
METHODOLOGY ARTICLE Open Access

PIXER: an automated particle-selection
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Abstract

Background: Cryo-electron microscopy (cryo-EM) has become a widely used tool for determining the structures of
proteins and macromolecular complexes. To acquire the input for single-particle cryo-EM reconstruction, researchers
must select hundreds of thousands of particles from micrographs. As the signal-to-noise ratio (SNR) of micrographs
is extremely low, the performance of automated particle-selection methods is still unable to meet research requirements.
To free researchers from this laborious work and to acquire a large number of high-quality particles, we propose an
automated particle-selection method (PIXER) based on the idea of segmentation using a deep neural network.

Results: First, to accommodate low-SNR conditions, we convert micrographs into probability density maps using a
segmentation network. These probability density maps indicate the likelihood that each pixel of a micrograph is part of a
particle instead of just background noise. Particles selected from density maps have a more robust signal than do those
directly selected from the original noisy micrographs. Second, at present, there is no segmentation-training dataset for
cryo-EM. To enable our plan, we present an automated method to generate a training dataset for segmentation using
real-world data. Third, we propose a grid-based, local-maximum method to locate the particles from the probability
density maps. We tested our method on simulated and real-world experimental datasets and compared PIXER with the
mainstream methods RELION, DeepEM and DeepPicker to demonstrate its performance. The results indicate that, as a
fully automated method, PIXER can acquire results as good as the semi-automated methods RELION and DeepEM.

Conclusion: To our knowledge, our work is the first to address the particle-selection problem using the segmentation
network concept. As a fully automated particle-selection method, PIXER can free researchers from laborious particle-
selection work. Based on the results of experiments, PIXER can acquire accurate results under low-SNR conditions
within minutes.
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Background
Single-particle cryo-electron microscopy (cryo-EM), which
acquires the three-dimensional (3D) structures of protein
and macromolecular complexes from two-dimensional
(2D) micrographs, is gaining popularity in structural
biology [1]. Many high-resolution structures have been
reported [2, 3]. These high-resolution results typically rely
on hundreds of thousands of high-quality particle images
selected from the micrographs.

However, particle selection still presents many chal-
lenges. One troubling feature is the low signal-to-noise
ratio (SNR) of micrographs. As high-energy electrons
can greatly damage the specimen during imaging, their
dose must be strictly limited, which results in extremely
noisy micrographs. Further, much interference arises
from sources such as ice contamination, background
noise, amorphous carbon and particle overlap.
High-resolution reconstruction requires extensive parti-
cles identification. For example, to acquire the cryo-EM
structure of the activated GLP-1 receptor in a complex
with a G protein, researchers used 620,626 particles [2].
The massive demand for particles further intensifies the
challenges of particle selection. In a realistic
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experimental procedure, researchers spend days to
weeks manually or semi-automatically selecting particles,
which is a laborious, time-consuming and frustrating
process.
Over the past decades, many different automated or

semiautomated particle-selection methods have been
proposed. There have been many particle-selection tools
such as Picker [4], RELION [5] and XMIPP [6], most of
which are based on techniques adopted from conven-
tional computational vision, such as edge detection, fea-
ture extraction, and template matching. However, these
methods are not suitable for micrographs with poor
contrast and low SNR, as their performance declines sig-
nificantly with decreasing micrograph quality.
During the past few years, deep learning has grown

progressively. By using features from big data analyses
and generating layered features from deep neural net-
works, deep learning can outperform many conventional
techniques in computational vision [7]. Furthermore,
some deep learning applications have shown robustness
against low SNRs [8]. As the size of cryo-EM data con-
tinually increases while the SNR of micrographs remains
low, deep learning appears to be well suited for process-
ing cryo-EM data. To date, three methods have been
proposed to select particles based on deep learning,
namely, DeepPicker [9], DeepEM [10] and FastParticle-
Picker [11]. DeepEM still requires hundreds of particles
to be manually selected by humans for training data.
DeepPicker converts particle picking to an image classi-
fication problem; it crops micrographs with a sliding
window and classifies these subimages into particles or
background. Considering the absence of training data,
DeepPicker uses other molecules as training data to
train the network. FastParticlePicker is based on the
object-detection network Fast R-CNN [12], which com-
prises a ‘region-of-interest proposal’ network and a clas-
sification network. However, instead of proposing
regions of interest for micrographs, FastParticlePicker
crops micrographs with a sliding window; therefore, its
performance mainly relies on the classification network.
As the major components of the FastParticlePicker and
DeepPicker methods are similar, we choose to compare
our method with in experiments.
These three methods have brought significant contri-

