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Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent
stromal cells that have gained attention for the treatment of irradiation-induced normal
tissue toxicities due to their regenerative abilities. As the vast majority of studies focused
on the effects of MSCs for photon irradiation-induced toxicities, little is known about the
regenerative abilities of MSCs for particle irradiation-induced tissue damage or the effects
of particle irradiation on the stem cell characteristics of MSCs themselves. MSC-based
therapies may help treat particle irradiation-related tissue lesions in the context of cancer
radiotherapy. As the number of clinical proton therapy centers is increasing, there is a
need to decidedly investigate MSC-based treatments for particle irradiation-induced
sequelae. Furthermore, therapies with MSCs or MSC-derived exosomes may also
become a useful tool for manned space exploration or after radiation accidents and
nuclear terrorism. However, such treatments require an in-depth knowledge about the
effects of particle radiation on MSCs and the effects of MSCs on particle radiation-injured
tissues. Here, the existing body of evidence regarding the particle radiobiology of MSCs as
well as regarding MSC-based treatments for some typical particle irradiation-induced
toxicities is presented and critically discussed.

Keywords: stem cell therapy, normal tissue toxicities, radiotherapy, particle irradiation, mesenchymal stem cells,
mesenchymal stromal cells, space irradiation, radiation accidents
INTRODUCTION

Mesenchymal stromal cells (MSCs) were first isolated from the human bone marrow by
Friedenstein and colleagues in the late 1960s (1, 2), but have since been described in various
other tissue types such as adipose and glandular tissues, brain and umbilical cord (3–6) and many
other organs. As MSCs are a heterogeneous population that can only be characterized by combining
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molecular and functional traits, the International Society for
Cellular Therapy (ISCT) proposed minimal defining criteria for
MSCs in order to enhance comparability between the various
studies: MSCs are required to adhere to plastic surfaces, exhibit a
pattern of positive and (absent) negative surface markers and
possess the ability to differentiate along the adipogenic,
osteogenic and chondrogenic lineages (7). Currently, MSC-
based treatments hold approval for several indications including
graft-versus-host disease, Crohn’s-related enterocutaneous
fistular disease, bone regeneration, osteoarthritis and cartilage
repair (8–11). MSCs possess several characteristics that make
them an attractive cell type for cell-based treatments: MSCs can
be conveniently isolated and expanded; they are immune-
privileged cells, therefore not requiring immunosuppression
prior to application, and exhibit the ability to migrate to
damaged tissues (12–15). Meta-analyses with more than 1000
patients showed the general safety of MSC-based treatments and
did not reveal any severe adverse effects (16). As MSCs also home
to tissues damaged by ionizing radiation, these cells came into
focus as potential treatments for radiation-induced toxicities,
for instance, radiation mucositis, pulmonary fibrosis and
enteritis (17–20).

In the context of treating radiation-induced tissue injuries,
the MESRIX trial provided a major step towards the routine
usage of MSCs in radiation oncology. This randomized, placebo-
controlled, double-blinded phase I/II study evaluated for the first
time the efficacy of anMSC application for radiotherapy-induced
tissue damage (21): Autologous adipose tissue-derived MSCs
were transplanted into the submandibular salivary glands of
patients with severe radiotherapy-related xerostomia at three
or more years after treatment. Upon MSC administration,
salivary flow rates were found significantly increased compared
to the placebo group, and consistently, xerostomia symptoms
decreased in MSC-treated but not in placebo-treated patients.
Based on these encouraging results, a follow-up trial
(NCT03874572) aims to validate these findings also for
allogenic MSCs.

