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Abstract

Statistical learning is the ability to extract predictive patterns from structured input. A common assumption is that statisti-
cal learning is a type of implicit learning that does not result in explicit awareness of learned patterns. However, there is
also some evidence that statistical learning may involve explicit processing to some extent. The purpose of this study was
to examine the effect of pattern awareness on behavioral and neurophysiological correlates of visual statistical learning.
Participants completed a visual learning task while behavioral responses and event-related potentials were recorded.
Following the completion of the task, awareness of statistical patterns was assessed through a questionnaire scored by
three independent raters. Behavioral findings indicated learning only for participants exhibiting high pattern awareness
levels. Neurophysiological data indicated that only the high-pattern awareness group showed expected P300 event-related
potential learning effects, although there was also some indication that the low awareness groups showed a sustained mid-
to late-latency negativity. Linear mixed-model analyses confirmed that only the high awareness group showed neurophysi-
ological indications of learning. Finally, source estimation results revealed left hemispheric activation was associated with
statistical learning extending from frontal to occipital and parietal regions. Further analyses suggested that left insula, left
parahippocampal, and right precentral regions showed different levels of activation based on pattern awareness. To con-
clude, we found that pattern awareness, a dimension associated with explicit processing, strongly influences the behavioral
and neurophysiological correlates of visual statistical learning.
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Introduction

Statistical learning is the ability to extract statistical associa-
tions or predictive patterns from structured input. Statistical
learning can be used to infer sequential probabilities among or-
dered elements in the environment (Saffran et al. 1996). For ex-
ample, in natural language, linguistic units (e.g. phonemes,

syllables, and words) are arranged in a non-random sequence
according to the specific language’s phonology, phonotactics,
semantics, and syntax. Statistical learning can occur even after
relatively brief exposure times (Saffran et al. 1996; Aslin et al.
1998; Fiser and Aslin 2002; Kirkham et al. 2002), allowing the ex-
traction of statistical structures to anticipate and predict future
events (Conway et al. 2010).
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The effect of pattern awareness on the behavioral and neural correlates of visual statistical learning was explored.
Analyses of the behavioral and neurophysiological data showed that the level of awareness of the individuals for the un-
derlying statistical patterns—assessed through questionnaire following the completion of the task—was closely associated
with behavioral and neurophysiological indications of learning.

Specifically, the findings demonstrated that only the participants with a high level of pattern awareness showed clear evi-
dence of statistical learning as measured by response times and event-related potentials.

Source estimation results further indicated that statistical learning was associated with left hemispheric activation in a
network spanning occipital, parietal, and frontal regions, with increased activation observed for participants demonstrat-
ing high pattern awareness relative to low pattern awareness in a subset of brain regions including left parahippocampal

Overall, these findings show that pattern awareness and learning ability are closely linked, suggesting that statistical
learning in this task is mediated largely by explicit processes.

Traditionally, statistical learning is believed to be a type of
implicit learning, occurring in the absence of explicit pattern
awareness of the underlying structure that needs to be learned
(Reber 1989; Perruchet and Pacton 2006; Reber 2013). Implicit
learning can be defined as learning without the intention to
learn or without conscious awareness of the knowledge that
has been acquired (Cohen and Squire 1980; Reber and Squire
1994; Travers et al. 2010; Jeste et al. 2015). However, there is also
evidence that statistical learning may involve explicit process-
ing to some extent (Turk-Browne et al. 2005; Wessel et al. 2012;
Daltrozzo and Conway 2014). In particular, a number of studies
are in line with the assumption that statistical learning involves
both implicit and explicit mechanisms (Batterink et al. 2015; for
a recent review, see Daltrozzo and Conway 2014). Although
some findings imply that attention to stimuli is not required for
statistical learning (Saffran et al. 1997), others indicate that at-
tention improves both visual (Turk-Browne et al. 2005) and audi-
tory learning (Toro et al. 2005; Emberson et al. 2013). More
specifically, Turk-Browne et al. (2005) concluded that visual sta-
tistical learning is both automatic and intentional, meaning, al-
though attention is a prerequisite for relevant stimulus
selection, subsequent learning occurs without intent or aware-
ness. In addition, Hendricks et al. (2013) utilized a dual-task par-
adigm involving a working memory task in conjunction with an
artificial grammar learning task to dissociate (visual) automatic
and intentional learning. They found that although some as-
pects of visual statistical learning are relatively automatic, mak-
ing direct grammaticality judgments at test as well as
transferring knowledge to perceptually dissimilar stimulus sets
both appeared to depend on explicit processing resources.

The extent to which statistical learning results in awareness
of the learned information is also controversial. On the one
hand, several researchers have suggested that the relationship
between statistical learning performance and awareness may
not be so clear, because implicit learning can occur indepen-
dently of explicit awareness (Curran and Keele 1993; Goschke,
1998; Song et al. 2007). Others, such as Cleeremans (2006), pro-
pose a more nuanced view, where statistical learning affects
awareness but only under specific circumstances. Specifically,
mental representations obtained from exposure to a sequence
might only result in awareness when the strength of activation
of these representations reaches some critical level.
Consequently, statistical learning without awareness may en-
sue whenever these representations are poorly activated.
Findings from another recent study, suggested that measures of
learning that primarily target the explicit knowledge of

sequences (e.g. recognition judgment and familiarity ratings)
were not as sensitive as other indirect indices such as response
times that do not rely solely on awareness (Batterink et al. 2015).
According to another view, the relationship between statistical
learning and awareness may be bidirectional. In particular, for
participants who become aware of the existence of structured
sequences, their level of intention to learn the sequence struc-
tures might modulate learning (Riisseler et al. 2003).

There are other reasons to believe that awareness of the to-
be-learned patterns can affect performance. For example,
Cleeremans (1993) proposed an information processing model
of statistical learning by building on the simple recurrent
network (Cleeremans and McClelland 1991; Cleeremans 1993).
The guiding hypothesis behind the model is that awareness of
sequence structure alters the nature of the task in that instead
of anticipating subsequent events in temporal context there is a
switch to upcoming event retrieval from short-term memory.
Here, performance is contingent on attentional resources, and
such dependence could result in degradation of output, espe-
cially when memory representations are less reliable (during
dual task performance). Their main findings were that explicit
knowledge may enhance implicit learning and also that partici-
pants will attempt to utilize explicit knowledge whenever ac-
cessible. Findings from a different study by McIntosh et al. (1999)
involved participants who were either aware or unaware of a
tone that predicted a visual event or not. Participants who were
aware of this versus those who were unaware showed different
responses both behaviorally and neuroanatomically (as mea-
sured by regional cerebral blood flow). Several of the interacting
brain areas (left prefrontal cortex, contralateral prefrontal cor-
tex, sensory cortex, and cerebellum) showed changes in func-
tional connectivity that also correlated with the awareness of
participants.