butions to the particle-selection problem. However, they
all overlook three common issues. First, there is no suffi-
cient and diversified training dataset. As mentioned, the
training dataset is hard to acquire. Previous work has
used two to four different kinds of particles as a training
dataset. However, this insufficient and undiversified
dataset easily produces biased features and results in
overfitting of some features. Without a sufficient train-
ing dataset, the method cannot take advantage of the
network for accommodating noisy data. Second, the

current methods are based on a sliding window, which
may generate a considerable number of false-positive
(FP) images that waste time and memory. Third, there
has not been enough attention paid to the issue of ac-
commodating low-SNR images. Existing methods may
suffer a significant performance reduction when the
SNR is low.
To address these three challenges, we propose an auto-

mated particle-selection method. First, to accommodate
low-SNR conditions, we designed a segmentation network
to convert the noisy micrographs to probability density
maps [13]. The probability indicates the likelihood of one
pixel belonging to a particle. As the probability value is
determined by the surrounding information, particle se-
lection from probability density maps can produce more
robust signals than direct selection from original noisy
micrographs. Our work is the first to solve the
particle-selection problem using segmentation networks.
As segmentation is also known as ‘pixel-wise classification’,
we combined the word ‘pixel’ with ‘picker’ to name our
method ‘PIXER’. Further, there is currently no training
dataset for particle segmentation in cryo-EM. To imple-
ment our idea, we developed an automated method to
generate a training dataset for segmentation. Additionally,
to enrich the diversity of our training dataset, we adopted
both real cryo-EM micrographs and simulated data. Fi-
nally, we developed a grid-based, local-maximum method
to acquire particle coordinates from the probability
density maps. In our experiments, we used simulated and
real-world datasets to evaluate performance. The results
indicate that, as a fully automated method, PIXER can ac-
quire results as good as the semi-automated methods
RELION and DeepEM.

Methods
As our method is based on deep learning, we had to
consider two separate aspects: the training process and
the test process. The training process aims to train the
networks (shown in the left part of Fig. 1). As our seg-
mentation network is based on a classification network,
we first trained the classification network and then used
its parameters as initial values for the segmentation net-
work to accelerate its training process. In this section,
we first introduce our network design and the method
for preparing the training dataset to complete the train-
ing process.
Here, the test process refers to the procedure of gene-

rating particle coordinates with the trained network
(shown on the right side of Fig. 1). The test process has
three steps: 1. feed micrographs into the segmentation
network and acquire probability density maps from the
network (①② in Fig. 1); 2. generate the preliminary par-
ticle coordinates from probability density maps using
grid-based local-maximum method (③④ in Fig. 1); 3.
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feed the preliminary results into the classification net-
work to remove FP particles (⑤⑥ in Fig. 1).

Design of the Network
Existing networks for particle selection are based on
classification networks with 3 to 5 convolution layers
[9]. To support additional features and diversity, we used
additional layers and channels in our classification net-
work. In general, two networks are proposed in our
method: segmentation and classification, the former of
which will be first introduced as it is the cornerstone of
the later.
Fig. 2a shows the architecture of our network. The

green rectangle marks the main part of the classification
network. In this figure, ‘C/R’ indicates a convolution
layer and a ReLU layer
Convolutional layers apply a convolution operation to

the input, passing the result to the next layer. Its concrete
formula can be expressed as Formula 1. In Formula 1, X
indicates the input of convolutional layer. In our network,
X is three dimensional, whose first dimension indicates
the index of its channels. Xm, i, j is the point in X at coor-
dinate (i, j) in channel m. In Formula 1, X owns ‘M’ chan-
nels, and Y indicates its output. Formula 1 calculates the
value of Y at point (i, j) using convolution kernel W with
sizeM ∗K ∗K.