So far, most in vitro and in vivo studies have focused on
the impact of photon irradiation on MSCs, and little is known
about the particle radiobiology of these multipotent cells,
which is a crucial step towards the usage of MSC-based
therapies for particle radiation-associated tissue damage, e.g.
after particle radiotherapy or during manned deep space flight
(22–24).
MATERIAL AND METHODS

The databases PubMed, Google Scholar and Web of Science
were screened for studies investigating the impact of MSC-based
treatments for particle irradiation-induced toxicities as well as
the influence of particle irradiation on MSCs by using the search
terms mesenchymal stem cells/mesenchymal stromal cells in
combination with protons, proton radiotherapy, helium ions,
alpha particles, carbon ions, carbon ion radiotherapy, oxygen
ions, iron ions, heavy ions and heavy ion radiotherapy, respectively.
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APPLICATION OF MSCS FOR THE
ATTENUATION OF TYPICAL TOXICITIES
AFTER PARTICLE RADIATION

Particle Radiotherapy in Cancer Treatment
Currently, heavy ion radiotherapy most commonly employs 12C
carbon ions for patient treatment. Clinical feasibility and benefits
of carbon ion radiotherapy have been studied in various
malignancies such as intracranial tumors, head-and-neck
cancers, lung cancer, gastrointestinal malignancies, prostate
cancer, sarcomas, gynecological cancers and pediatric
malignancies (25).

Head-and-Neck Tumors
Particle radiotherapy has been shown to be an effective treatment
for salivary gland, nasopharyngeal and sinunasal carcinomas
(25–29); however, bone- and mucosa-related toxicities are
common, and no causative treatments have been licensed to
date for these radiation-induced lesions.

Radiation-related mucositis is a common acute normal tissue
toxicity and affects most patients receiving radiotherapy for
head-and-neck malignancies. It considerably worsens patients’
quality of life, increases the risk for malnutrition and infection
and can therefore result in treatment interruptions that may in
turn deteriorate oncological outcomes. The incidence of severe
mucositis after proton irradiation for head-and-neck squamous
cell carcinomas ranges between 40 and 79% (30). The impact of
both bone marrow- and adipose tissue-derived MSCs on
radiation-induced mucositis has been examined in several
preclinical studies (19, 31–33). In the study of Maria and
colleagues, MSCs significantly attenuated radiation-induced
oral mucositis in mice, as evident by reduced ulcer duration
and ulcer size, leading to increased weight as well as improved
hydration and nutritional status (31). Osteoradionecrosis
constitutes another rare but severe chronic toxicity after head-
and-neck radiotherapy and is characterized by chronically
exposed bone structures that fail to heal within 90 days after
irradiation. In the head-and-neck region, osteoradionecrosis
commonly affects the mandibular bone, and the incidence of
mandibular osteoradionecrosis is reported to be less than 10% in
most studies after intensity-modulated radiotherapy, although
the variation of incidence in the literature is wide (34). The
pathophysiology of osteoradionecrosis is complex and is driven
by chronic inflammation, hypovascularity, hypoxia and
hypocellularity (35). Treatment aims at alleviating symptoms
and may comprise antibiotic treatment, surgical debridement,
reconstructive surgery and hyperbaric oxygen; however,
management of mandibular osteoradionecrosis remains a
clinical challenge (36). Although the incidence of mandibular
or maxillary osteoradionecrosis may be lower after carbon ion
radiotherapy compared to photon radiotherapy, there are several
case reports describing severe cases of osteoradionecrosis after
carbon ion treatment (37, 38). In a retrospective analysis, 3 of 63
patients developed grade 3 osteoradionecrosis after carbon ion
radiotherapy of head-and-neck malignancies (39). Stem-cell
based treatments using MSCs obtained from the bone marrow,
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adipose t issue or tonsi l s have been examined for
osteoradionecrosis after photon irradiation in four in vivo
studies and in two clinical case reports (40–46).

While it is conceivable that MSCs may exert their beneficial
effects regarding immunomodulation and replacement of
functional cells also after carbon ion irradiation, confirmative
data for the treatment of particle radiation-induced mucositis
and osteoradionecrosis are still lacking.

