, the effects of
high G6PD expression (or high activity) on cancer, the regulation of G6PD expression from
different aspects, and the role of G6PD in chemoresistance. However, the regulated mecha-
nisms linked to G6PD are complicated and not fully understood; thus, which mechanism is
most important in cancer development is still unknown. Further studies are necessary to
reveal more possibilities of G6PD in cancer because of its important role in both providing
biosynthesis material and NADPH for redox equilibrium.
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