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Mesothelioma (MESO) is a mesothelial originate neoplasm with high morbidity and mortality. Despite advancement in
technology, early diagnosis still lacks effectivity and is full of pitfalls. Approaches of cancer diagnosis and therapy utilizing
immune biomarkers and transcription factors (TFs) have attracted more and more attention. But the molecular mechanism of
these features in MESO bone metastasis has not been thoroughly studied. Utilizing high-throughput genome sequencing data
and lists of specific gene subsets, we performed several data mining algorithm. Single-sample Gene Set Enrichment Analysis
(ssGSEA) was applied to identify downstream immune cells. Potential pathways involved in MESO bone metastasis were
identified using Gene Oncology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set
Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Cox regression analysis. Ultimately, a model to help
early diagnosis and to predict prognosis was constructed based on differentially expressed immune-related genes between bone
metastatic and nonmetastatic MESO groups. In conclusion, immune-related gene SDC2, regulated by TFs TCF7L1 and
POLR3D, had an important role on immune cell function and infiltration, providing novel biomarkers and therapeutic targets
for metastatic MESO.

1. Introduction

Mesothelioma (MESO) is a rare neoplasm with high mortal-
ity. Pleural mesothelioma is the most common MESO, the
main cause of which is asbestos deposition in the lung.
Despite the reduction of asbestos use, the morbidity of MESO
is still increasing because of the long latency period [1–3].
And the peak of MESO is predicted to come during 2012-
2030, which varies in different location [4, 5].

Commonly, early diagnosis is an indicator of a good
prognosis. However, diagnosis of MESO often occurs when
clinical presentation appeared which indicates the late stage.
Patients diagnosed in early stage are usually identified when
examined by radiation test for other disease, and they indeed
have favorable outcomes [6, 7]. Low efficiency of traditional
therapeutic strategies also contributes to the malignancy of
MESO [8]. Excitingly, biomarkers for early diagnosis of sev-
eral cancers have shown promising application values
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[9–11]. Immunotherapy of MESO exhibits satisfactory clin-
ical outcomes as well [12]. Bone metastasis is a rare but
much more serious feature in MESO [13, 14]. Hence, it is
of high clinical significance to elucidate immune-related
molecular mechanisms that are associated with MESO bone
metastasis, which will aid in the amelioration of individual-
ized therapeutic methods for advanced patients.

Molecular signatures as well as tumor-associated cells
have high predictive values for cancer outcomes [15]. The
immunological data containing cell type, location, and den-
sity even show better predictive results than traditional his-
topathological methods [16]. Expression level of
transcription factors (TFs) was associated with survival in
various cancers [17–19]. Importantly, TFs have a regulatory
function in cell differentiation especially in immune cells
[20–22]. Previous studies have identified various biomarkers
and their regulatory networks in MESO, but few studies have
focused on immune-related genes and TFs [23–25]. There-
fore, this study is innovative in immune-related MESO bone
metastasis-related biomarkers and individualized therapeu-
tic targets. The prognosis of bone metastatic MESO is
expected to be improved by affecting immune-related signal-
ing axes in this study.

Here, we constructed a model to forecast the prognosis
based on differently expressed immune-related genes
between the bone metastatic group and nonmetastatic
group. And we figured out key prognostic immune-related
genes in MESO which were regulated by TFs. Potential
downstream pathways and immune cells were further
extracted using functional enrichment analysis, Gene Set
Variation Analysis (GSVA), Gene Set Enrichment Analysis
(GSEA), single-sample Gene Set Enrichment Analysis
(ssGSEA), and Cox regression methods. Finally, a network
was instituted considering all features above. The differential
expression level of immune-related gene and TFs was fur-
ther validated by immunohistochemistry experiment in tis-
sue samples from patients with mesothelioma. Assay for
Transposase-Accessible Chromatin with high-throughput
sequencing (ATAC-seq) analysis was performed to deter-
mine the direct regulatory pattern between these immune-
related genes and TFs.

2. Method

2.1. Data Collection and Differential Expression Analysis
between Bone Metastatic and Nonmetastatic MESO
Samples. Transcriptome profiling and clinical information
of 86 MESO samples were derived from The Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer
.gov/). The list of immune-related signatures was down-
loaded from the ImmPort database (http://www.immport
.org/), which involved 3718 genes. Transcription factor pro-
files were additionally retrieved from the Cistrome database
(http://www.cistrome.org/) and included 318 genes.

After eliminating repetitive genes, 86 cases were divided
into bone metastatic and nonmetastatic groups. The Wil-
coxon signed-rank test was applied. Genes with a false
discovery rate (FDR) P value < 0.05 and log2 ðfold −
changeÞ > 1:0 or <-1.0 were defined as differently expressed,

and heat map as well as volcano plot was depicted. The study
was approved by the Ethics Committee of the First Affiliated
Hospital of Zhengzhou University.

2.2. Construction of the Immune Prognostic Model. Over-
lapped genes between the DEGs and immune-related genes
were singled out and plugged into univariate Cox regression
to identify survival-related genes. Genes with a P value <
0.05 were defined as prognostic associated significantly. We
subsequently performed multivariate Cox regression to eval-
uate the regression coefficients of genes and construct the
prognostic model. The cutoff for MESO patients was defined
as the median risk score classifying cases as low- and high-
risk groups. The accuracy of the model was appraised using
the area under the ROC curve (AUC). Kaplan-Meier sur-
vival analysis was also performed to assess the predictive
ability. Scatter plot and expression heat map were depicted
to show the correlation of risk score with the survival,
intuitively.