Prostate Cancer
In a post-hoc analysis including more than 1000 patients with
prostate cancer receiving carbon ion radiotherapy within
prospective phase II trials, the 10‐year rates of moderate-to-
severe gastrointestinal and genitourinary toxicities were found to
be 1.7% and 11.7%, respectively (47). Analyses of the SEER
database comparing photon and proton radiotherapy for
prostate cancer observed an increased risk for rectal bleeding
in patients treated with particle radiation (48). MSCs have been
successfully investigated for radiation-induced proctitis, cystitis
and fistulas. For instance, four patients received allogeneic bone
marrow-derived MSCs for hemorrhagic radiation-induced
fistulizing colitis after a radiation oncology accident at a public
hospital in France, in which prostate cancer patients were
overdosed by up to 30% (49). While two patients exhibited a
significant response regarding pain and hemorrhage, another
patient experienced a relapse after 6 months that was responsive
to a second MSC administration. Considering these encouraging
results, a prospective phase II trial is currently evaluating the
impact of MSC-based treatments for late severe gastrointestinal
complications such as proctitis and cystitis (PRISME trial,
NCT02814864). However, similar to the other discussed late
sequelae here, there are no studies available that exclusively
investigate MSC-based therapies after proton or carbon
ion radiotherapy.

MSC Administration as a Treatment
Against Acute Radiation Syndrome
The acute radiation syndrome (ARS) represents a complex
clinical situation, consisting of the hematopoietic syndrome,
the gastrointestinal syndrome and (only clinically relevant for
doses exceeding 10 Gy) the cerebrovascular syndrome (50). ARS
regularly occurs after radiation exposure of the whole body with
doses exceeding 0.5-1 Gy over a short time period. Currently, the
standard of care for ARS consists of mainly symptomatic
measures, e.g. intravenous hydration, antiemetic and analgesics
medication, antibiotic treatment, blood transfusions, application
of hematopoietic growth factors and rarely stem cell
transplantation. Depending on the extent of medical
interventions, the LD50/60 (dose that kills 50% of the
population within the first 60 days) ranges between 2.5 and 5
Gy. There are several scenarios in which a particle radiation-
induced ARS may occur, e.g. during radiation accidents, nuclear
terrorism or warfare and in deep space. The rising number of
centers providing particle radiotherapy as well as the increasing
usage of nuclear technology for medical purposes, industrial
procedures and military functions emphasizes the importance of
Frontiers in Oncology | www.frontiersin.org 3
effective medical countermeasures to treat particle radiation-
induced ARS.

Animal studies have shown beneficial effects of MSC-based
treatments (including both bone marrow MSCs and MSC-
derived exosomes) on the hematopoietic system in lethally
irradiated mice (51–54). There are also several case reports
showing both the feasibility and efficacy of MSC-based
therapies for the treatment of tissue damage caused by
radiation accidents (55–58). However, no studies have yet been
reported that described the impact of MSC-based therapies on
particle irradiation-induced ARS. MSCs from different tissues of
origin (bone marrow and umbilical cord) have successfully been
investigated for ARS treatment (51, 59). Besides its relevance for
unintended radiation accidents, stem cell-based treatments
including both MSCs and hematopoietic stem cells are
discussed also in the case of nuclear terrorism (60). In this
context, the United States Army Medical Research Institute of
Chemical Defense (USAMRICD) has established production
methods in order to have MSC-based treatments available for
ARS (61).
RESPONSES OF MSCS TO PARTICLE
RADIATION EXPOSURE

For photon radiotherapy, it has been demonstrated that MSCs
from different tissues of origin (e.g. bone marrow, adipose tissue,
umbilical cord) are relatively radioresistant and maintain their
stem cell traits even after high radiation doses (23, 62, 63). A high
anti-oxidative capacity, an effective DNA double-strand break
repair, low levels of pro-apoptotic proteins (e.g. Bim and Puma)
accompanied by high levels of anti-apoptotic proteins (e.g. Bcl-2
and Bcl-XL) have been reported to contribute to photon
radioresistance of these multipotent stromal cells (64, 65).
However, only limited data are available on the particle
radiobiology of MSCs, and it remains unclear if the photon
radioresistance can be extrapolated to radiation with protons or
heavier particles. To date, proton radiation has not yet been
systematically studied regarding the MSC radiobiology as it is
believed to biologically resemble photon radiation. However,
there are limited data available on the radiation effects of 12C and
heavier particles such as 56Fe on MSCs.