Y i; j ¼
XM−1

m¼0

XK−1

k¼0

XK−1

l¼0

Wn
mklXm;kþi−1;lþ j−1 ð1Þ

ReLU layer is the most commonly used activation
function in deep learning models. The function returns

0 if it receives any negative input, but for any positive
value X, it returns that value back (ReLU(X) = max(0,
X)). ‘N’ is a ‘Norm’ layer to perform local response
normalization, which normalize the input data Xi (i is
the index of channel) with values from nearby channels
Xi−I

2
to XiþI

2
. Each value of Xi is divided by

ð1þ a
PI

i¼0 X
2
i Þ

b
, where a and b are the scaling param-

eter and exponent parameter with default value 10−4 and
0.75, respectively. ‘P’ stands for the pooling layer. In-
spired by previous classification network, we adopt max
pooling layer (max(Xk + i − 1, l + j − 1) k, l ∈ [0, L − 1]) in our
network to resize the data layer. L is the size of
sub-regions to be downsampled by max pooling.
Further, ‘I’, ‘D’, ‘S’ and ‘L’ indicate ‘Input’, ‘Drop’, ‘Sum’

and ‘Loss’ layers, respectively. The classification network
takes both particle and non-particle images as inputs.
Then it outputs the probabilities of the input being a
particle. For the purpose of simplicity, the fully con-
nected layer and loss layer of the classification network,
which are common in other classification networks, are
not depicted in Fig. 2a [9].
As shown, the segmentation network is based on the

classification network. The parameters of the classifica-
tion network are used as the initial values for the
segmentation network to reduce the training time and
increase the accuracy of the segmentation network.
The particle size in different datasets can vary from

100 × 100 to 800 × 800. To enable our network to process
particles of multiscale datasets, we added the ‘Atrous con-
volution’ feature from ‘Deeplab’ [14] into our segmentation
network. Different from traditional convolution, Atrous

Fig. 1 The general workflow of the training and test processes of PIXER. The blue part of the image shows the training process for segmentation
and classification network. The red part of the image shows the general flow of the test process. The test process works as follows: ①feed
micrographs into the segmentation network; ② acquire probability density maps from the network; ③feed density maps to a selection algorithm;
④ generate the preliminary particle coordinates from probability density maps; ⑤ feed the preliminary results into the classification network; and
⑥ generate the results after removing false positive particles
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convolution uses filters ‘with holes’ to sample the images
[14]. In Atrous convolution, we use the parameter ‘Atrous
rate’ (s) to define the sampling rate. When Atrous rate s =
1, the Atrous convolution kernel is the standard con-
volution. For s > 1, Atrous convolution demenstrates
down-sampling effect. Taking a 3*3 Atrous kernel with
Atrous rate s = 2 as example, it will have the same field of
view as a 5 × 5 traditional kernel, while only using 9 para-
meters (the rest parameters are zero). One major benefit of
Atrous convolution is that it can deliver a wider field of
view with fewer parameters at low computational cost.
Additionally, with different Atrous rate, the same kernel
parameter can process object at different scales.
In addition, multiple parallel Atrous convolution chan-

nels with different sampling rates ensure the processing
of multiscale particles. We adopted four different kinds
of Atrous rates (h = [2, 4, 6, 8]). By replacing the classical

fully connected layers in the classification network with
multiple parallel Atrous convolution channels, we con-
verted the classification network to a segmentation
network.

Automated method to generate the training dataset for
segmentation
The quality of the training dataset plays a significant role
in the performance of the training network. However, in
single-particle analysis, there is no training dataset for
segmentation, and manual labeling of micrographs by
humans cannot be trusted due to the extremely low
SNR of images. Because many researchers have uploaded
their results and initial or intermediate data to EMData-
Bank [15] and EMPIAR [16], we developed an automated
method to generate segmentation-training datasets using
these real-world datasets. For these datasets, their

Fig. 2 Illustrations of the PIXER methods. (a) The architecture of the classification and segmentation networks. (b) Workflow of generating
training data for segmentation. ① Select particles from micrographs. The coordinates can come from manual or semi-manual particle selection
software. ② Perform reconstruction using mainstream software, such as RELION and EMAN. Record the fine-tuned Euler angles and translation
parameters. ③ Generate corresponding re-projection images for each particle. ④ Adjust the coordinates based on the translation parameters. ⑤
Fit these re-projection images back into the label image of each micrograph. (c) Procedure for the grid-based, local-maximum particle-selection
method. Step 1: Generate the maximum value for each grid. Steps 2 and 3: Perform a parallel local-maximum searching method to locate local-
maximum values during the iteration. Step 4: Select the local-maximum results
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coordinates have already been generated from other par-
ticle selection methods and examined by researchers. So,
the non-particles in micrographs are eliminated. Figure 2b
shows the procedure. First, we extracted particles from
each micrograph and used these particles to reconstruct
the structure. During the reconstruction procedure, the
translation and Euler angle parameters of each particle
image were tuned. After the reconstruction, we consi-
dered the high-resolution reconstruction result as the
ground truth to generate the reprojected images with cor-
responding Euler angles. Then, the reprojected images
were adjusted according to the translation parameters to
fit the selected particles. As the reprojection background
has a high SNR, binarization of the reprojections repre-
sents the segmentation results of the corresponding
particle images. Finally, we acquired the micrograph
segmentation results using the coordinates of particles
and their segmentation results.
As mentioned, reprojections of high-resolution results