2.3. Independence of the Immune Prognostic Model from
Traditional Clinical Features. Among 86 MESO cases, 84
MESO cases were subjected to further analysis as they have
complete clinical information, including survival informa-
tion, age, gender, histologic grade, pathologic stage, and
TNM stage. To verify whether the risk score of the immune
prognostic model was independent among these clinical fea-
tures, univariate and multivariate Cox regression analyses
were performed. The results were shown in forest maps.

2.4. Correlation Analysis between TF and Immune-Related
Genes. Differentially expressed TFs were identified based
on differential expression analysis with ∣log2 FC ∣ >1:0 and
FDR value < 0:05. Pearson correlation analysis was con-
ducted to assess the potential regulatory patterns between
these transcription factors and prognostic immune-related
genes. Connections with a correlation coefficient > 0:010
and P value < 0.050 were extracted.

2.5. Identification of Bone Metastasis-Related Immune Cells.
In order to figure out the fraction of 22 kinds of immune
cells, CIBERSORT algorithm was used. Pearson correlation
analysis was subsequently conducted to evaluate the correla-
tion between the immune cells and the TF-regulated
immune-related genes. Immune cells with a P value <
0.050 were finally extracted. Moreover, single-sample GSEA
(ssGSEA) was conducted to uncover the DEG-enriched
immune cells in MESO.

2.6. Functional Enrichment Analysis. Firstly, GO and KEGG
functional analyses were performed using R package “org.H-
s.eg.db/” (http://www.bioconductor.org/packages/release/
data/annotation/html/org.Hs.eg.db.html) packages in Bio-
conductor to detect the potential functions of DEGs identi-
fied. The results were shown in bubble diagrams. Secondly,
GSVA algorithm was used to obtain the expression level of
all genes in KEGG pathways. Univariate Cox analysis was
subsequently conducted to identify pathways that signifi-
cantly associated with overall survival. And the correlations
of them with a single gene were evaluated using Pearson
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correlation analysis. Moreover, GSEA algorithm was also
used to identify differently enriched pathways between bone
metastatic and nonmetastatic MESO samples.

2.7. Construction of the Interaction and Correlation Network.
Regulation pairs above were completely included in the reg-
ulation network which was plotted by Cytoscape (3.7.1) [26].
In the network, immune-related gene, TFs, immune cells,
and pathways were, respectively, defined as pink rhombus,
green arrows, purple ellipses, and yellow rectangles.

2.8. External Validation/Online Database Validation. To
minimize bias, multiple databases including the CellMarker
[27], GeneCards [28, 29], String [30], Gene Expression Pro-
filing Interactive Analysis (GEPIA) [31], PROGgeneV2 [32],
UALCAN [33], UCSC Treehouse Childhood Cancer Initia-
tive, Kaplan-Meier plotter [34], LinkedOmics [35], cBioPor-
tal [36], and Cancer Cell Line Encyclopedia (CCLE) [37]
were used to evaluate gene and protein expression levels of
key biomarkers at the tissue level.

2.9. Immunohistochemistry Validation. Paraffin-embedded
sections of diagnostic biopsies collected from trial MESO
patients (bone metastatic patients and nonmetastatic
patients) and tumor sections were stained with antibodies
for SDC2 (Abcam, ab205884) and TCF7L1 (Abcam,
ab248495). Then, these slides were counterstained with hae-
matoxylin. Frozen tumor sections were utilized for detecting
expression level and subcellular location of SDC2 and
TCF7L1 immunohistochemistry in tumors between bone
metastatic MESO patients and nonmetastatic MESO
patients. Negative controls of identical tumor tissue sections
were utilized; hence, the primary antibodies were omitted.
The conditions were utilized for staining with individual
antibodies according to the protocol of the manufacturers.

2.10. ATAC-seq Validation. ATAC-seq refers to an impres-
sively flexible, simple, and powerful technique to profile
chromatin regions genome-wide, compared with traditional
methods like functional assays or sequence conservation
analyses [38].

ATAC-seq data of MESO samples were downloaded
from TGCA project of chromatin accessibility landscape of
primary human cancers (https://gdc.cancer.gov/about-data/
publications/ATACseq-AWG), which were then utilized to
explore the chromatin accessibility in specific locations of
key TFs and immune-related genes [39]. Furthermore, the
binding relationship was determined by comparing with
control groups using Gviz package [40, 41].

2.11. Statistical Analysis. All statistical analysis was con-
ducted by R version 3.5.1 (Institute for Statistics and Math-
ematics, Vienna, Austria; http://www.r-project.org/)
(Package: impute, UpSetR, ggplot2, rms, glmnet, preproces-
sCore, forestplot, survminer, survivalROC, and beeswarm).
Two-tailed P < 0:05 was regarded statistically significant.

3. Result

3.1. Identification of Significantly Differently Expressed Genes
and Functional Analysis. The flow diagram of this integrated
analysis is shown in Figure 1. We obtained transcriptome
profiles and clinical information of 87 MESO patients, con-
sisting of 4 bone metastatic patients and 83 nonmetastatic
patients, from TCGA database. 30960 genes were plugged
into differently expressed analysis, and 404 genes, 396 upex-
pressed and 8 downexpressed, were finally identified as
DEGs between bone metastatic and nonmetastatic groups
(Figures 2(a) and 2(b)). Clinical information is summarized
in Table 1.

3.2. GO and KEGG Functional Enrichment Analysis. DEGs
were enriched in 27 GO items and 4 KEGG pathways
(Figures 2(c) and 2(d)). GO items consisted of 10 biological
processes (BP), 7 cellular components (CC), and 10 molecu-
lar functions (MF). Four KEGG pathways were “purine
metabolism,” “selenocompound metabolism,” “steroid bio-
synthesis,” and “tryptophan metabolism.”