The present study

The purpose of the present study was to explore the behavioral
and neurophysiological effects of pattern awareness on statisti-
cal learning. To achieve this aim, we measured event-related
potentials (ERPs) in response to a visual statistical learning task
following a paradigm similar to that of Jost et al. (2015). The task
involved the presentation of a series of visual stimuli wherein
“target” stimuli could be predicted with varying levels by the
preceding “predictor” stimulus. ERPs to two different types of
predictor—cueing the target with either high predictability (HP)
or low predictability (LP)}—were recorded. Jost et al. (2015) found
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that a greater P300 component was observed for the HP relative
to the LP stimuli following learning. In the present study, this
ERP effect was explored as a dependent variable against the ef-
fect of the independent variable pattern awareness, as assessed
through a questionnaire after completion of the statistical
learning task. We hypothesized that participants who show
more awareness of the underlying statistical patterns would
also show the largest learning effects in terms of behavioral re-
sponse times and ERPs. We also incorporated source estimation
analyses to explore the activation of brain areas during the sta-
tistical learning task and to determine how activation was af-
fected by the level of pattern awareness of participants.

Participants

A total of 34 participants (27 females, aged 18-49years;
M=22.4years, SD=6.3) without any language, neurological, or
psychological deficits from Georgia State University participated
in the study for class credits. All participants were right handed
according to the Edinburg Handedness Inventory (Oldfield
1971), except seven (3 left handed and 4 ambidextrous). All par-
ticipants were native English speakers. None of them spoke,
wrote, read, or understood Chinese (some of the stimuli were

All Stimuli

I___..~“§00ms 500ms 500m§"’a}
)
SOA (1000ms)
ISI (500ms)

Chinese characters, see Visual Statistical Learning Task section
below). Participants were recruited from the local University on-
line recruiting system and provided written informed consent
to participate. The study was approved by the local ethics com-
mittee (The Institutional Review Board of Georgia State
University).

Visual statistical learning task

Participants were administered a visual statistical learning task
similar to that used in Jost et al. (2015) and Daltrozzo et al. (2017)
while ERPs were recorded (see the Electroencephalography
Acquisition section below). To discourage verbal rehearsal or
naming of the stimuli (and to increase the difficulty of the
learning task), the task used non-verbal and unfamiliar charac-
ters from standard Chinese script (common to Mandarin and
Cantonese), and participants were only allowed to participate if
they were unfamiliar with this script. As a follow-up, after the
task, participants were asked whether they used verbal labels
during the task.

In the statistical learning task, a set of traditional Chinese
characters were presented to participants interspersed with tar-
get face stimuli (Fig. 1). The target faces could be either “happy”
or “unhappy.” Target assignment was at the beginning of the

Figure 1. Statistical rules of the sequential learning task. The target (T) followed either a high predictability predictor (HP) on 90% of trials or a
low predictability predictor (LP) on 20% of trials. These two items were presented within a stream of standard (S) items. For each participant,
HP, LP, and S were randomly assigned to one of the six Chinese characters displayed on the top panel of the figure. For each participant, T was
pseudo-randomly assigned to one of the two smileys, see top panel. Bottom panel shows stimulus onset asynchrony (SOA) and inter-stimulus

intervals (ISI).
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Figure 2. Electrical Geodesic Inc. sensor net with the nine ROIs high-
lighted [left (LAn), middle (FRz), and right anterior (RAn); left (LCn),
middle (CNz), and right central (RCn); and left (LPo), middle (POz),
and right posterior (RPo) regions used for recording cortical activity].

experiment and once chosen was applied across the whole ex-
periment for that participant. Fifty percent of participants saw a
happy smiley face as the target, and the remaining saw the un-
happy smiley as the target (i.e. none of the participants ever
saw both happy and unhappy targets during the experiment).
Both happy and unhappy faces were used to balance any spon-
taneous emotion elicited by the stimuli (Halberstadt et al. 2009)
that might affect emotion perception and in turn affect learning
across participants. The task of the participants was to press a
button as fast as possible when they saw the target.
Unbeknownst to the participants, the target followed either a
high-probability predictor (HP) on 90% of trials or a low-proba-
bility predictor (LP) on 20% of trials (Fig. 1). The predictors and
the target were presented within a stream of standard (S) items.
For each participant, HP, LP, and S were pseudo-randomly as-
signed to 1 of the 6 Chinese characters displayed on the top
panel of Fig. 1. As in Jost et al. (2015), the participant was ex-
pected to learn the statistical relationship between the predic-
tors and the target. Participants were not given information
about the existence of underlying probabilities that define the
co-occurrence of the predictors and the target to encourage inci-
dental learning.

Each predictability condition (HP and LP) was presented 50
times. All trials were continuous and pseudo-randomly ordered
across the two predictability conditions, so that participants en-
countered a seamless presentation between trials. Each partici-
pant was presented with a total of 100 trials, divided into 5
blocks of 20 trials each. A break of 30s was given between each
block. Stimuli were presented electronically using E-Prime
2.0.8.90 software (Psychology Software Tools, Pittsburgh, PA,
USA) on a Dell Optiplex 755 computer. All visual stimuli were
presented in white in the center of the computer screen on a
dark background. Stimuli were displayed for 500 ms, followed
by a dark screen, which was displayed for an additional 500 ms
(inter-stimulus interval was 500ms). Thus, the visual stimuli
were presented with a 1000-ms stimulus onset asynchrony.

Electroencephalography acquisition

During the statistical learning task, electroencephalography
(EEG) data were taken from 256 scalp sites using an Electrical
Geodesic Inc. (EGI) sensor net (Fig. 2) and was preprocessed

using Net Station Version 4.3.1 with subsequent processing us-
ing custom scripts written in Matlab (version R2012b 8.0.0783,
The MathWorks) using the EEGLAB toolbox (version 10.2.2.2.4a;
Delorme and Makeig, 2004). Electrode impedances were kept be-
low 50kQ. The EEG was acquired with a 0.1- to 100-Hz band-
pass filter at 250 Hz with vertex reference and then rereferenced
to the average reference of all sensors and low-pass filtered at
30Hz. Signals containing non-stereotypical artifacts, including
high-amplitude, high-frequency muscle noise and electrode ca-
ble movements, were rejected (~25% of trials). Prior to segmen-
tation, stereotypical artifacts, such as vertical eye blinks and
horizontal eye movements, were corrected with an extended
Infomax independent component analysis using EEGLAB (Lee
et al. 1999). The continuous EEG was then segmented into ep-
ochs —200ms to +1000ms with respect to the predictor onset.
ERPs were baseline corrected with the 200 ms prestimulus data.
Individual ERPs were computed for each participant, predictor
type, and electrode. All experimental sessions were conducted
in a 132-square feet double-walled, soundproof acoustic
chamber.

