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What’s in a name? Context-dependent
significance of ‘global’ methylation
measures in human health and disease
Regan Vryer1,2 and Richard Saffery1,2*

Abstract/summary

The study of DNA methylation in development and disease has ‘exploded’ as a field in recent years, with three
major classes of measurement now routine. These encompass (i) locus-specific, (ii) genome-scale/wide and (iii)
‘global’ methylation approaches. Measures of global methylation refer to the level of 5-methylcytosine (5mC)
content in a sample relative to total cytosine. Despite this, several other measures are often referred to as ‘global’,
with the underlying assumption that they accurately reflect 5mC content. The two most common surrogate, or
proxy, measures include generating a mean or median methylation value from (i) the average measure in
thousands of highly repetitive genomic elements and (ii) many thousands to several million primarily unique
CpG sites throughout the genome. Numerous lines of evidence suggest the underlying assumption of
equivalence of these measures is flawed, with considerable variation in the regulation of different ‘flavours’ of
DNA methylation throughout the genome depending on cell type, differentiation and disease state. As such,
the regulation of methylation ‘types’ is often uncoupled. The emerging picture suggests that no approach can
accurately detect all biologically important differences in 5mC variation and distribution in all instances, with
this needing to be ascertained on a case-by-case basis. Thus, it is important to clearly elaborate the genomic
context and content of DNA methylation being analysed, the sample and developmental stage in which it is
being examined and to remember that in most instances, the most common measures are not a true
representation of ‘global’ 5mC content as orginally defined.

Approaches
There are three general classes of DNA methylation mea-
sures. The first is locus/gene-specific analysis, usually at a
small number of defined CpG sites in a limited genomic
region. The second involves building a profile of DNA
methylation by measuring many unique sites across the
genome, (genome-wide or genome-scale analysis). The
third, referred to as global methylation, is designed to as-
sess the total 5-methylcytosine (5mC) content (but not
5hmC, 5fC or 5caC) within a sample using either direct or
surrogate/proxy measures. It has been known for decades
that changes in global methylation are a feature of human
malignancy [1].

Global DNA methylation refers to the total level of 5mC
content in a sample relative to total cytosine content. This
is usually assessed using HPLC [1–3] but can also be
assessed by HPLC coupled tandem mass spectrometry
(LC-MS/MS) [4] and high-performance capillary electro-
phoresis [5]. These methods are the only true measures of
global methylation as originally defined but are generally
labour intensive and often require large amounts of start-
ing genomic DNA. For example, HPLC measurement of
total 5mC generally requires several micrograms of start-
ing genomic DNA, whereas more contemporary ‘proxy’
approaches can be carried out using less than 100 ng.
With the advent of highly specific antibodies to 5mC,
more recent approaches such as ELISA are also available.
All other measures rely on the ascertainment of DNA

methylation levels at a subset of genomic sites, with the
underlying assumption that these reflect the global
measure. The most popular involves the sampling of
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multiple copies of repetitive LINE (long interspersed nu-
merical elements; mainly LINE-1) and SINE (short inter-
spersed numerical elements; mainly Alu), amplified
using degenerate primer sequences [6]. Together, these
sites comprise upwards of 30% of human genomic DNA
[7], but the actual number of potential sites of methyla-
tion within the genome remains lower. Less abundant
satellite sequences have also been used to give insights
to global methylation status, though these often repre-
sent even less of total genomic DNA by content [8].
Other methods use methylation sensitive (e.g. HpaII)/in-
sensitive (MspI) restriction endonucleases [9]. Compari-
son of resulting genomic digestion patterns can yield
insights regarding the level and distribution of 5mC
within the genome, though this also represents a small
fraction of total potential sites of DNA methylation.
The luminometric methylation assay [10] or LUMA
was adapted from these methods that measures frag-
ments by a luminometric extension assay [11] with sub-
sequent pyrosequencing.
An increasingly used proxy measure of overall methyla-

tion within a sample is often derived from genome-scale/
wide methylation profiling. This is usually a mean or
median methylation value of many thousands to millions
of individual methylation values, spread throughout the
genome and measured by beadarray, reduced representa-
tion, or whole genome bisulphite sequencing approaches.

Considerations for interpretation
There are several important caveats to using any surro-
gate markers of global 5mC, primarily associated with
the non-uniform nature of methylation within the
human genome in association with genomic context.
Firstly, when utilising a composite average (mean or me-
dian) measure derived from a large number of essentially
unique sequences, it is important to note that most gen-
omic DNA methylation is in fact found in repetitive
elements scattered throughout the genome, such as
transposons and endogenous retrovirus. Similarly, the
HpaII restriction site, often used to generate a proxy
measure of global methylation, is enriched in high-
density CpG islands comprising only ~12% of the total
restriction sites in the human genome [12].
Secondly, repeat-based measures based on amplification