Cellular Survival After Particle Irradiation
Work by our group demonstrated a relatively radioresistant
phenotype of bone marrow-derived MSCs after 12C particle
radiation (Table 1). The relative biological effectiveness (RBE)
calculated at 10% clonogenic survival in bone marrow-derived
MSCs ranged between 2.0 and 3.1 compared to photon radiation,
underpinning the known heterogeneity of MSCs (69). In line
with a radioresistant phenotype after particle radiation, apoptosis
rates in bone marrow-MSCs remained low even after exposure to
4 Gy of 12C irradiation. However, no data are available for the
influence of protracted courses of low-dose 12C radiotherapy on
MSCs that may be more relevant in the space environment and
also during radiation exposure in the time of cancer treatment.
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The different biological effects between photon and 56Fe
irradiation on human bone marrow-MSCs have also been
thoroughly characterized in vitro (68). While it was reported
that neither photon nor 56Fe ions impaired the osteogenic
differentiation capability of MSCs, 56Fe irradiation with 1 Gy
resulted in a G2/M-phase arrest, which was more pronounced
than after physically equivalent doses of photon irradiation.
Microarray analyses showed that several genes playing a role in
cell cycle progression including cyclin B1 and cyclin E2 were
significantly downregulated after 0.1 Gy 56Fe ions, while only a
marginal response was observed after photon radiation.
Additionally, a more pronounced activation of p53 was found
after 56Fe ion radiation than after photon treatment.

While these analyses were based on 2D systems, some groups
also investigated the effects of particle irradiation on adipose-
derived stem cells in 3D sphere cultures based on agar coating
(70). Both after photon and carbon ion radiation, radiation
sensitivity was higher in 2D culture than in 3D culture, which
could to some extent be related to the development of
radioprotective tissue hypoxia inside of the 3D spheres. In this
regard, one should take into consideration that particle
irradiation can partly overcome the radioresistance caused by
tissue hypoxia (71).

Stem Cell Characteristics After
Particle Irradiation
The influence of particle radiation on the defining stem cell
characteristics has been investigated both for 12C and 56Fe ions.
After 12C irradiation, bone marrow-derived MSCs maintained
their adhesive and cellular motility abilities independently of the
MSC donor as well as their multi-lineage differentiation
capability, which are all pre-requisites for the cells’ regenerative
Frontiers in Oncology | www.frontiersin.org 4
effects (69). Kurpinski et al. could show that the osteogenic
differentiation potential of human bone marrow-derived MSCs
was maintained after exposure to 1 Gy 56Fe ions. While
undirected cellular motility as assessed by time-lapse
microscopy remained unaffected after 12C irradiation, directed
migration towards particle-irradiated hematopoietic cells has not
been examined so far. For lighter alpha particles, the preservation
of MSC functions seems to depend on the dose, and only higher
doses (2 Gy) have been shown to inhibit the stemness capacity of
bone marrow MSCs (67).

DNA Damage Repair After Particle
Irradiation
As particle irradiation induces clustered and more complex DNA
lesions than photon irradiation, many cell lines have been found
to exhibit increased numbers of initial and residual DNA lesions
after physically equivalent doses of particle radiation (72–74).
However, gH2AX foci analyses in human bone marrow-derived
MSCs revealed an effective DNA double strand-break repair after
4 Gy 12C irradiation as evident by low numbers of residual double
strand-breaks and only temporary activation of the DNA
double-strand break signaling pathways (69). This effective DNA
double strand-break repair may also contribute to the reported low
apoptosis rates after 12C irradiation in this study (69). However, in
the study of Alessio, residual gH2AX levels were significantly
higher after 2 Gy alpha particle irradiation than after 2 Gy photon
irradiation in bone marrow-isolated MSCs (67). In line with these
findings, the authors also observed increased pATM expression at
48 hours after 2 Gy alpha particle irradiation when compared to
baseline levels, which was not observed after 2 Gy photon
irradiation. Lower alpha particle doses of 0.04 Gy were found to
result in an upregulation of pATM at 1 hour after exposure and a
TABLE 1 | Summary of preclinical studies that investigated the effects of different types of particle irradiation on MSCs.