Pattern awareness questionnaire

After the statistical learning task, the EEG electrode net was re-
moved, and the participants completed a questionnaire to as-
sess their level of pattern awareness (see Table 1). Pattern
awareness levels were obtained from an inter-rater agreement
among three independent scorers of the participants’ re-
sponses. Each rater was requested to provide a score of 1 (“low
awareness” to the statistical rules/patterns embedded in stimuli
sequences of the statistical learning task) or 2 (“high awareness”
of the pattern). The inter-rater reliability was 96.5% (Cronbach’s
alpha). For each participant, the final pattern awareness score
was the mean of the scores of the three raters. The participants
were then separated into two groups with n=17 in each group
based on a median split of these mean scores of pattern aware-
ness: the group of high pattern awareness and the group of low
pattern awareness.

The two groups did not differ significantly in terms of age
(high-pattern awareness: M=22.47, SD=7.15; low-pattern
awareness: M=22.29, SD=5.86; U =154.5, P=.74, Mann-
Whitney, two tailed]. In addition, before the statistical learning
task, the executive control capacity of the participants was as-
sessed with the Flanker task (Eriksen and Eriksen 1974), which
is commonly used to test the executive control (Fan et al. 2005).
There was no significant difference between Flanker perfor-
mance in the high pattern (n=16; M=2.187, SD=287.817) and
the low pattern awareness groups [n=16; M=-58.000,
SD =89.026; after removing 2 outliers and using the centered
Flanker difference scores; incongruent minus congruent trials;
F(30, 1) = 0.500, P = 0.832; > = 0.938].

Analyses of the ERPs

We applied a linear mixed model (LMM) (West et al. 2014) to our
pattern awareness and statistical learning data at the single-
trial level. (The LMM was performed with R (version 3.1.2) using
the lmer() function of the lme4 library, Bates et al. 2009.) The
LMM is increasingly used to analyze EEG data comprising of
such large data sets (Bagiella et al. 2000; Davidson and Indefrey
2007; Moratti et al. 2007; Pritchett et al. 2010; Wierda et al. 2010;
Newman et al. 2012). The LMM offers advantages over tradi-
tional repeated-measures analyses of variance (ANOVAs), in-
cluding richer modeling of random effects with, for instance,


Deleted Text: ,
Deleted Text: 50&percnt;
Deleted Text: ' task
Deleted Text:  
Deleted Text:  
Deleted Text: Figure 
Deleted Text: one 
Deleted Text: Figure 
Deleted Text: in order 
Deleted Text: econds
Deleted Text: ,
Deleted Text:  
Deleted Text: &thinsp;
Deleted Text: A
Deleted Text: was 
Deleted Text: <bold>Figure</bold> 
Deleted Text: -
Deleted Text:  
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text: approximately 
Deleted Text: -
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text:  
Deleted Text: foot 
Deleted Text: A
Deleted Text: Q
Deleted Text: st
Deleted Text: (`
Deleted Text: awareness' 
Deleted Text: ,
Deleted Text: (`
Deleted Text: awareness' 
Deleted Text: each of <italic>N</italic>
Deleted Text: participants 
Deleted Text:  
Deleted Text:  
Deleted Text: [
Deleted Text: H
Deleted Text:  
Deleted Text: L
Deleted Text:  
Deleted Text: <italic>U</italic>'
Deleted Text: <italic>p</italic>
Deleted Text: -
Deleted Text: -
Deleted Text: participants'
Deleted Text: [
Deleted Text: <italic>N</italic>
Deleted Text: ;
Deleted Text: ] 
Deleted Text:  
Deleted Text: <italic>N</italic>
Deleted Text: -
Deleted Text: ; 
Deleted Text: <italic>p</italic>
Deleted Text: <italic>&equals;</italic>
Deleted Text: E
Deleted Text: e
Deleted Text: vent R
Deleted Text: r
Deleted Text: elated P
Deleted Text: p
Deleted Text: otentials
Deleted Text: <sup>1</sup>
Deleted Text:  
Deleted Text: .
Deleted Text: Newman, Tremblay, Nichols, Neville &amp; Ullman, 2012; Pritchett <italic>et<?A3B2 show $146#?>al.</italic>, 2010; 
Deleted Text: Davidson &amp; Indefrey, 2007; Moratti, Clementz, Gao, Ortiz &amp; Keil, 2007 &amp; Bagiella, Sloan, and Heitjan, 2000

Table 1. Pattern awareness questionnaire
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Pattern Awareness Questionnaire

1. Think about the task with Chinese characters you did. Did you notice anything about the Chinese characters? Tell me about your percep-

tion of the task. [Verbatim record]

2. Do you think the Chinese characters were occurring randomly? [If the participant says no, ask to explain how the characters were non-ran-

domly displayed.]

oW

Was there a pattern or anything regular in the order that the Chinese characters were presented?
Was there a Chinese character that usually came before the target (the smiley face you were looking for)?

5. If you noticed a pattern, at what point did you notice it? Before the 1st break, after the 1st break, after the 2nd break, after the 3rd break, or

after the 4th break?

Table 2. Table of LMM specifications (df, AIC, BIC LL, deviance) for the neurophysiological (ERP) model (within 200-700 ms) and behavioral (RT)

model across all trials

Model Specifications df AIC BIC LL Deviance chisq Df P
Behavioral RT

RT ~ Predictability + PA + Predictability:PA + (1 | participant) 6 75484 7581.5 —3768.2 7536.4 0 0o 1
Neurophysiological data (200-700 ms)

EEG 82 —-1972002 -1971122 986083 1972166 14257 43 <0.001*™*

Mean ~ Predictability + PA + Predictability:PA + Predictability:
ROI + Predictability:PA:ROI + (1+ ROI | participant)

multiple, crossed, and/or nested random effects (Newman et al.
2012). As a result, this model allows increased accuracy and ex-
ternal validity of the parameter estimate. Another important
advantage of using the LMM instead of an ANOVA approach is
the ability of the LMM to handle missing data and non-spheric-
ity issues, both of which the LMM can adequately address.
Thus, unlike the ANOVA model, there is no need for subsequent
correction for non-sphericity (e.g. Greenhouse-Geisser or
Huynh-Feldt; Bagiella et al. 2000; Baayen et al. 2008).