are more reliable than human eyes. Furthermore, much
research has revealed that deep learning is robust and
greatly reduces noise [17]. The results in later experi-
ments show that the training dataset generated by this
method is qualified to train the network. Using this
method, we generated a sufficient and diversified dataset
to train the segmentation network. For the first time, a
segmentation network was applied to the particle-selec-
tion task in cryo-EM.
We also generated simulated projection images from

hundreds of different kinds of particles from the EMDa-
taBank using the simulation software InSilicoTEM [18].
To enrich the training and test dataset, the parameters
(such as electron dose and pixel size) are essentially se-
lected from a certain range randomly. The last column
of Table 1 shows the ranges of these parameters.
In addition, as the translation and Euler angle of each

particle image can be generated by mainstream software,
such as RELION and EMAN, we can apply this automated

method to generate an incremental training dataset and
incrementally optimize the model.

Grid-based, local-maximum particle-selection method
The segmentation network takes micrographs as inputs
and outputs the corresponding probability density maps.
However, we are still one step away from our final goal:
determining the coordinates of particles. In this section,
we introduce the method for generating particle coordi-
nates from the probability density maps.
First, we converted each pixel in the density map to

the score of the candidate particle centered on it. For
the candidate particle (centered at coordinate (m,n))

with particle size s × s, the score of the candidate is score

ðx; yÞ ¼ Ps
2
x¼−s

2

Ps
2
y¼−s

2
Wx;yVmþx;nþy , where Vm, n is the

value of pixel at density map (m,n). Wx, y is a Gaussuan
kernel of size s × s, which gives more influence on the
center pixels. One benefit of using Wx, y is that when
particles are close to each other, we can reduce the inter-
ference from other particles and locate the particles
more precisely.
As mentioned, overlapped particles should not be se-

lected. Therefore, we divided the micrograph into small
grids and generated only one maximum candidate from
each grid (shown in Step 1 of Fig. 2c). As we know,
when particles are overlapped, we always choose at most
one from them. Therefore, the grid size is chosen based
on the particle size. For a dataset with particle size s ∗ s,
the grid size will be set to s

2 � s
2 in our experiment, so that

the maximum overlapping area of selected particles will

not exceed s2
4 . Using a micrograph 4096 × 4096 in size as

an example, the number of candidates is 16,777,216,
which is too high for subsequent processing. However,
with a grid size of 100 × 100, the number of candidates
is 41 × 41 = 1681. Next, we performed a parallel
local-maximum searching method to calculate the

Table 1 Data used in the training datasets

Name 10,017 10,028 10,081 10,097 GroEl SIMU

Electron Dose
(e/Å**2)

24.0 20.0 1.26 82.0 30 [20,50.0]

Nominal CS (mm) 2.00 2.00 – 2.70 – [2, 3]

Defocus Max (nm) 4962 3800 3300 3500 2400 [2200,3700]

Defocus Min (nm) 1359 800 1500 1000 1000 [800,1500]

Symmetry D2 C1 C4 C3 D7 –

Number of Images 84 90 124 153 25 496

Particle Size 177 360 256 256 140 [100, 256]

Number of Particles 42,468 13,942 16,666 51,844 6121 18,746

Pixel Size (Å) 1.77 1.34 1.3 1.31 1.3 [1.3,1.8]

Size of Micrograph 4096*4096 4096*4096 3710*3838 3838*3710 3838*3710 1024*1024
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particle coordinates. Each thread covers one candidate.
As shown in Step 2 and Step 3 of Fig. 2c, in each iter-
ation, the candidate is moved to the new maximum
value in the searching area. Gradually, the threads
converge to some local maximum after several iterations.
As the number of candidates is limited and this step is
conducted with a GPU, this procedure is completed
within seconds.
At this point, the preliminary results from the prob-

ability density map can be generated. However, as we
mentioned, there are many interference factors in the
micrograph, and we already have a classification network

that can distinguish interference factors from particles.
Before obtaining the final results, therefore, we feed the
preliminary results into our classification network to
reevaluate the data and remove FP particles.