3.3. Construction of the Prognostic Model and Model
Validation. Gene expression profiles of 3718 immune-
related genes were obtained from ImmPort database, and

Gene expression profiling and clinical
information of 86 MEOS patients

Identify 404 differently expressed
genes (DEGs) between bone metastasis

List of 3718 immune genes from the
ImmPort database

Information of 318 transcription
factor from the Cistrome database

Immune cell and pathway analysis

Evaluate gene regression coefficients by
Multivariate Cox analysis

Screening 14 prognostically relevant immune
gene by Univariate Cox regression

Screen 4 TFs that are involved in MESO bone
metastasis and regulate SDC2 by Pearson

correlation analysis

Receive 10 KEGG pathways associated with
SDC2 and bone matastasis by GSVA and GSEA

Obtain 11DEGs downstream immune cells by
CIBERSORT and ssGSEA

Construct
prognosis

model

Construct
regulatory
network

Figure 1: Flowchart of this study.
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Figure 2: Different expressed genes in mesothelioma: (a) Expression of genes in MESO; (b) the volcano plot showed different expressed
genes (DEGs) in MESO versus normal samples; (c, d) functional enrichment analysis of DEGs. Abbreviation: BP: biological process; CC:
cellular component; MF: molecular function.
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78 immune-related genes were DEGs in MESO (Figures 3(a)
and 3(b)). Univariate Cox regression was conducted, and 14
genes were significantly identified as prognosis associated
(Figure 3(c)).

The AUC of the ROC curve was 0.778, indicating good
predictive power (Figure 4(a)). Patients with high risk score
revealed poor prognostic in Kaplan-Meier analysis
(Figure 4(b)). Scatter plots showed the risk score and sur-
vival status of 84 patients with MESO (Figures 4(c) and
4(d)). Red circles enriched in the lower right corner in
Figure 4(d) represent a good reliability of the model. Expres-
sion level of 14 features of the model was shown in the heat
map (Figure 4(e)).

3.4. Independence of the Prognostic Model from Traditional
Clinical Features. Univariate Cox regression analysis indi-
cated that bone metastasis (HR = 3:65, P = 0:020) and a risk
score (HR = 1:16, P < 0:001) were independent risk factors
for prognosis in MESO (Figure 4(f)). Multivariate Cox
regression analysis also proved the risk score was a risk fac-
tor for MESO independently (Figure 4(g)).

3.5. Regulation between Immune-Related Genes and TFs. 318
TFs were derived from the Cistrome database, and 5 TFs
(SREBF2, NR2F2, TCF7L1, POLR3D, and RCOR1) were
identified as differentially expressed TFs involved in MESO
bone metastasis (Figures 5(a) and 5(b)). Based on the results
of the Pearson correlation analysis, a total of four TFs
(RCOR1, TCF7L1, POLR3D, and NR2F2) were coregulators
of the same immune-related gene SDC2. Then, we per-
formed survival analysis of TCF7L1 (left) and SDC2 (right)
in pancancer, and the results are shown in the forest plot
(Figure 5(c)). Kaplan-Meier analysis was performed to show
the effect of expression levels of TCF7L1 and SDC2 on the
survival status of patients with MESO (Figure 5(d)).

3.6. Identification of Bone Metastasis-Related Immune Cells.
CIBERSORT algorithm was used to evaluate the fraction of
immune cells. Coexpression analysis was conducted to eval-
uate the correlation of SDC2 with immune cells
(Figure 6(a)). For M2, dendritic resting cells and plasma cells
were significantly associated with SDC2 (Figure 6(c)).
According to results of ssGSEA, 8 immune cells were identi-
fied as downstream cells of DEGs. Finally, 11 immune cells
were extracted: plasma cells, macrophages M2, dendritic
cells resting, cytolytic activity, DCs, iDCs, MHC class I,
NK cells, parainflammation, type-I FN response, and type
II IFN response.

3.7. Functional and Coexpression Analyses. According to the
GSVA algorithm, 74 KEGG pathways were identified as sig-
nificantly associated with overall survival (OS). The Pearson
correlation analysis subsequently filtered 52 pathways that
were significantly correlated with SDC2 (Figure 6(b)).

According to GSEA algorithm, 14 KEGG pathways were
identified as differently enriched between bone metastatic
and nonmetastatic groups. After coexpression analysis, 10
pathways were finally extracted (Figure 7(a)). Matched-
rank GSEA results are shown in Figures 7(b) and 7(c). These
pathways were “metabolism of xenobiotics by cytochrome
P450,” “butanoate metabolism,” “primary bile acid biosyn-
thesis,” “linoleic acid metabolism,” “beta alanine metabo-
lism,” “retinol metabolism,” “arachidonic acid
metabolism,” “valine leucine and isoleucine degradation,”

Table 1: Baseline characteristics of 87 patients diagnosed with
mesothelioma.

Variables Total patients (N = 87)
Age (mean ± SD) 63:00 ± 9:76
Follow-up time (days)

Mean ± SD 668:60 ± 568:34
Median (range) 527.00 (20-2790)

Gender

Female 16 (18.39%)

Male 71 (81.61%)

Race

Asian 1 (1.15%)

Black or African American 1 (1.15%)

White 85 (97.70%)

State

Alive 12 (13.79%)

Dead 73 (83.91%)

Unknown 2 (2.30%)

Distant metastasis

Yes 26 (29.89%)

No 61 (70.11%)

Bone metastasis

Yes 4 (4.60%)

No 83 (95.40%)

Stage

Stage I 10 (11.49%)

Stage II 16 (18.39%)

Stage III 45 (51.72)

Stage IV 16 (18.39%)

AJCC-T

T1 14 (16.09%)

T2 26 (29.89%)

T3 32 (36.78%)

T4 13 (14.94%)

TX 2 (2.30%)

AJCC-N

N0 44 (50.57%)

N1 10 (11.49%)

N2 26 (29.89%)

N3 3 (3.45%)

NX 4 (4.60%)

AJCC-M

M0 57 (65.52%)

M1 3 (3.45%)

MX 27 (31.03%)

Abbreviation: AJCC: American Joint Committee on Cancer.
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“drug metabolism cytochrome P450,” and “regulation of
actin cytoskeleton” (Figure 7(d)).