To analyze the effect of the cortical topography, nine regions
of interests (ROIs; see Fig. 2) were defined: left (LAn), middle
(FRz), and right anterior (RAn); left (LCn), middle (CNz), and right
central (RCn); and left (LPo), middle (POz), and right posterior
(RPo) regions. The applied LMM was similar to the model used
by Newman et al. (2012), with fixed effects defined below from
predictability (HP or LP), pattern awareness (PA, i.e. high or low
awareness of the statistical patterns), and ROI as well as with
intercept by pattern awareness and intercept and ROI by partici-
pant random factors. According to the R syntax, the LMM was:

EEG Mean ~ Predictability + PA + Predictability
: PA + Predictability : ROI + Predictability : PA
:ROI+ (1 + ROI | participant)

Similar to Newman et al. (2012), the LMM was applied on a
single-trial data. Single-trial data were the mean values of EEG
over 200-700ms time window based on the topography of the
statistical learning ERP effect in Jost et al. (2015). [To correct for
the incompatibility between the additive nature of the LMM
(and ANOVA models) with the multiplicative nature of interac-
tions that could yield incorrect significant (i.e. Type I error) in-
teractions involving ROI, McCarthy and Wood (1985) developed
a correction by EEG mean scaling, see also Dien and Santuzzi
2005. In every condition, for each participant, mean EEG ampli-
tudes are scaled by the square root of the sum of the squared
mean EEG amplitudes, i.e. Xij/\sZ(Xl?).), where Xj; is the EEG mean
amplitude for participant i in condition j. If the scalp ROI by

condition interaction remains significant after rescaling, this al-
lows for more confidence in the authenticity of the interaction,
under certain conditions, Urbach and Kutas 2002.]

Similar to the LMM mentioned earlier, response times (RTs)
were also analyzed with the LMM procedure. The model was
based on the model used to analyze ERPs. Because it pertains to
behavioral RT data only, the model neither contains the EEG
mean variable nor the ROI factor and is adjusted appropriately.
[Bonferroni-corrected pairwise comparisons were applied with
the mcposthoc.fnc() of the LMERConvenienceFunctions (version
2.10) library (Tremblay and Ransijn 2015). RT data were normal-
ized using a square root transformation.

According to the R syntax, the LMM was:

RT ~ Predictability + PA + Predictability : PA + (1|participant)

Table 2 shows the model specifications for both RT and ERP
models.

EEG source estimation

Source estimates were performed to further investigate the un-
derlying neural mechanisms of statistical learning between the
levels of pattern awareness. [For source estimation, all proce-
dures were processed with BrainStorm software package (Tadel
et al. 2011). Cortical generators of cue-locked ERP activity were
reconstructed by modeling conductive head volume according
to OpenMEEG BEM (Kybic et al. 2005; Gramfort et al. 2010) that is
executed in the Brainstorm software package (Tadel et al. 2011).
The solution space was constrained to the cerebral cortex, and
cortical current source density mapping was obtained using a
distributed model consisting of 15000 fixed dipoles normally
oriented to the cortical surface. Additionally, the inverse trans-
formation was applied to Brainstorm’s default template
Montreal Neurological Institute (MNI) brain (colin27 atlas)
(Collins et al. 1998; Tzourio-Mazoyer et al. 2002) i.e. a canonical
mesh of the cortex to approximate real anatomy (see Tadel et al.
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2011 for a review). This head model was then fit to the standard
geometry of the current 256 sensor net. All subsequent source
analysis, and statistical estimation of the Z-scores relative to
the baseline (before cue onset) was then processed. Cortical cur-
rent maps were computed from the EEG time series using a lin-
ear inverse estimator called weighted minimum-norm current
estimate (WMNE). WMNEs are a measure of the current density
flowing at the surface of the cortex.] Source estimation was first
applied at a preliminary level on the entire data set (i.e. all 34
participants of the study) to visually and statistically infer the
difference between HP and LP conditions. This difference was
computed as the difference between HP; and LP;.

To further obtain separate source estimate maps for the be-
tween-group variable, pattern awareness (high and low), each
having two within conditions (HP and LP), we first computed
the difference (HP —LP) in each group of high- and low pattern
awareness. Thus, for each participant i (i=1,..., n=17), we com-
puted: (i) A single average HP;; (ii) a single average for LP; and
(iii) the difference D;=HP;—LP;. Then, at the group level, we
computed the following: (i) m;=|mean (Dj)|nigh pattern awareness:
the absolute value of the mean of D; (with i=1,..., n=17, ie.
over all participants of the high awareness group); (ii) m,=
mean (Dj)|iow-pattern awareness: the absolute value of the mean of
D;j (with j=1,..., N=17, ie. over all participants of the low
awareness group); (iii) D= D;— Dj: the difference between these
means. As a final result, we obtained a signed (+) source esti-
mation difference D, indicating for which group the difference
was more important. A non-parametric test termed permuta-
tion t-test (Maris and Oostenveld 2007) as implemented by
Brainstorm software was also used to compare high and low
pattern awareness to obtain a statistically significant difference

Response Times

420

using scouts (see Results section) per the Mindboggle brain atlas
via Brainstorm (Klein et al. 2005).

Results

Behavioral results

Analysis of the RT data showed that predictability (i.e. HP vs. LP)
interacted with pattern awareness [F(1, 1805.03)=9.195,
P <0.01]. Figure 3 shows the average RTs to targets following the
HP and LP stimuli for the high- and low pattern awareness
groups. Post hoc tests indicated a significant effect of
predictability (i.e. learning had occurred) in the high pattern
awareness group [P=0.001] but a non-significant effect of
predictability in the low-pattern awareness group [P=0.627].
That is, for the high pattern awareness group, participants re-
sponded quicker to the targets when they were preceded by the
HP stimulus compared with the LP stimulus, suggesting that
they had learned the predictor-target probabilities. No such be-
havioral facilitation was observed in the low pattern awareness
group. Table 3 shows the fixed and random effects from the RT
analyses across groups.