Authors and year Reference MSCs’ species and
tissue/Animal model

Particle type Main findings

Almeida-Porada
et al., 2018

(66) Human bone marrow Protons +56Fe • More pronounced deleterious effects after sequential proton and 56Fe ion IR on
both MSCs and HSCs than after exposure to either ion alone

• Upregulation of cytokines involved in the maintenance of hematopoiesis and
immune cell development after 56Fe ion IR (but downregulation after proton IR)

• Persistence of transcriptional changes induced by protons and 56Fe ions over
several passages in culture (in contrast to photons)

Alessio et al., 2017 (67) Human bone marrow a particles • Reduction of S-phase cells after 0.04 Gy and 2 Gy a particle IR
• Elevated apoptosis rates at 48 hours after 2 Gy a particle IR but not after photons
• More residual DNA double-strand breaks at 48 hours after exposure to 2 Gy a

particles compared to 2 Gy photons
• Increased pATM activation after 2 Gy a particle IR than after 2 Gy photon IR

Kurpinski et al., 2009 (68) Human bone marrow 56Fe • Pronounced G2/M phase arrest after 1 Gy56Fe IR
• Maintenance of osteogenic differentiation after 1 Gy56Fe IR
• Higher p53 activation after 56Fe exposure compared to photons
• More pronounced transcriptomic effects regarding DNA replication, DNA strand

elongation and DNA binding/transferase activity for56Fe than for photons
Nicolay et al., 2015 (69) Human bone marrow 12C • RBE values of 12C between 2.0 and 3.1 (at 10% clonogenic survival)

• Maintenance of stem cell characteristics
• Pronounced G2/M phase arrest after 4 Gy12C IR
• No increases in apoptosis after 4 Gy12C IR
• No residual DNA double-strand breaks after 4 Gy12C IR
• Strong phosphorylation of pATM at 2 hours after 4 Gy12C IR but return to baseline

levels after 24 hours
HSC, hematopoietic stem cell, IR, ionizing radiation, RBE, relative biological effectiveness.
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decline at later timepoints; additionally, there was no significant
difference regarding the number of gH2AX-positive cells at 48
hours after 0.04 Gy alpha particle irradiation compared to
unirradiated controls. In the study of Kurpinski and colleagues,
pathway and network analyses of transcriptomic profiles revealed
differential effects of 56Fe and photons on DNA replication, DNA
strand elongation and DNA binding/transferase activity of human
bone marrow-MSCs with a more pronounced effect of 56Fe ions
on these pathways. Furthermore 1 Gy56Fe ions resulted in a
stronger activation of p53 than 1 Gy photons.
MSC-Based Treatment Concepts for
Space Radiation-Induced Toxicities
Galactic cosmic rays (GCR) and solar cosmic radiation (SCR)
constitute the main components of space irradiation. With an
proportion of about 90%, protons form by far the largest
component of both GCR and SCR, followed by helium ions
(about 10%), electrons and heavier ions (75). Solar particle events
(SPEs) as part of SCR, are unpredictable events that occur when
protons are accelerated during a flare or during a coronal mass
ejection. Besides highly energetic protons and helium ions, SPEs
include heavier charged (HZE) particles such as carbon, oxygen
and iron ions. Long-term missions to the Mars that may last
more than 2 years harbor the risk for considerable radiation
exposures, as the shielding provided by the Earth’s magnetic field
is absent. Therefore, the National Aeronautics and Space
Administration (NASA) classifies the ARS caused by SPEs as a
major obstacle to long-term manned space expeditions (76).

Besides higher doses encountered by SPEs, cumulative annual
GCR particle doses inside a space craft amount to 176 ± 29 mGy
based on measurements in the Mars Science Laboratory (77). In
vivo data demonstrated that even low and protracted oxygen ion
(16O) radiation doses of 0.1 Gy impair hematopoiesis (78), and
the effective proton dose to reduce the whole blood cell count
(WBC) by half was shown to be approximately 1 Gy (79).