3.8. Construction of the Regulatory Network. Integrated net-
work is shown in Figure 8(a): SDC2 was the hub molecular
of the network; SDC2 was regulated by 4 TFs (RCOR1,
TCF7L1, POLR3D, and NR2F2) and had a function in 11

bone metastasis-associated immune cells (M2, dendritic
resting cells, plasma cells, cytolytic activity, DCs, iDCs,
MHC class I, NK cells, parainflammation, type-I FN
response and type II IFN response) through 10 pathways
(“metabolism of xenobiotics by cytochrome P450,” “butano-
ate metabolism,” “primary bile acid biosynthesis,” “linoleic
acid metabolism,” “beta alanine metabolism,” “retinol
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Figure 3: Filtration of key features in the prognostic model: (a) expression of immune-related genes from the ImmPort database in MESO;
(b) volcano plot was drawn to show different expressed immune-related genes; (c) 14 immune-related genes were identified as prognosis
associated using univariate Cox regression.
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metabolism,” “arachidonic acid metabolism,” “valine leucine
and isoleucine degradation,” “drug metabolism cytochrome
P450,” and “regulation of actin cytoskeleton.” Moreover,
the results of external validation and potential effect of
plasma cells (“butanoate metabolism” and “regulation of
actin cytoskeleton”) are considered (Figure 8(a)).

3.9. Chromatin Accessibility Mapping Based on ATAC-seq
Validation. Multiple open chromatin regions of SDC2 and
TCF7L1 in sorted MESO cells were identified using
ATAC-seq analysis. Open chromatin loci on different chro-
mosomes (Figure 8(b)) as well as the distribution of binding
loci relative to TSS were visualized, and the upsetplot
showed the intersection of different pick types (genic, inter-
genic, exon, upstream, intron, and distal intergenic)
(Figures 8(c) and 8(d)). Moreover, we analyzed the correla-
tion between TCF7L1 and SDC2, and the results showed
that the expression of TCF7L1 was positively correlated with
SDC2 (P < 0:001, R = 0:700) (Figure 8(e)). There were strong
ATAC-seq binding peaks in MESO cells at promoters of
SDC2 and TCF7L1 and at various regulatory elements’ bind-

ing areas in the introns and in introns of neighboring genes,
which indicated these regions may function as potential reg-
ulatory elements on upstream of SDC2 and TCF7L1
sequences (Figure 8(f)).

3.10. High SDC2 and TCF7L1 Expression by MESO Cells Is
an Indicator of Bone Metastasis and Poor Prognosis. Based
on the above, the expression level of key immune-related
gene SDC2 and TF TCF7L1 was relatively higher in bone
metastatic MESO samples than that in nonmetastatic MESO
samples, which was significantly related to poor prognosis in
MESO. However, there was no published information as to
the source of this aberrant expression of SDC2 and TCF7L1
in tumor biopsies from patients with MESO. Hence, we
stained for SDC2 (3 bone metastatic samples and 2 nonme-
tastatic samples) and TCF7L1 (3 bone metastatic samples
and 3 nonmetastatic samples) in MESO pathological sec-
tions and also looked for any correlations with bone metas-
tasis. Importantly, immunohistochemical staining of SDC2
and TCF7L1 in metastatic MESO tissue was more intense
than that in nonmetastatic mesothelioma tissue, and this
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Figure 4: Model validation and independence of the predict model from traditional clinical features: (a) the high AUC (0.778) of the ROC
curve indicating good predict power of the model; (b) overall survival of patients with MESO according to risk scores of the model; (c, d)
survival status and risk score of 84 patients; (e) expression of key features in MESO patients; (f) bone metastasis and risk score were
negatively, respectively, and significantly associated with prognosis using univariate Cox regression model; (g) risk score was negatively,
respectively, and significantly associated with prognosis using the multivariate Cox regression model.
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Figure 5: Identification of key transcription factors (TFs) in MESO: (a) expression of differently expressed TFs in patients with MESO; (b)
volcano plot showed that 5 out of 318 TFs from the Cistrome database were differently expressed in MESO versus normal samples; (c)
survival analysis of TCF7L1 (left) and SDC2 (right) in pancancer; (d) effect of expression levels of TCF7L1 and SDC2 on the survival
status of patients with MESO.
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Figure 6: Continued.
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difference reached statistical significance (P < 0:05, Welch’s t
-test) (Figures 9(a) and 9(b)). The whole mechanism is
shown in Figure 9(c) vividly.

3.11. External Validation. Firstly, we mined out all available
markers of 11 immune cells using the CellMarker website.
Top 5 key genes of 10 pathways were also found using the
GeneCards database. Then, together with SDC2 and 4 TFs
in the network, 60 biomarkers were finally input into several
databases to test and verify our conclusion, which are sum-
marized in Table S1. The overall correlation of 60
biomarkers was assessed using the String database and is
shown in Figure S1A. And results of 19 most significant

biomarkers out of 60 from other databases were finally
selected and are shown as summarized in Table 2.