ERP results

The grand averaged ERPs across participants with high pattern
awareness (n=17) for the HP and LP conditions are shown in
Fig. 4. Overall, the right ROI appears to show evidence of a P300-
like response, a component that was also observed by Jost et al.
(2015) using a similar paradigm. Specifically, there is an in-
creased positivity for the HP stimulus relative to LP roughly

Table 3. Table of fixed and random effects from the RT analyses in
the high PA and low PA groups, [P <0.01, *P <0.001, ***P <0.0001;

,—*l*—, pattern awareness (PA); high predictability (HP); low predictability
400 N (LP)]
380 Model RT
360 Fixed effects Estimate SE P
340 klow PA ﬁigh PA Intercept 19.824 0.352 <0.001**
SLP mHP High predictability 0.075 0.155 0.627
High PA 0.184 0.498 0.713
Figure 3. Response times in the high (HP, solid bar) and low predict- High predictability:high PA —0.667 0.220 0.002**
ability (LP, textured bar) conditions for the high and low pattern Random effects SD
awareness (PA) groups. The vertical axis is mean response time in Participant 1.33
milliseconds; Horizontal axis depicts the post hoc tests to the Residual 1.818
Predictability x PA interaction; **P < 0.001.
Left ROIs Medial ROIs Right ROIs
1.5 *
1 L
0.5}
0
-0.5¢
-1t =1 -1+
-1.5 : : . 1.5 - . ]
0 0.5 1 0 0.5 1 -1.5 0 0.5 1

Figure 4. Grand averaged ERPs for high pattern awareness participants within left, medial, and right ROIs (n = 17). ERPs to the predictor in the HP
(solid line) and LP (dashed line) conditions (vertical axis: electric potential in microvolts, positivity upward; horizontal axis: time in seconds).

Shaded gray bar shows time window corresponding to ANOVA,; *P <0.01.
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Figure 5. Grand averaged ERPs for low pattern awareness participants within left, medial, and right ROIs (n=17). ERPs to the predictor in the HP
(solid line) and LP (dashed line) conditions (vertical axis: electric potential in microvolts, positivity upward; horizontal axis: time in seconds).
Shaded gray bar shows time window corresponding to ANOVA; *P < 0.01, **P < 0.001.

between 250ms and 500 ms. There also appears to be an N200
effect in the medial ROI, with a more negative peak for HP com-
pared with LP. Based on visual inspection, one-way ANOVAs
were conducted on the EEG means averaged across trials for
two time windows: (i) 150-250ms for the N200 and (ii) 300-500
ms for the P300. Results showed that there was no significant
difference between high and low predictability for the N200
time window for any of the ROIs: left [F(1, 1528)=0.006,
P=0.936], medial [F(1, 1528)=2.304, P=0.129], and right
[F(1, 1528) = 0.745, P =0.388]. On the other hand, the results con-
firmed the existence of the P300, with a significant difference
between high and low-predictability conditions in the right ROI
[F(1, 1528) =4.351, P=0.037] but not the left [F(1, 1528)=1.062,
P=0.303] or medial [F(1, 1528) =0.105, P = 0.746] ROL

The grand averaged ERPs across participants with low pattern
awareness (n=17) for the HP and LP conditions are shown in Fig.
5. Overall, the right and, particularly, the medial ROIs appear to
show differences in the waveforms between predictor stimuli in
mid and late latencies, but unlike the high-pattern awareness par-
ticipants, the pattern is reversed, i.e. there is higher amplitude for
the LP than the HP condition. Akin to the high pattern awareness
group, we performed ANOVAs for each ROI using the EEG aver-
ages. For the low awareness group, we focused on a larger 300~
1000ms time window due to the observed sustained negativity.
The results showed no significant difference between high and
low-predictability condition for the left ROI [F(1, 1528)=1.745;
P=0.187]. In contrast, there was a significant difference between
predictor conditions for medial [F(1, 1528) =40.539; P=< 0.001] and
right [F(1, 1528) = 4.502; P =0.034] ROIs, with the high predictability
stimuli showing more negative potentials than the low-predict-
ability stimuli (see Fig. 5).

To further explore the possible effects of pattern awareness
on the ERP correlates of statistical learning, we applied an LMM
on the single-trial ERP data [using the McCarthy and Wood (1985)
correction] within the 200-700 ms window. This window includes
most of the primary ERP effects observable by visual inspection.
The results indicated a two-way interaction: Predictability x ROI
[F(16, 62)=839, P<0.001]; a second two-way interaction:
Predictability x Pattern =~ Awareness  [F(1,  340203)=65.763,
P<0.001]; and a three-way interaction: Predictability x Pattern
Awareness x ROI [F(16, 62) =2.74, P < 0.001]. Because all factors of
the two-way interactions (i.e. predictability, pattern awareness,
and ROI) belong to the three-way interaction, we focus on the
three-way interaction. Table 4 displays the fixed and random ef-
fects from the LMM analyses.

A graphical depiction of the model effects from the three-
way interaction between the ERP means (McCarthy corrected)
for each level of predictability and ROI is provided, for high pat-
tern awareness (Fig. 6, right panel) and low pattern awareness
(Fig. 6, left panel) groups.[Figure 6 was obtained with the Effects

Table 4. Table of fixed and random effects from the ERP analyses in
the high pattern awareness (HPA) and low pattern awareness (LPA)
groups, [P <.01, **P <.001, **P < .0001; pattern awareness (PA)]

Full model

Fixed effects Estimate SE P
(Intercept) —0.002 0.001 0.003**
HP 0.000 0.000 0.948
HPA —0.001 0.001 0.556
HP:HPA 0.000 0.000 0.180
LP:CNz 0.001 0.001 0.064
HP:CNz 0.001 0.001 0.334
LP:FRz —0.002 0.001 0.006™*
HP:FRz —0.002 0.001 0.015*
LP:LCn 0.004 0.001 0.000*
HP:LCn 0.003 0.001 0.000***
LP:LPo 0.007 0.001 0.000™*
HP:LPo 0.007 0.001 0.000"**
LP:POz 0.007 0.001 0.000™*
HP:POz 0.005 0.001 0.001**
LP:RAn 0.000 0.001 0.580
HP:RAn 0.000 0.001 0.915
LP:RCn 0.004 0.001 0.003**
HP:RCn 0.003 0.001 0.009**
LP:RPo 0.007 0.002 0.000"**
HP:RPo 0.007 0.002 0.000"**
LP:HPA:CNz 0.001 0.001 0.201
HP:HPA:CNz 0.002 0.001 0.039*
LP:HPA:FRz 0.000 0.001 0.596
HP:HPA:FRz —0.001 0.001 0.456
LP:HPA:LCn 0.000 0.001 0.747
HP:HPA:LCn 0.001 0.001 0.384
LP:HPA:LPo 0.001 0.002 0.666
HP:HPA:LPo 0.001 0.002 0.717
LP:HPA:POz 0.002 0.002 0.266
HP:HPA:POz 0.003 0.002 0.102
LP:HPA:RAn 0.000 0.001 0.612
HP:HPA:RAn 0.000 0.001 0.633
LP:HPA:RCn 0.001 0.002 0.472
HP:HPA:RCn 0.002 0.002 0.274
LP:HPA:RPo 0.002 0.003 0.401
HP:HPA:RPo 0.002 0.003 0.471
Random effects SD