A major step towards the usage of MSCs for space irradiation-
induced toxicities was performed recently by Huang and
colleagues, who demonstrated the feasibility to grow human
bone marrow-MSC aboard the International Space Station (ISS)
(80). The MSCs’ phenotype was observed unaltered during
proliferation in space, and MSCs maintained their proliferative
characteristics aboard ISS. Interestingly, space-expanded MSCs
seem to exhibit pronounced immunosuppressive effects compared
toMSCs grown on the Earth. At least in short-term space cultures,
there were no signs for tumorigenic transformation and genomic
instability in MSCs.

Recently, a Chinese study reported transcriptional changes of
murine bone marrow cells after whole-body 12C irradiation with
2 Gy (81), that would mimic the acute bone marrow exposure
during a severe SPE. 12C irradiation resulted in increased reactive
oxygen species production, gH2AX foci and apoptosis levels in
bone marrow cells. Significant alterations in genes belonging to
the immune response, DNA damage repair, MAPK, TNF
signaling and apoptosis pathways were observed in murine
bone marrow cells after 2 Gy 12C irradiation.
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A high-quality study simulating the combined effects of GCR
and SPE on the interaction between human bone marrow MSCs
and hematopoietic progenitor cells was conducted by Almeida-
Porada (66). Interestingly, 56Fe ions upregulated many cytokines
involved in hematopoiesis and immune cell development,
whereas proton irradiation produced the opposite effect and
downregulated key cytokines involved in these functions. Also
very importantly, the transcriptional changes after proton and
56Fe ion irradiation were long-lasting and persisted over
several passages.

It is important to consider that low-dose irradiation (≤ 0.1
Gy) has shown to have significantly different effects on MSCs and
adipose-derived stem cells than higher radiation doses (24, 82,
83). Low dose irradiation was found to enhance proliferation and
to increase the secretion of stem-cell factor (SCF) and GM-CSF,
which may favor hematopoiesis (83). In the study of Yang et al.,
the pro-survival effects of low-dose irradiation on human bone
marrowMSCs were mediated via several proteins involved in cell
cycle control such as Rb, cyclin E, CDK1, and CDC25B (83).
Following these findings, there are considerations to use low-
dose irradiation to support large scale expansion as well as
therapeutic effects of MSCs (82, 84). Unfortunately, to the best
of our knowledge, no studies have reported effects of low-dose
particle irradiation, especially protons, on the proliferation rate
of MSCs. Additionally, protracted low-dose irradiation over
several weeks to mimic GCR are complicated by the difficulty
to long-term culture MSCs due to premature senescence and
therefore limited passage numbers (85). In the case of prolonged
MSC culturing, which may be necessary to expand autologous
MSC of astronauts prior to space missions, one should be aware
that the DNA repair capacity is lowered leading to more
spontaneous and radiation-induced micronuclei (86).

In the space environment, the more convenient way would be
the usage of commercially available allogenic off-the-shelf MSCs.
Due to the low immunogenicity and immune-privileged
behavior, allogenic MSC treatments are generally feasible
without prior immune suppression, as demonstrated in large
clinical trials (10, 87). In this regard, effective shielding of these
off-the-shelf MSCs would be desirable to avoid damage prior to
application in a case of SPE.
CONCLUSION

In general, MSC-based therapies hold promise for the treatment
of irradiation-induced toxicities such as mucositis ,
osteoradionecrosis, proctitis or cystitis as typical sequelae after
radiotherapy in the head-and-neck or pelvic region, respectively.
So far, preclinical and clinical research has been conducted
focussing on the effects of MSCs on photon-induced toxicities,
wherefore the role of MSCs as cell therapy for particle
irradiation-related adverse reactions in cancer treatment
remains to be elucidated. Furthermore, MSC-based therapies
may be used after nuclear accidents or during future manned
space missions, although the evidence is very limited. In
summary, many further efforts are needed in the future to fully
April 2021 | Volume 11 | Article 616831
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examine the impact of particle irradiation on the regenerative
abilities of MSCs and potential attenuating effects of MSCs on
particle irradiation-induced normal tissue toxicities.
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