Results and discussion
In this section, we first list the information for the train-
ing datasets. Then, we evaluate the performance of the
segmentation network and show examples of its outputs.
Selected results of the grid-based, local-maximum
method are shown. To test the performance of PIXER,
we tested the method on simulated and real-world

Fig. 3 Examples of three different kinds of visual features. (a) Examples of particles. (b) Examples of interference factors. (c) Examples of
noise images

Fig. 4 Examples of the training data for segmentation. (a) Examples of particles. (b) Corresponding segmentation results
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datasets and compared the results with those of
RELION, DeepEM and DeepPicker. After that, we show
the computational efficiency.

Training datasets
The training datasets for classification and segmentation
were both composed of real-world and simulated data.
For the real-world data, five different datasets were used
to build the training dataset: beta-galactosidase
(EMPIAR10017 [19]), Plasmodium falciparum 80S ribo-
some (EMPIAR10028 [20]), cyclic nucleotide-gated ion
channel (EMPIAR10081 [21]), influenza hemagglutinin
trimer (EMPIAR10097 [22]) and GroEl [23]. Addition-
ally, we used 321 different kinds of structures to gener-
ate the simulated data. The information related to these
data is listed in Table 1. The parameters of InsilicoTEM
is essentially randomly selected from the ranges shown
in the last column of Table 1. For the classification train-
ing dataset, we selected 5000 particles from each dataset.
For the segmentation-training dataset, we randomly ex-
tracted 10,000 micrographs with sizes of 512 × 512 from
each of the datasets. As shown in Table 1, we used dif-
ferent kinds of structures to enhance the diversity of the
training dataset.
The classification network is a 3-way network. In

addition to the particle images, we processed 30,000 ice
contamination images and noise background images. In
Fig. 3, we illustrate examples of these three different
kinds of particles. The structures of the particles differ
greatly, and the SNR is relatively low.
For the segmentation-training dataset, we listed exam-

ples of the segmentation results for each particle in Fig. 4.
The first column of Fig. 4 shows the simulated data. The
segmentation results of simulated data were generated
from the noise-free projection. The remaining images rep-
resent the segmentation results of real-world datasets.
The precision of the segmentation results is assured by
the high resolution of our results.
One thing needs to be clarified is that our particle selec-

tion method can be used as full-automatic particle se-
lector. The model trained by these 5 real-world datasets
and hundreds of simulated datasets can be used directly
for any kinds of new datasets. The following results is
acquired based on these training datasets. Meanwhile, as
we developed an automated method to generate training
dataset for segmentation, new datasets can be used to re-
fine our model easily.

Performance of the segmentation network
To test the performance of the segmentation network,
we selected 5000 micrographs of size 512 × 512 as a
validation dataset in addition to the training dataset. We
trained five different kinds of segmentation networks
with 1 to 5 Atrous convolution parallel channels. We

used the pixel intersection-over-union (IOU) criteria to
evaluate their performance [27] as follows:

IOU ¼ GroundTruth∩Segmentation Result
GroundTruth∪Segmentation Result

ð2Þ

The box plot in Fig. 5 shows the statistical information
of the IOU values for these five networks. The average
performance of these networks improves, and the vari-
ance of the results declines as the number of Atrous
convolution channels increases. These results show that
additional Atrous convolution layers tend to stabilize the
results. Additionally, we found that the performances of
four and five Atrous convolution layers are essentially
equal. Considering the required memory and time for
training and testing networks, we chose to use four par-
allel Atrous convolution channels in our network.

Examples of outputs of the segmentation network
We visualize the segmentation results in Fig. 6. The ori-
ginal micrographs, their probability density maps, and
the corresponding binarized segmentation results are
shown in Fig. 6. These micrographs were derived from
the validation dataset mentioned above. The density
map intuitively shows that even for micrographs with

Fig. 5 Performance of the 5 segmentation networks. To choose the
appropriate number of parallel Atrous channels for the segmentation
network, we trained five different networks separately. The number of
parallel Atrous channels these networks are 1 to 5, respectively. In
order to control variables, the training dataset, initial parameters from
the classification network and all the meta-parameters (except the
number of parallel Atrous channels) of these five networks are the
same. We test the performance of the five segmentation networks
with 5000 randomly selected micrographs 512*512 pixels in size from
the data shown in Table 1 to form a validation dataset. We used

intersection-over-union (IOU ¼ GroundTruth∩Segmentation Result
GroundTruth∪Segmentation Result ) statistical

results to judge the performance
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Fig. 6 Examples of the segmentation results. (a) Examples from GroEL. (b) Examples from EMPAIR-10028. (c) Examples from EMPIAR-10081

Fig. 7 Four representative intermediate results of the grid-based, local-maximum method using one whole micrograph from dataset
TRPV (EMPIAR-10005)
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extremely low SNR, our segmentation network generates
a dense map for locating the position of particles.