using degenerate primer sequences generally only assess
methylation at a subset of LINE or Alu elements, due to
the range of sub-families of varying frequency and the
large amount of sequence degeneration over time [13]. Al-
though LINE-1 and Alu account for ~17 and 11% of the
human genome [13], representing ~12 and 25% of all
CpG dinucleotides respectively [14], only a subset of each
can be interrogated by any given technique.
Finally, the mechanism of regulation of DNA methyla-

tion at different classes of unique and repetitive DNAs

vary and therefore measuring one ‘type’ of methylation
site is unlikely to be representative of global methylation
levels. Direct comparison between approaches has been
made, with varying results. In some in vitro cell line
experiments, reduction in global methylation due to
treatment by demethylating agents showed congruent
results between Alu, LINE-1 and HPLC but not LUMA.
In other cell lines, LINE-1, LUMA and HPLC yielded
congruent levels of global hypomethylation. Generally,
LINE-1 methylation status appears to correlate with
HPLC measures more than Alu or LUMA, but not
always, and this does not always correspond to a change
in total global 5mC content [15]. The emerging picture
is that no surrogate assay can accurately detect all bio-
logically important differences in global 5mC content
in all instances, with this needing to be ascertained on
a case-by-case basis [16–19], particularly in the context
of malignancy [20].
A recent comprehensive study explored whether

global DNA methylation levels could be inferred from
a combined measure of repeat-specific data [21]. Five
alternative ‘global’ methylation approaches based on
three technologies were employed including (i) high-
performance liquid chromatography followed by mass
spectrometry (HPLC-MS) [22] (ii) immunoquantifica-
tion of global DNA methylation by ELISA [23] and,
(iii) bisulfite pyrosequencing of a variety of different
repetitive DNA elements (AluYb8/D4Z4/LINE/NBL2)
[6, 24–26]. There was generally less agreement among
the global DNA methylation assays across samples
than with locus-specific DNA methylation assays, with
the least reliable being the ELISA approach. A direct
comparison of true global 5mC measures with average
locus-specific (repeat-based) methylation showed a
range of correlations, according to cell type and
disease state. Interestingly, when combined with ma-
chine learning methods, repeat-specific assays reliably
predicted sample-specific differences in true global
5mC levels [21].

Biological relevance
It is important to note that several measures of ‘global’
methylation have been reported to vary in response to
factors such as age, sex and cell composition. However,
findings have been inconsistent. For example, total 5mC,
as measured by HPLC in peripheral blood, has been
found to be inversely associated with age [27, 28]
whereas no association with age was found in analyses
of LINE-1 [29, 30], Alu [30] or restriction-enzyme
approaches [31], while another study using LUMA re-
ported both gain and loss of methylation over time [32].
Further, other evidence suggests ageing-specific changes
in Alu methylation in the absence of LINE-1 change. Such
discrepancies indicate the possibility of heterogeneous
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changes of global methylation over time [33]. Indeed,
changes in global methylation as measured by LUMA have
identified age and tissue-specific effects in rats but not in
the CG rich or promoter regions as previously utilised in
other LUMA analyses [34]. In addition, age-specific
changes are prominent near genes involved in metabolism
indicating potential biological feasibility. Conversely, global
methylation changes may not track with chronological age
but as a result of functional decline [10], though the direc-
tion of causality is yet to be ascertained. A potential con-
founder of ageing-specific changes in global methylation
has been linked to dietary composition including alteration
in blood lipid profiles [35] and changes in nutritional
content [36].
Distinguishing the type of measure employed is

important in the case of disease association studies. For
example, LINE-1 hypomethylation of peripheral blood,
assessed prospectively, has been identified as a risk fac-
tor for a range of cancers [37], including bladder cancer
[38]. Additionally, greater Alu methylation has been
identified as a predictive biomarker for prostate cancer
[39]. Increased CpG island DNA methylation in periph-
eral blood, as measured by LUMA, has been prospect-
ively associated with an increased risk of breast cancer
[40]. However, in the same analysis, LINE-1 methylation
showed no association. Conversely, LINE-1 methylation
varies in some prostate cancers in the absence of any
measurable change in global 5mC content as assessed by
HPLC [41].
Variations in the level of repeat-specific methylation

are important, as ‘repeat-based’ hypomethylation has
been implicated in the genomic instability associated
with tumour progression and outcome [35, 42]. Further,
repeat-based hypomethylation within a sample will likely
have distinct functional consequences from hypomethy-
lation assessed through largely gene-associated CpG
sites, irrespective of the number of such sites assessed.
In this way, the definition of global methylation shifts
between ‘repeat-based’ methylation as an assessment of
genomic stability to promoter-specific methylation, pri-
marily implicated in gene regulation.

Conclusions
It is important to clearly elaborate the context of DNA be-
ing used to measure methylation levels as different ‘types’
of DNA methylation are often uncoupled in terms of regu-
lation. Most surrogate or proxy measures do not reflect glo-
bal methylation (total 5mC content) as originally defined,
and even though changes in repeat-specific measures may
accurately reflect changes in global 5mC, this is likely to be
system- and disease-specific.
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