SDC2, the hub immune-related gene, was proved to be
differently expressed gene in various cancers using the UAL-
CAN database (Figure S1B). And it was significantly
associated with OS in GEPIA (P = 0:001, Figure S1C),
UCSC (P = 0:008, Figure S1D), and ProgGeneV2
(P = 0:016, Figure S1E). The transcription factor TCF7L1
was significantly correlated with OS in GEPIA (P = 0:009,
Figure S1F), UCSC (P = 0:007, Figure S1G), and
ProgGeneV2 (P = 0:003, Figure S1H). Another TF
POLR3D was associated with OS significantly in GEPIA
(P < 0:001, Figure S1I), UCSC (P < 0:001, Figure S1J), and

0.40

0.35

0.30

0.25

0.20

0.15

0.10

M
ac

ro
ph

ag
es

 M
2 

ex
pr

es
sio

n

Cor = 0.328 (p-value = 0.003)

5000 10000 15000 20000
SDC2 expression

0.10

0.08

0.06

0.04

0.02

0.00

D
en

dr
iti

c c
el

l r
es

tin
g 

ex
pr

es
sio

n

Cor = 0.233 (p-value = 0.035)

5000 10000 15000 20000
SDC2 expression

0.15

0.10

0.05

0.00

Pl
as

m
a c

el
l e

xp
re

ss
io

n

Cor = 0.227 (p-value = 0.04) Cor = 1 (p-value = 0e+00) Cor = 0.328 (p = 0.003)

5000 10000 15000 20000
SDC2 expression

5000 10000 15000 20000
SDC2 expression

SD
C2

 ex
pr

es
sio

n

0.14

0.10

0.06

0.02

N
K 

ce
lls

 ac
tiv

at
ed

Cor = −0.194 (p = 0.081) Cor = −0.150 (p = 0.177) Cor = −0.150 (p = 0.177) Cor = 0.127 (p = 0.256) Cor = −0.101 (p = 0.365)

5000 10000 15000 200000

NK cells actived expression

N
K 

ce
lls

 re
sti

ng

5000 10000 15000 200000

NK cells resting expression

0.030

0.020

0.010

0.000

0.04

0.03

0.02

0.01

0.00

N
eu

tro
ph

ils

5000 10000 15000 200000 5000 10000 15000 200000

Neutrophils expression Macrophages M0 expression

5000 10000 15000 200000

Macrophages M2 expression

0.30

0.20

0.10

0.00

M
ac

ro
ph

ag
es

 M
0

20000

15000

10000

5000

0.40

0.30

0.20

0.10

M
ac

ro
ph

ag
es

 M
2

5000 10000 15000 200000

Cor = −0.181 (p = 0.104)

5000 10000 15000 200000

Macrophages M1 expression

Dendritic cells activatedexpression

Cor = −0.203 (p = 0.068)

5000 10000 15000 200000

Mast cells resting expression

0.10

0.06

0.06

0.04

0.02

0.00

M
ac

ro
ph

ag
es

 M
1

0.08

0.04

0.00

Cor = −0.233 (p = 0.035)

5000 10000 15000 200000

Cor = −0.233 (p = 0.035)

5000 10000 15000 200000

Dendritic cells resting expression

T cells CD8 expression

Cor = −0.083 (p = 0.456)

5000 10000 15000 200000

Monocytes expression

0.08

0.04

0.00

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed0.15

Cor = 0.205(p = 0.065)

5000 10000 15000 200000

T cells CD4 memory resting expression

0.3

0.2

0.1

0.0

Cor = 0.011(p = 0.922)

5000 10000 15000 200000

0.03

0.02

0.01

0.00

0.10

0.05

0.00

M
as

t c
el

ls 
re

sti
ng

Cor = −0.227 (p = 0.040)

5000 10000 15000 200000

Plasma cells expression

0.15

0.10

0.05

0.00

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

D
en

dr
iti

c c
el

ls 
re

sti
ng

0.30

0.20

0.10

0.00

T 
ce

lls
 C

D
8

0.25

0.20

0.15

0.10

0.05

0.00

Cor = 0.063 (p = 0.572)

5000 10000 15000 200000

B cells naive expression

0.25

0.20

0.15

0.10

0.05

0.00

M
on

oc
yt

es

B 
ce

lls
 n

ai
ve

Cor = −0.033 (p = 0.770)

5000 10000 15000 200000

T cells follicular helper expression

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

0.10

0.08

0.06

0.04

0.02

0.00

Cor = −0.017 (p = 0.878)

5000 10000 15000 200000

T cells CD4 memory activated expression

Cor = −0.006 (p = 0.959)

5000 10000 15000 200000

Eosinophils expression

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

0.06

0.04

0.02

0.00

0.04

0.03

0.02

0.01

0.00

Eo
sin

op
hi

ls

Cor = −0.007 (p = 0.950)

5000 10000 15000 200000

T cells gamma delta expression

Cor = 0.009 (p = 0.939)

5000 10000 15000 200000

T cells regulatory (Tregs) expression

0.04

0.02

0.00

T 
ce

lls
 g

am
m

a d
elt

a

0.12

0.08

0.04

0.00

Cor = 0.012 (p = 0.912)

5000 10000 15000 200000

B cells memory expression Mast cells activatedexpression

0.12

0.08

0.04

0.00

T 
ce

lls
 re

gu
lat

or
y 

(T
re

gs
)

B 
ce

lls
 m

em
or

y

M
as

t c
el

ls 
ac

tiv
at

ed

(c)

Figure 6: Coexpression of SDC2: (a) correlation between SDC2 and immune cells; (b) correlation between SDC2 and overall survival
associated pathways. “TGF beta signaling pathway,” “ECM receptor interaction,” and “glycosaminoglycan biosynthesis heparan” were the
top 3 SDC2-correlated KEGG pathways; (c) correlation of specific immune cells with SDC2. M2, dendritic resting cells and plasma cells
were significantly associated with SDC2.
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UALCAN (P = 0:017, Figure S1K). CD38, the cell marker of
plasma cells, was associated with OS in in UCSC (P = 0:045,
Figure S2A) and GEPIA (P = 0:019, Figure S2B) and was
correlated with distant metastasis in LinkedOmics
(P = 0:018, Figure S2C). CD1A, cell marker of dendritic
cells, DCs and iDCs, was correlated with OS in UCSC
(P = 0:047, Figure S2D) and UALCAN (P = 0:007,
Figure S2E).