Illustrations of the grid-based, local-maximum method
To select particles from the heat map, we applied a
grid-based, local-maximum method. Here, we list
selected intermediate results during the iterations. To
show the process more clearly, we use a small grid size.
Each colored point in Fig. 7 indicates a local maximum
value, and the color is determined by the score of the
corresponding particle.
The points gradually converge to local maxima during

the iterations. Figure 8 shows final results of this mi-
crograph. As the signal-to-noise ratio is too low, the ori-
ginal image is too noisy to be recognized by human. A
dark channel haze removal [30] is applied to make the
image more readable. The different colors indicate dif-
ferent levels of particle scores using the same color bar
as Fig. 7. From this figure, we can see that our method
detects most of the particles.

Experiments on simulated data
We first tested the performance of our method using
simulated data generated by InSilicoTEM from
PDB-1F07 [24]. As the simulated data contains the
ground truth, we can perform detailed experiments to
test the accuracy of our method.
Fig. 9a shows one example of the results of the simu-

lated data. In Fig. 9a, the upper left panel is a region of
one micrograph. The upper right and lower left panels
show the corresponding heat map and binarized seg-
mentation results. The final coordinates are marked in
the lower right panel. The final results for this example
show that the particle locations are precise. The heat
map and binarized segmentation results show that the
particles are separated from the background. As the sim-
ulated data include the precise location and segmenta-
tion results of each particle, we use the pixel IOU to
measure performance [27]. We calculated the IOU value
for each particle and recorded the statistical information
for 45 micrographs (shown in the box plot in Fig. 9b)
Furthermore, as the performance of particle selection

methods may vary with different SNRs, we tested our
method on the simulated data with different SNRs. Here the

SNR is defined as SNR ¼ 10 log10ð

XN

x¼0

XM

y¼0

f̂ ðx; yÞ2

XN

x¼0

XM

y¼0

½ f ðx; yÞ− f̂ ðx; yÞ�2
Þ,

where f̂ ðx; yÞ is the signal of simulated data generated from
InSilicoTEM with no noise, and f(x, y) is the simulated data
with noise. Figure 9c shows the IOU results of our method
on different SNRs. As depicted by the figure, IOU drops as

SNR decreases. However, even for data with an SNR as low
as 0.01, the mean IOU of our method can still achieve 0.86.
This result shows the robustness to noise of our method.

Experiments on real-world data
Our method performed well on simulated data. However,
simulated data is simpler than the real-world datasets. To
show the robustness and practicality of our method, we
performed particle selection on one popular benchmark
KLH [28] (Keyhole Limpet Hemocyanin) and three
real-world datasets: bacteriophage MS2 (EMPIAR-10075)
[25], TRPV1 (EMPIAR-10005) [26] and rabbit muscle al-
dolase [29] (EMPIAR-100184). The detailed information
on these four datasets is shown in Table 2. The training
dataset is exactly the data in Table 1. No data in Table 2
are involved. Additionally, we compared our method with
three mainstream particle-selection methods: RELION,
DeepEM and DeepPicker.
To show the quality of the results intuitively, we used

dataset bacteriophage MS2 (EMPIAR-10075) and dataset
TRPV1 (EMPIAR-10005) to demonstrate the results. We
first show examples of the probability density map and
the corresponding binarized segmentation results of bac-
teriophage MS2 and TRPV1 in Fig. 10a and Fig. 10b. As
the sizes of micrograph images are too large (4096*4096
for TRPV1), there is not enough memory on the Tesla
K20c to generate their segmentation results. Hence, we
cropped images into 1024*1024 sub-images. It should be
noted that the subtle horizontal and vertical line shown
in the density map in Fig. 10a are by-products of this