Participant 0.003

CNz 0.003

FRz 0.002

LCn 0.003

LPo 0.005

POz 0.006

RANn 0.003

RCn 0.004

RPo 0.007

Residual 0.013
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Figure 6. Predictability x pattern awareness X ROI interaction for all participants (n = 34). Right panel depicts high pattern awareness and the left
panel depicts low pattern awareness. Horizontal axis are the 9 ROIs [left (LAn), middle (FRz), and right anterior (RAn); left (LCn), middle (CNz),
and right central (RCn); and left (LPo), middle (POz), and right posterior (RPo)]. The vertical axis is the LMM estimated ERP mean amplitude be-
tween 200 ms and 700 ms post-predictor onset (positivity upward in microvolts; LP: solid line; HP: dashed line).

displays package in R (Fox, 2003).] Participants with high pattern
awareness show an expected ERP effect across all ROIs, i.e. en-
hanced positivity for HP compared with LP stimuli (similar to
the positivity observed in Jost et al. 2015). The low pattern
awareness group shows little differentiation of the predictor
conditions in any ROIs, and when it does occur, the HP predictor
is more negative than LP.

Source estimation results

First, we used source estimation to examine for any differences
in brain activation related to learning across all participants
(see Methods section). This was performed using scouts accord-
ing to the Mindboggle brain atlas (Klein et al. 2005) incorporated
in Brainstorm and not the full cortical maps. (By restricting ac-
tivity to the scouts, we discard any spatial resolution, and thus,
the statistical results per se cannot be represented on a cortical
map. However, we can explore the following issues: (i) the brain
region where a statistically significant difference of source ac-
tivity was found (upon correcting for multiple comparisons) and
(ii) the direction of the difference, i.e. which condition was asso-
ciated with a higher or a lower source activity.) A scout repre-
sents a region or a subset of dipoles demarcated on the cortical
surface or head volume (Tadel et al. 2016). Scout selection was
performed within the same time window as the ERP LMM analy-
ses, which was 200-700ms post-stimulus onset and the ROIs
were chosen a priori. We checked for differences between HP
and LP source activation across all 34 participants over the

entire time window and then over 50ms bin increments.
Second, we examined brain activation for high and low pattern
awareness using scouts across the full 200-700 ms time window
as well as at 50ms time window increments. For time periods
across and within these time windows, which are not depicted
graphically, t-values were non-significant.

Figure 7 depicts the results of the source estimation for the
difference between HP and LP (i.e. areas of the brain indicative
of a learning effect) for all participants. Each depicted subfigure
is showing the demarcated ROI generically on the brain tem-
plate corresponding to the view (left, L and right, R), and below
each template is the associated graph. All t-values are represen-
tative of results from a non-parametric permutation test (Maris
and Oostenveld 2007) in ROIs (scouts), where significance at the
0.05 level remained even after correcting for multiple compari-
sons (for signal, frequency, and time) with the false discovery
rate procedure (Benjamini and Hochberg 1995). (The t-values are
only reported as statistically significant when significance re-
mains after the false discovery rate correction; o = 0.05; the posi-
tive or negative direction depicted in the t-value graph denotes
which condition was associated with higher or lower source ac-
tivity. For predictability, and pattern awareness, the high condi-
tion was denoted by positive values and the low by negative
values.) In Fig. 7A, negative t-values represent the statistically
significant difference for HP —LP in superior parietal regions
and that activation was greater for the LP condition between
200 ms and 300 ms post-stimulus. Between 450 ms and 500 ms, a
significant HP — LP difference (greater for HP) in the left lateral
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Figure 7. Cortical source estimation maps with t-values for scouts for HP minus LP (n = 34). (A) Highlighted scouts show significant difference for
HP — LP in superior parietal region (left) at 200-250 ms and 250-300 ms. (B) Highlighted scouts show significant HP — LP difference during a 450-
500ms time window in the lateral occipital (left) region. (C).Highlighted scouts show significant HP — LP difference in a 450-500 ms time win-
dow depicted in the pericalcarine (left) area. (D) Highlighted scouts show significant HP — LP difference in a 650-700 ms in the caudal mid-fron-
tal (left) region. (A-D) Accompanied by graph showing averaged t-values (vertical axis) and time in seconds (horizontal axis).

occipital region (Fig. 7B) as well as a significant HP — LP differ-
ence (greater for HP) in the left pericalcarine region (Fig. 7C) was
observed. Between 650ms and 700ms, activation was found in
the left caudal mid-frontal region (Fig. 7D). Thus, we see a left
lateralized posterior-anterior shift over time associated with
the HP-LP learning effect, with superior parietal, pericalcarine,
and lateral occipital regions showing activation in the first 200-
500ms and caudal mid-frontal regions showing activation after
650 ms post-stimulus.

We then tested for statistically significant effects of pattern
awareness at 50ms increments within the 200-700ms time
windows. These are brain areas showing significant activation
corresponding to learning the predictor stimuli (HP —LP) and
that differed between the high and low awareness groups. As
shown in(Fig. 8, the insula (L), parahippocampal (L) and precen-
tral (R) regions were found to show significant activation differ-
ences between the high and low awareness groups.

Discussion

The aim of this study was to examine the extent to which pat-
tern awareness influences the learning of visual statistical regu-
larities. Our main findings were the following. First, only
participants showing high levels of pattern awareness demon-
strated robust behavioral learning effects as measured by RTs.
Second, only, participants with high pattern awareness showed
the expected P300 ERP effects as well as clear indications of
learning as assessed with the LMM analyses. Finally, source es-
timation results showed left lateralization and a caudal-rostral
gradient accompanying learning across all participants.
Differences in brain activation were also observed for the high
and low pattern awareness groups in specific brain regions. We
discuss each of these primary findings in turn.

Behavioral findings

Behavioral data revealed that pattern awareness appeared to
have a strong effect on learning. For those participants with low
pattern awareness, there was no difference in the response
times between predictor conditions and thus no evidence of
learning. When awareness was high, the response times were

much lower for HP compared with LP conditions, indicating
learning. Thus, in contrast to earlier conceptualizations of sta-
tistical learning being an implicit process (Reber 1989), these
findings reveal that only participants demonstrating high
awareness showed behavioral indications of learning.