As regards pathway analysis, there were at least two key
genes of these pathways identified as OS-associated bio-
markers which indeed confirmed our conclusion. Most sig-
nificant genes were depicted, and details were as follows:
CYP3A4 (P < 0:001, Figure S3A), ACAT2 (P < 0:001,
Figure S3B), CYP27A1 (P = 0:007, Figure S3C), PLB1
(P = 0:003, Figure S3D), DPYS (P = 0:004, Figure S3E),
GAD1 (P = 0:048, Figure S3F), LTC4S (P = 0:020,
Figure S3G), PTGS1 (P = 0:024, Figure S3H), BCKDHB
(P = 0:039, Figure S3I), ACTG1 (P = 0:028, Figure S3J),

and ACTN1 (P < 0:001, Figure S3K) were associated with
OS on tissue level in GEPIA. In ProgGeneV2, HMGCL
(P = 0:013, Figure S4A), ACAT2 (P = 0:011, Figure S4B),
CYP27A1 (P = 0:002, Figure S4C), PLB1 (P = 0:002,
Figure S4D), GAD1 (P = 0:022, Figure S4E), LTC4S
(P = 0:008, Figure S4F), PTGS1 (P < 0:001, Figure S4G),
BCKDHA (P = 0:040, Figure S4H), ACTG1 (P = 0:049,
Figure S4I), and ACTN1 (P < 0:001, Figure S4J) were
significantly associated with OS. In UALCAN, CYP3A4
(P = 0:003, Figure S5A), ACAT2 (P = 0:010, Figure S5B),
CYP27A1 (P = 0:016, Figure S5C), PLB1 (P = 0:004,
Figure S5D), DPYS (P = 0:005, Figure S5E), GAD1
(P = 0:039, Figure S5F), BCAT1 (P = 0:005, Figure S5G),
ACTG1 (P = 0:014, Figure H), and ACTN1 (P = 0:002,
Figure S5I) were correlated with OS significantly. In
LinkedOmics, genes associated with favorable (Figure S6A)
and adverse (Figure S6B) OS are shown and summarized
in the volcano plot (Figure S6C). HMGCL (P = 0:048,
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Figure 7: Filtration of relevant pathways: (a) 52 pathways correlated with SDC2 were figured out using Pearson correlation analysis; 14
pathways were identified as bone metastasis associated using GSEA algorithm; and 10 were overlapped; (b) summarizations of GSEA
results; (c) results of 10 pathways in Pearson correlation analysis; (d) results of specific pathways using GSEA algorithm.
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Figure 8: Continued.
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Figure S6D) and LTC4S (P = 0:024, Figure S6E) and
BCKDHB (P < 0:001, Figure S6F) were significantly
associated with OS. Moreover, results of LinkedOmics also
indicated that HMGCL (P = 0:002, Figure S6G) and ACTN1
(P = 0:033, Figure S6H) were confirmed to be associated
with distant metastasis. In UCSC, CYP3A4 (P = 0:005,
Figure S7A), HMGCL (P = 0:010, Figure S7B), ACAT2
(P = 0:046, Figure S7C), CYP27A1 (P = 0:005, Figure S7D),
PLB1 (P < 0:001, Figure S7E), DPYS (P = 0:015, Figure S7F),
LTC4S (P = 0:039, Figure S7G), PTGS1 (P = 0:002,
Figure S7H), and ACTN1 (P < 0:001, Figure S7I) were
significantly associated with OS. Gene modification
information of key factors was derived from cBioPortal
(Figure S8A). Expression level of key genes in pleura was
shown using data from the CCLE database (Figure S8B).

So we speculated that plasma cells, “butanoate metabo-
lism” and “regulation of actin cytoskeleton” pathways, may
be the most essential characters of MESO metastasis.

4. Discussion

MESO is mesothelial-derived neoplasm, and a peak morbid-
ity was forecasted in the near future [4, 5]. Early diagnosis of

mesothelioma is filled with challenges and pitfalls because of
high expenses of routine radiological examination and mor-
phology similarities with other diseases [42]. Routine treat-
ment strategy of MESO is pemetrexed and platinum
compounds, but no standard second-line strategy is pro-
posed. Single-modality and multimodality treatment strate-
gies of surgery, chemotherapy, and radiotherapy are
discussed widely but no powerful conclusion has been raised
so far [43]. These all enhance the mortality of MESO. Prom-
isingly, several markers have been reported in MESO,
though only few of them have shown high diagnostic speci-
ficity [44]. And MESO patients with specific infiltrating
immune cells were reported to have a favorable prognosis
after traditional treatment [45]. Various target therapy and
immunotherapy approaches were also under investigation
and dramatic effect in some cases indicated them to be hope-
ful candidates in the recent future [12]. Thus, more potential
mechanisms considering immune features in MESO need to
be clarified.