Fig. 8 The converged result of the grid-based, local-maximum
method of the micrograph from dataset TRPV1 (EMPIAR-10005) [26].
The different colors indicate different levels of particle scores using
the same color bar as Fig. 7
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operation. As shown, the influence of the margin is so
small that it does not interfere with the particle location.
By default, we do not resize the input micrograph to en-
sure the accuracy of segmentation results. While, we
offer the option to down-sample the micrograph in our
PIXER, so that we can acquire the result without crop-
ping and merging. Experimental results show that, the
performance of PIXER doesn’t decrease with the oper-
ation of down-sampling.
We choose two representative methods (one semi-au-

tomated particle selection method, RELION, and one

full-automated particle selection method, DeepPicker) as
the comparisons to show the particle selection result.
For the dataset bacteriophage MS2 (EMPIAR-10075)
dataset, we show the results comparison with RELION.
As its method is semiautomated, we selected approxi-
mately 200 particles manually to help to generate the
template of particles. Then, we compared the results
from PIXER with RELION’s results. In this dataset, the
SNR for some of the micrographs is quite high. For
these micrographs, we found that the performance of
both methods is similar. However, for micrographs with
lower SNR, such as the one shown in Fig. 10c, our
method detects more particles. We use circles and rect-
angles to denote the results from PIXER and RELION,
respectively. The red and blue crosses in Fig. 10c show
the FP particles for PIXER and RELION, respectively.
For the dataset TRPV1, its SNR is very low and some of
the micrographs are affected by ice contamination. We
compared our method with another fully automated

Fig. 9 Experiments on simulated data. (a) Example of micrographs including the original micrograph, heat map of probability, binarized
segmentation results and final coordinates. (b) Detailed IOU results of 45 micrographs. (c) The IOU results of our method on the simulated data

with different SNRs. Here the SNR is defined as SNR ¼ 10 log10ð

XN

x¼0

XM

y¼0

f̂ ðx; yÞ2

XN

x¼0

XM

y¼0

½ f ðx; yÞ− f̂ ðx; yÞ�2
Þ, where f̂ ðx; yÞ is the signal of simulated data generated

from InSilicoTEM with no noise, and f(x, y) is the simulated data with noise

Table 2 Data used in the test datasets

Name 10,075 10,005 KLH 10,184

Number of Images 184 100 82 120

Particle Size 300*300 180*180 272*272 256*256

Size of Micrograph 4096*4096 3710*3710 2048*2048 3838*3710

Pixel Size 1.14 1.22 2.2 0.85
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deep-learning-based particle-selection method, Deep-
Picker. To ensure a fair comparison, we used the native
model of DeepPicker to perform the experiments. The
training data for this model include 10,000 TRPV1 parti-
cles. For our fully automated method, there is no inter-
section between the training dataset and the test dataset
(TRPV1); thus, overfitting can be prevented and a more
precise evaluation of the performance can be guaran-
teed. We used the data from Table 1 as the training
dataset. No particles or micrographs from TRPV1 reside
in our training dataset.
In Fig. 10d, we use circles and rectangles to denote re-

sults from PIXER and DeepPicker, respectively. We also
used blue crosses to indicate the FP results of Deep-
Picker. As shown, our method detected more particles
with fewer FP results.
To provide a quantitative analysis of the performance

of our method, we compared our method with two
mainstream semi-automated particle selection methods
(RELION and DeepEM) and one full-automated method

(DeepPicker). For the DeepEM method, we used 200
positive or negative images for each dataset as the train-
ing dataset to train their own network. We used the
manually selected results from experts as the ground
truth and recorded the number of true-positive (TP) and
false-positive (FP) particles. Here, we used precision (precision

¼ TP
TPþFP) and recall (recall ¼ TP

TPþFN ) to measure the perfor-

mances of the four datasets (bacteriophage MS2: Fig.

11a),TRPV1: Fig. 11b, KLH: Fig. 11c and rabbit muscle aldo-

lase: Fig. 11d).
In these experiments, there are some parameters need

to be set: 1) Particle size. We set the particle size accord-
ing to Table 2. 2) Lower bound for classification network
is set as 0.6 by default. This hyper-parameter is used to
distinguish non-particles from particles according to the
output of classification network. 3)Maximum selected
number of particles per micrograph. In these experi-
ments, to test the ability of removing FP particles for
classification network, we leave this parameter as default