ERP findings

In a previous study using a similar learning paradigm, Jost et al.
(2015) observed a P300-like positivity elicited by the high pre-
dictability condition. The P300 is regarded as an index of target
detection and evaluation (van Zuijen et al. 2006) and has also
been observed in other learning tasks (Baldwin and Kutas 1997;
Riisseler et al. 2003; Carrién and Bly 2007). In the present study,
we also obtained a P300 but only for participants with high pat-
tern awareness (Fig. 4, right ROI). For the low pattern awareness
group (Fig. 5), instead of the expected P300 effect, there was an
extended negativity of the HP relative to LP conditions in the
medial ROL At least one other study from the literature has re-
ported obtaining a similar result with unconsciously processed
stimuli eliciting a reversal (i.e. negative) P300 effect (van Gaal
et al. 2008), albeit with a different task (the go/no-go task). The
results of their study suggested that inhibitory control functions
might be influenced by unconscious events. Applied to the cur-
rent findings, the extended negativity would appear to suggest
that learning occurred. On the other hand, the results of the
LMM analyses are much more clear in showing ERP effects only
in the high pattern awareness group (Fig. 6), suggesting that
only the high pattern awareness participants demonstrated
learning as revealed by the ERPs.

With regard to the interpretation of the P300 in the high pat-
tern awareness group, Jost et al. (2015) suggested that the occur-
rence of the P300, which is normally elicited by targets in a
standard oddball paradigm, shifted from the target to the stim-
ulus that predicted the target with a high level of probability.
Ample exposure to the sequential statistics of the input array
may have enabled participants to view the frequent HP stimulus
as if it were the target itself, displaying the prototypical P300 re-
sponse. That the P300 effect was observed only in the high pat-
tern awareness group suggests qualitatively different neural
processes occurring during the task for the two groups of
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Figure 8. Cortical source estimation maps with t-values for scouts for differences in pattern awareness (n=17). (A) Highlighted scouts show sig-
nificant differences between high and low pattern awareness between 200 ms and 250 ms for the insula (left) region. (B) Highlighted scouts
show significant differences between high and low pattern awareness between 350 ms and 400 ms and between 400 ms and 450 ms for the par-
ahippocampal (left) region. (C) Highlighted scouts show significant differences between high and low pattern awareness between 500 ms and
550 ms and between 550 ms and 600 ms for the precentral (right) region. (A-C) Accompanied by graph showing averaged t-values (vertical axis)

and time in seconds (horizontal axis).

participants. In sum, the ERP results show clear indications of
learning for the high awareness participants but much less clear
evidence for the low awareness participants. Taken together,
with the behavioral evidence suggesting learning only for the
high awareness participants, these results add to the pre-
existing literature underscoring awareness as a prerequisite for
or at the very least, influential, to statistical learning ability
(Cleeremans 1993; McIntosh et al. 1999; McIntosh et al. 2003).

Source estimation findings

Source analysis for all 34 participants of the study indicated left
hemispheric activation across the 200-700ms time window,
specifically over the superior parietal, occipital, and mid-frontal
ROIs (Fig. 7). The left superior parietal region is involved in spa-
tial orientation (Corbetta et al. 1995) and receives visual and sen-
sory input and is closely tied to self-awareness (Goldberg et al.
2006). Other visual processing areas were also observed, specifi-
cally, left lateral occipital and left pericalcarine cortex. Lateral
occipital regions are known to be involved in object processing
(Grill-Spector et al. 2001) and possibly visual awareness (Ro et al.
2003). More specifically, perception at early stages of visual
encoding can result from exposure to a prior visual stimulus via
feedback projections in the visual cortex. Pericalcarine cortex is
a part of the occipital lobe and is closely tied to the central vi-
sual field. Research shows that this area is implicated in early
visual processing, which in turn is also associated with pre-
attentive and attentive vision (see Lamme and Roelfsema 2000).
In general, the involvement of visual processing areas during
the visual statistical learning task is consistent with previous
empirical findings and theory suggesting an important role of
modality-specific perceptual processing during statistical learn-
ing (Conway and Christiansen 2005; Turk-Browne et al. 2009;
Frost et al. 2015).

The caudal mid-frontal region also showed activation and
corresponds roughly to Brodmann area 46, a part of the frontal

cortex associated with sustained attention and working mem-
ory (Curtis and D’Esposito 2003; Rypma et al. 1999). Frontal acti-
vations are consistently observed across different kinds of
statistical learning and sequential learning tasks (e.g., Fletcher
et al. 1999; Skosnik et al. 2002). While investigating the the asym-
metry, connectivity, and segmentation of the arcuate fascicle
Fernandez-Miranda et al. (2015) concluded that the caudal mid-
dle frontal gyrus along with other cortical areas (pars opercula-
ris, pars triangularis, and ventral precentral gyrus) are part of a
frontal trajectory that is integral to language processing. A pos-
sible overlap in neural areas supporting statistical learning and
the “language network” is consistent with previous research
suggesting strong links between statistical learning and lan-
guage processing (Conway et al. 2010; Misyak et al. 2010; Arciuli
and Simpson 2012; Christiansen et al. 2012; Tabullo et al. 2013;
Daltrozzo et al. 2017). Overall, these source estimation findings
point to a general left hemispheric activation pattern associated
with statistical learning, across a network of areas involved in
perceptual processing, working memory, sustained attention,
and language, along a caudal to rostral temporal gradient (i.e.
earlier activation in posterior brain regions and later activation
in frontal regions). In addition, the left hemispheric pattern of
activation is reminiscent of the left laterality observed in lan-
guage acquisition and other aspects of learning (Friederici and
Alter 2004).

Further source estimation analyses comparing high and low
pattern awareness groups revealed different levels of activation
for the left insula, right precentral cortex, and left parahippo-
campal regions. The anterior insula has been shown to be acti-
vated during performance monitoring and is also modulated by
error awareness. Such activity is thought to be associated with
automatic consciously perceived errors, and the encountered
errors elicit responses akin to an orienting response (Ullsperger
et al. 2010). Additionally, early activation of the insula (which is
what we report) has also been associated with risk prediction
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error and that its time course is consistent with a role in rapid
updating (Preuschoff et al. 2008).

The precentral region is a part of the motor cortex and has
been associated with sequence learning. Specifically, learning-
related changes have been observed in the right precentral re-
gion, in addition to other areas (Bischoff-Grethe et al. 2004). The
left precentral gyrus is involved in speech articulation (Itabashi
et al. 2016) and language processing (Fernandez-Miranda et al.
2015). In addition, some research shows that learning new
words in a language is associated with increased functional
connectivity of regions for learners (compared with non-
learners) between the left supplementary motor area and the
left precentral gyrus among other regions implicated in phono-
logical rehearsal (Veroude et al. 2010).