In this study, we figured out bone metastasis-related
immune-related genes in MESO and constructed a prognos-
tic model based on them. High AUC values and statistical
significance in Cox regression analysis indicated good
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Figure 8: Immune regulatory network and ATAC-seq validation. (a) Integrated network includingSDC2 and 4 TFs, 11 immune cells, and 10
pathways; (b) gene loci on different chromosomes; (c) intersection of different pick types (genic, intergenic, exon, upstream, intron, and
distal intergenic); (d) distribution of binding loci relative to TSS; (e) correlation analysis of TCF7L1 and SDC2 (P < 0:001, R = 0:700); (f)
in ATAC-seq data of MESO samples, multiple binding peaks were identified in SDC2 and TCF7L1 sequences.
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predictive power of the model. Additionally, we proposed a
molecular mechanism that immune-related gene SDC2, reg-
ulated by TFs TCF7L1 and POLR3D, had a significant
impact on the function and infiltration of immune cells
and subsequently affected bone metastasis and prognosis of
MESO (Figure S1). High expression level of SDC2 and
TCF7L1 in bone metastatic MESO samples was validated
by immunohistochemistry experiment, and ATAC-seq
analysis of SDC2 and TCF7L1 demonstrated the direct
transcriptional regulatory relationship between them.
Among these immune cells, the correlation of plasma cells,
dendritic cells, DCs, and iDCs with MESO survival was
verified using external databases (Figure S2). Additionally,
key features of 10 corresponding pathways were identified
as survival or metastasis correlated using various databases
(Figure S3, Figure S4, Figure S5, Figure S6, and Figure S7).

SDC2, a member of syndecan family, was demonstrated
to participate in various cellular processes, such as cell pro-
liferation, differentiation, apoptosis, cell adhesion, migra-
tion, and cytoskeletal organization [46–48]. On the tissue
level, SDC2 was essential for tissue development, angiogene-
sis, cell communication, and modulation of microenviron-
ment [49, 50]. Interestingly, binary effect of SDC2 was
found in different tumors which correlated with the tissue
origin and cancer subtypes. It had a cancer-promoting effect
in epithelial tumors while shows a tumor-type response in
mesenchymal cancers [51]. SDC2 was highly expressed in
colon cancer [52], breast cancer [53], and glioma tissues
[54] while generally not expressed in matched normal tis-
sues. In colon cancer, SDC2 was significantly associated with

tumor growth, cell migration, tumor stage, lymph and dis-
tant metastasis, and vascular invasion [52, 55]. Oh et al.
demonstrated that quantification of SDC2 methylation
could be a biomarker for early diagnosis of colorectal cancer
(CRC) with a sensitivity of 90.0% and a specificity of 90.9%
[10]. SDC2 could regulate cell migration and angiogenesis in
cancer [56–58]. And both angiogenesis and antiangiogenic
functions were reported. It also had an oncogenic function
via epithelial-mesenchymal transition (EMT) [55]. As
MET-targeted immunotherapy in MESO showed the effec-
tiveness and safety in mice, potential mechanisms of SDC2
in MESO need to be clarified [59].

TCF7L1 is a downstream effector of the Wnt signaling
pathway. Our analysis indicated that TCF7L1 might have a
regulatory function on immune-related gene SDC2; in this
way, it could impact metastasis and prognosis of MESO.
Previous studies proved that it has a tumor-promoting role
in multiple aggressive cancers [60–62]. The regulatory
mechanism of TCF7L1 on tumor functional genes has been
illuminated as well [60, 63]. Here, we uncovered the poten-
tial involvement of TCF7L1 in cancer metastasis, especially
bone metastasis, which was not widely discussed before.

Function of immune cells in MESO has been studied
before. MESO patients with CD8+ lymphocytes infiltrating
showed a better prognosis after surgical treatment [45]. A
significant amount of regulatory T cells were detected in
mesothelioma tissues, and depletion of CD25+ T cells
expressed an enhancement in survival in vivo [64]. The chi-
meric antigen receptor (CAR) T cell immunotherapies
exerted promising treatment effects in vivo which indicated

POLR3D

Transcription factor 7 like 1 (TCF7L1) and
RAN polymerase III subunit D (POLR3D)
abnormally up-regulated in primay MESO
diagnosed with bonemetastasis

Positive transcriptional
regulatory

Syndencan 2 (SDC2) significant overexpression
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mesothelioma (MESO) Normal mesothelial cells
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Figure 9: Immunohistochemical analysis of SDC2 and TCF7L1 expression in MESO biopsies: (a) immunohistochemical analysis of SDC2
and TCF7L1 expression in MESO specimens showing relatively higher expression in bone metastatic MESO samples; (b) expression level of
SDC2 and TCF7L1 was significantly higher in bone metastatic MESO samples than that in nonmetastatic MESO samples byWelch’s t-test
(P < 0:05); (c) molecular mechanism of TCF7L1, SDC2, and immune features in MESO.
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the therapeutic value of immune cells [59]. However, other
immune cells were not clearly studied in MESO. Here, we
detected potential regulation of plasma cells, dendritic cells,
DCs, and iDCs in bone metastasis and prognosis in MESO.

Plasma cells are terminal functional status of B cell line-
age and synthesize protective antibodies [65, 66]. It is a key
factor of multiple myeloma and also participates in solid
tumor progression [67]. Positive prognostic effect of plasma
cells was affirmed in colorectal cancer, gastric cancer, esoph-
ageal cancer, and melanoma [68–71]. Negative prognostic
effect was found in ovarian and breast cancer [72, 73].
Immunotherapies based on cytotoxic T cells showed a satis-
factory effect on tumor treatment [74]. It was demonstrated
that plasma cells have an immunosuppressive effect and it
can impede T cell- dependent immunotherapy by inducing
cell death [75]. Additionally, plasma cells could enhance
the effectivity of prodrugs in colorectal cancer by secreting
carboxylesterase [76]. In malignant mesothelioma (MPM),
the localization of c-mesenchymal-epithelial transition (c-
MET) on plasma membrane indicated longer survival of
patients [77]. In our study, we uncovered the association
between plasma cells and bone metastasis in MESO.