Fig. 10 Examples of results for the bacteriophage MS2 and TRPV1. (a) Probability density map and the corresponding binarized segmentation
results of bacteriophage MS2. (b) Probability density map and the corresponding binarized segmentation results of TRPV1. (c) Example of particle-
selection results from the PIXER and RELION methods on bacteriophage MS2. Circles and rectangles indicate results from PIXER and RELION,
respectively. The red and blue crosses in Fig. 10c show the FP particles for PIXER and RELION, respectively. (D) Example of the particle-selection
results from the DeepPicker and PIXER methods on TRPV1. We use circles and rectangles to denote results from PIXER and DeepPicker,
respectively. We also used blue crosses to indicate the FP results of DeepPicker
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value 500. In practice experiments, this parameter can
help remove the FP particles.
For dataset bacteriophage MS2 (EMPIAR-10075), two

different results are shown for our method in Fig. 11a:
one is generated from the grid-based, local-maximum

selection method without verification from the classifica-
tion network; the other result is derived from the entire
PIXER procedure. As the classification network removes
the effects of ice contamination and background noise,
the precision is greatly improved. Generally, we find that

Fig. 11 Quantity analysis on real datasets using a precision-recall curve. (a) Bacteriophage MS2. (“Precision After Segment” indicates the
preliminary results outputted by the segmentation network of PIXER, which haven’t been filtered by classification network.) (b) TRPV1. (c) KLH. (d)
Rabbit muscle aldolase

Table 3 The time cost of each part of PIXER (Unit: s)

Pdb1f07 KLH 10,005 10,184 10,075

Micrograph Size 1024*1024 2048*2048 3710*3710 3838*3710 4096*4096

Particle Size 100*100 272*272 180*180 256*256 300*300

Preprocessing 0.17 0.57 3.08 3.72 3.75

Segmentation 0.55 3.64 9.92 9.58 11.23

Classification 2.26 3.12 8.63 6.84 2.75

Postprocessing 0.34 4.59 20.03 6.99 30.38

Total Time 3.32 11.94 41.67 47.17 48.07

DeepPicker 10.47 23.75 80.76 81.34 95.43

DeepEM 40.56 80.54 65.47 39.75 54.38
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there are no methods that can always achieve the best
performance in different datasets. For the benchmark
KLH (Fig. 11c), we find that the template-based method
RELION out-performed the deep learning methods.
However, for the datasets bacteriophage MS2 (Fig. 11a)
and rabbit muscle aldolase (Fig. 11d), our method
reached the highest performance. For dataset TRPV1
(Fig. 11b), our method performed as well as DeepEM.

Computational efficiency
The network is implemented based on ‘Deeplab’ [14],
which is a modified version of Caffe. In Deeplab, an
Atrous convolution layer is added to enhance the capacity
to process multiple-scale objects. In addition, we speed up
the pre- and post-processing part of PIXER using MPI
and GPU with Python. In our experiment, 6 MPI pro-
cesses were used in both pre- and post-processing. The
source code can be found at GITHUB (https://github.-
com/ZhangJingrong/PIXER). We set up a GeForce K20c
GPU with CUDA 8.0 to train the model and to run the
test process of PIXER.
To show the time efficiency, the average time cost of

each sub-step (preprocessing, test in the segmentation
network, test in classification network and postproces-
sing) was recorded in Table 3. As can be seen, generally,
the processing time increases with the size of the micro-
graph. For one micrograph with a size smaller or equal
to 4096*4096, we can obtain the results within 1 min.
We also compared the time performance with the other
deep learning based method: DeepPicker [9] and Dee-
pEM [10]. In the last two rows of Table 3, we also show
the comparison of their running times. As can be seen,
these three methods can process one micrograph in mi-
nutes. However, the processing time we need is less than
DeepPicker and comparable with DeepEM.

Conclusion
In this work, we established an automated particle-selection
method (PIXER) based on a segmentation network. First,
we use the novel approach of applying a segmentation net-
work to solve the particle-selection problem. Our network
can accommodate multiscale particles and micrograph of
varying sizes without using a sliding window. Second, facing
the challenges associated with assembling training data, we
developed a method to generate training data for segmenta-
tion. Third, we developed a grid-based, local-maximum se-
lection method to detect particles according to the density
map. The results indicated that, as a fully automated
method, PIXER can acquire results as good as those
achieved using semi-automated methods. However, the po-
tential of the probability density map needs to be further
explored. Furthermore, we have not yet introduced a dy-
namic updating strategy for our method, and this will be
the focus of future work.

Abbreviations
2D: Two-dimensional; 3D: Three-dimensional; Cryo-EM: Cryo-electron
microscopy; SNR: Signal-to-noise ratio
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