The left parahippocampal brain region also showed differ-
ences between the low compared with high pattern awareness
groups. There is evidence to show that parahippocampal activa-
tion is associated with item-based processing (Davachi and
Wagner 2002) in humans. Electrophysiological findings (in rats
and monkeys) have indicated that the neuronal responses in
parahippocampal regions represent information about previ-
ously occurring items (Brown et al. 1987; Li et al. 1993). Preston
and Gabrieli (2008) found that activations in hippocampus and
parahippocampal cortex were associated with explicit memory,
dissociating between subsequently remembered and forgotten
repeated contexts but were unrelated to context-dependent
learning. Importantly, the parahippocampal cortex has recently
been implicated as playing an important role during statistical
learning (Schapiro et al. 2012).

Limitations and future directions

One limitation of this study is that our measure of pattern
awareness was taken at the end of the statistical learning task,
rather than during, and as such cannot provide fine-grained in-
formation about awareness as it might have unfolded in time.
Also, regarding the pattern awareness questionnaire, although
we tried to quantify subjective participant self-report, there are
other ways to measure awareness that are likely less subjective
and reliant on participants’ own reports. One such method is
the process dissociation procedure (Jacoby 1991), which uses a
combination of direct and indirect assessments to tease apart
the contribution of explicit and implicit memory (i.e. conscious
from unconscious learning). Future research could usefully use
such a procedure during statistical learning and investigate
how differences in conscious awareness contribute to neural
patterns of activation. Another potential limitation is that in
our statistical analyses we ignore the fact that the statistical sig-
nificance obtained with ROIs as a predictor variable is also influ-
enced by the spatial proximity between ROIs and as such could
be modeled in terms of spatial distance, when entered as an in-
teraction term. From a technical point of view, adding such
complex interaction terms in the model involves additional pa-
rameter estimation. Provided that such technical issues can be
adequately addressed, future statistical analyses using mixed
models with ERP data could benefit from a more detailed analy-
sis of each ROIs independent as well as interdependent effects
on the other variables.

Another limitation to consider is to what extent the current
findings will generalize to other statistical learning and implicit
learning tasks. The task we used here differs from other learn-
ing tasks in important ways. First, even though we used
Chinese character stimuli in non-Chinese speakers to increase
the difficulty of the learning task (see Methods section), the
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statistical contingencies are relatively simple and easy to learn,
which might make this task easier to become aware of the pat-
terns compared to more complex learning tasks such as artifi-
cial grammar learning tasks that require not only learning of
the statistical regularities but also generalization to novel pat-
terns. Another aspect of the current task that makes it some-
what unique (and we believe is a strength) is that the primary
behavioral and neurophysiological indicators of learning are on-
line and indirect measures. That is, at no point (except after the
task is over when pattern awareness is assessed) are partici-
pants explicitly queried as to their knowledge of the patterns.
This is not the case in artificial grammar learning tasks (Reber
1989) or in word segmentation/triplet tasks (Saffran et al. 1996),
where learning is typically assessed through direct explicit mea-
sures. This task characteristic could actually make it less likely
that the measures of learning themselves are contaminating
the learning process. Thus, it is currently an open question to
what extent the findings obtained in the current study will gen-
eralize to other measures of statistical learning commonly used
in the literature.

In addition, future research might usefully attempt to disen-
tangle the influence of attention and working memory in rela-
tion to awareness during statistical learning. In the current
study, executive control was measured with the Flanker task at
the start of the experimental session. A comparison of the
Flanker data across the two pattern awareness groups showed
that they did not differ, which suggests that executive control
may not affect the relationship between awareness and statisti-
cal learning. However, one limitation with the use of the
Flanker task in the current study is that it was measured before
the statistical learning task and therefore does not provide an
online measure of executive control during learning. It is likely
that executive control and awareness interact in a complex way
to affect learning processes. In their review on the neural mech-
anisms of attention and awareness, Tallon-Baudry (2012) dis-
cuss different ways that attention and awareness could be
related: (i) the gateway hypothesis, (ii) the reverse dependence
hypothesis, and (iii) the cumulative influence hypothesis. The
gateway hypothesis is Dehaene et al’s (2006) classical view,
where attention facilitates awareness and might even be a pre-
requisite for awareness to emerge. According to the reverse de-
pendence hypothesis, attentional mechanisms are only
activated if a stimulus is detected at the neural level, implying
awareness. In the cumulative influence hypothesis, attention
and awareness are each implemented by separate mechanisms,
but both independently influence the participant’s report of the
existence of the stimulus. In contrast, Lamme (2003) argues that
although visual attention and awareness are intimately related,
the overlap between mechanisms of attention and memory are
more likely than that of attention and awareness. According to
Lamme (2003), the current state of the neural network charac-
terizes attentional selection, whereas phenomenal experience
ensues from the recurrent interaction between groups of neu-
rons. Future research examining the constructs of attention,
memory, and awareness in relation to statistical learning is
needed.

Finally, due to the nature of this study, it is not possible to
determine the nature of cause and effect between awareness
and learning. One possibility is that as participants become in-
creasingly aware of the patterns during the course of the task
(possibly due to the use of explicit strategies or the deployment
of attention or cognitive effort), then learning improves and the
P300 effect results. This possibility would be more consistent
with the gateway hypothesis discussed above. On the other
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hand, it is also possible that differences in learning ability di-
rectly affect awareness of the patterns, with better learning re-
sulting in heightened pattern awareness. This perspective
seems more consistent with the reverse dependence hypothe-
sis. Additional research is needed to better understand how
these variables causally affect one another.

Conclusion

In conclusion, we have provided evidence for the influence of
pattern awareness on statistical learning. Both behaviorally and
neurophysiologically, our findings suggest that pattern aware-
ness is closely associated with statistical learning ability.
Neurophysiologically, we observed more distinct ERP learning
effects in participants who demonstrated high pattern aware-
ness. Across all participants, source estimation results revealed
left lateral regions (superior parietal, lateral occipital, pericalcar-
ine, and caudal mid-frontal) that were activated temporally in a
caudal-to-rostral manner. Furthermore, differences in pattern
awareness were associated with greater levels of activation in
the left (insula and parahippocampal regions) as well as right
(precentral) hemispheric regions. These findings suggest that
pattern awareness influences visual statistical learning and
points to an increased need to manipulate and/or measure how
this construct affects learning across a variety of individuals
and tasks.
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