Dendritic cells (DCs) are the most powerful antigen-
presenting cells (APCs) functioning in adaptive immune
system [78]. There are several subsets of DCs, and iDCs rep-
resent the inflammatory DCs which functioned in antigen
representation, migration, tumor rejection, and inducing
antitumor responses [79]. DCs function by receiving and
sending cell factors to regulate immune microenvironment
and to influence cancer immunity [80]. In breast cancer,
IL-10 secreted by macrophages could suppress interleukin-
(IL-) 12 expressed in DCs and subsequently decrease patho-
logic complete response of cancer [81]. The antitumor func-
tion of DCs was dependent on T cell activation [82]. Density
of mature DCs in non-small-cell lung cancer (NSCLC) was
positively associated with density of T cells and prognosis
of patients [83]. Binary functions of DCs were detected in
ovarian cancer that at early stages, DCs has an antitumor
effect while at advanced stages, it is a key factor of immuno-
suppression. This functional change resulted from a pheno-
type switching during cancer progression [84]. Dendritic cell
vaccines have been brought into clinical trials. Though ther-
apeutic effects were shown in some patients, there were
still an extensive portion of patients who cannot obtain
durable reactions. Thus, a more detailed commendation
should be brought out [85]. Besides this, the importance
of DCs in checkpoint therapy was also discussed. CD38
is a cell marker of DCs which is recorded in the CellMar-
ker database [27]. It was reported that tumors escape from
PD-1/PD-L1 blockade therapy through CD38-mediated
immunosuppression [86]. It was demonstrated that expres-
sion of CD38 was enhanced after PD-1/PD-L1 blockade
and a suppressive effect on CD8+ T cells was subsequently
detected. Moreover, blockade of PD-L1 and CD38 simulta-
neously can improve the antitumor responses [86, 87]. In
our study, the correlation of DCs with MESO prognosis
was also confirmed and the potential regulatory mecha-
nism of DCs regulation may help improve the treatment
of MESO in the future.

To the best of our knowledge, this is the first study figur-
ing out predictive biomarkers of MESO based on differently
expressed immune-related genes between bone metastatic
and nonmetastatic groups.

We also firstly elaborated on a regulatory mechanism
considering immune-related genes, TFs, immune cells, and
specific pathways. Nevertheless, there were still some limita-
tions to our study. Firstly, our data were downloaded from
public database; there were still some inexact records. And
sample size of MESO in TCGA was relatively small. Sec-
ondly, our analysis mostly focused on mathematics. Thirdly,
our cases were from western countries and caution should be
observed when applying our conclusion to patients from
other sources. More verification on tissue and cell level
should be put into effect, and predictive values of these fac-
tors in Asian MESO patients should also be clarified, which
would be the further research directions.

5. Conclusion

In this study, we constructed a model based on bone
metastasis-correlated immune-related genes to predict the
prognosis of patients with MESO which showed good pre-
dictive power. And we also figured out that a hub
immune-related gene SDC2, regulated by specific TFs, might
play an important role in bone metastasis and prognosis of
MESO by regulating fraction of immune cells.
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Supplementary Materials

Table S1: biomarkers used in external validation. Figure S1:
external validation of key characters. (A) Overview of 60
biomarkers brought into external validation using String
database; (B) in UALCAN, SDC2 was differently expressed
in various cancers; (C, D, E) SDC2 was significantly associ-
ated with overall survival (OS) of patients with MESO in
GEPIA (C), UCSC (D), and ProgGeneV2 (E); (F, G, H)
TCF7L1 was significantly associated with OS in GEPIA (F),
UCSC (G), and ProgGeneV2 (H); (I, J, K) POLR3D was sig-
nificantly correlated with OS of MESO in GEPIA (I), UCSC
(J), and UALCAN (K). Figure S2: results of immune cell
markers. Plasma cell marker CD38 was significantly associ-
ated with OS in in UCSC (A) and GEPIA (B) and was cor-
related with distant metastasis in LinkedOmics (C). CD1A,
cell marker of dendritic cells, DCs, and iDCs, was correlated
with OS in UCSC (D) and UALCAN (E). Figure S3: valida-
tion of pathway biomarkers in MESO patients using the
GEPIA database. In GEPIA, CYP3A4 (A), ACAT2 (B),
CYP27A1 (C), PLB1 (D), DPYS (E), GAD1 (F), LTC4S
(G), PTGS1 (H), BCKDHB (I), ACTG1 (J), and ACTN1
(K) were associated with OS on tissue level in GEPIA. Figure
S4: results of external validation using ProgGeneV2.
HMGCL (A), ACAT2(B), CYP27A1 (C), PLB1 (D), GAD1
(E), LTC4S (F), PTGS1 (G), BCKDHA (H), ACTG1 (I),
and ACTN1 (J) were significantly associated with OS of
MESO patients. Figure S5: external validation results using
UALCAN. In UALCAN, CYP3A4 (A), ACAT2 (B),
CYP27A1 (C), PLB1 (D), DPYS (E), GAD1 (F), BCAT1
(G), ACTG1 (H), and ACTN1 (I) were correlated with OS
significantly. Figure S6: results of external validation using
LinkedOmics. (A) Summary of genes positively associated
with OS in MESO; (B) summary of genes negatively associ-
ated with OS in MESO; (C) evaluation of the correlation
between genes and OS; (D, E, F) in LinkedOmics, HMGCL
(D) and LTC4S (E) and BCKDHB (F) were significantly
associated with OS; (G) HMGCL was significantly associated
with distant metastasis; (H) ACTN1 was significantly associ-

ated with distant metastasis. Figure S7: results of external
validation using the UCSC Xena database. In UCSC,
CYP3A4 (A), HMGCL (B), ACAT2 (C), CYP27A1 (D),
PLB1 (E), DPYS (F), LTC4S (G), PTGS1 (H), and ACTN1
(I) were significantly associated with OS of MESO patients.
Figure S8: (A) gene modification information of key factors
derived from cBioPortal database; (B) expression level of
key genes in pleura based on data from the CCLE database.
(Supplementary Materials)
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