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The coronavirus disease 2019 (COVID-19) pandemic has so far damaged the health

ofmillions andhasmade the treatment of cancer patientsmore complicated, and so

did acutemyeloid leukemia (AML). The current problem is the lack of understanding

of their interactions and suggestions of evidence-based guidelines or historical

experience for the treatment of such patients. Here, we first identified the COVID-

19-related differentially expressed genes (C-DEGs) in AML patients by analyzing

RNA-seq from public databases and explored their enrichment pathways and

candidate drugs. A total of 76 C-DEGs associated with the progress of AML and

COVID-19 infectionwere ultimately identified, and the functional analysis suggested

that there are some shared links between them. Their protein–protein interactions

(PPIs) and protein–drug interactions were then recognized by multiple

bioinformatics algorithms. Moreover, a COVID-19 gene-associated prognostic

model (C-GPM) with riskScore was constructed, patients with a high riskScore

had poor survival and apparently immune-activated phenotypes, such as stronger

monocyte andneutrophil cell infiltrations andhigher immunosuppressants targeting

expressions, meaning which may be one of the common denominators between

COVID-19 and AML and the reason what complicates the treatment of the latter.

Among the study’s drawbacks is that these results relied heavily on publicly available

datasets rather than being clinically confirmed. Yet, these findings visualized those

C-DEGs’ enrichment pathways and inner associations, and the C-GPM based on

them could accurately predict survival outcomes in AML patients, which will be

helpful for further optimizing therapies for AML patients with COVID-19 infections.
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Introduction

Acute myeloid leukemia (AML) is a common malignancy in

adults and is characterized by abnormal proliferation of primitive

and naive myeloid cells in the bone marrow and peripheral blood,

which has the lowest 5-year survival rate in all leukemia types

(Döhner et al., 2015;Westermann and Bullinger 2021). Coronavirus

disease 2019 (COVID-19) is an infectious disease caused by the

SARS-CoV-2 virus and is mainly manifested by fever, dry cough,

fatigue, etc. (Cui et al., 2019; V’Kovski et al., 2021). AML patients

have a high risk of getting infected by SARS-CoV-2 owing to their

poor resistance and immunity, and the difficulty of treating is

undoubtedly greatly increased when AML patients are infected

by SARS-CoV-2. Reports on improving the treatment and care

of AML patients infected with COVID-19 are also being published

(Ferrara et al., 2020; Khan et al., 2020). Farah et al. (2020) established

minimal residual disease monitoring in the treatment of NPM1-

mutant AML for someone who used updated chemotherapy that

had fewer myelosuppressive regimens. Patel et al. (2021)

demonstrated that AML patients could activate the immune

responses to SARS-CoV-2 even facing immune suppression by

chemotherapy. In addition, many studies have previously found

that certain gene sets (such as autophagy and immunity) are

important in the progression of AML, while the role of COVID-

19-related genes in its process is still unknown (Yan et al., 2019; Fu

et al., 2021). Thus, identifying the regulatory molecules between

them may facilitate providing novel and effective therapeutics for

AML patients with COVID-19. In this study, we attempt to identify

COVID-19-related differentially expressed genes (C-DEGs), explore

their interactions with one another, and discover their candidate

drug molecules by multiple bioinformatics. Another prognostic

model was constructed through those identified DEGs, and the

prognosis performancewas validated in theGSE37642 database, and

its relationship to the immune microenvironment was also

subsequently assessed (Figure 1).

Materials and methods

Download and processing of the AML
dataset

First, we have comprehensively analyzed the RNA-seq datasets

of AML subjects, which were downloaded from The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/), Genotype-

Tissue Expression (GTEx, https://gtexportal.org/home/), and Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

databases. A total of 176 patients with AML in TCGA,

FIGURE 1
Flow diagram exhibiting the process analysis of the study.
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70 normal samples in GTEx, and 194 AML patients and 20 healthy

subjects in GSE114868 were used to identify differentially expressed

genes. Limma packages with normalizeBetweenArrays function

were utilized to merge and emend the data from TCGA and

GTEx databases. Additionally, we extracted samples from the

clinic in TCGA, according to the following criteria: (a) removing

duplicated subjects referred to as formalin-fixed and paraffin-

embedded; (b) dislodging subjects with insufficient clinical data;

and (c) taking the average of duplicated genes or the same ensemble

ID. In total, 152 patients in TCGA and 553 patients in

GSE37642 were ultimately incorporated into our study to

construct a prognosis model and evaluate its predictive

performance (Table 1).

Identification of COVID-19-related
differentially expressed genes and
functional enrichment analysis

The COVID-19-related gene sets comprising 3,804 genes were

downloaded from the Gene Set Enrichment Analysis (GSEA, http://

www.gsea-msigdb.org/gsea/index.jsp) database. The Limma

package (http://bioconductor.org/packages/release/bioc/html/

limma.html) with Benjamini–Hochberg correction and the

DESEq2 package (http://bioconductor.org/packages/release/bioc/

html/DESeq2.html) were applied to identify differentially

expressed genes using Padj <0.001 as all screening criteria.

C-DEGs were identified by Venn analysis, and their annotations

and functional enrichment analysis on Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed

by “clusterProfiler” and “enrichplot” packages, respectively. A

p-value < 0.05 was deemed as a threshold.

Protein–protein interaction network
analysis and hub genes’ identification

The protein–protein interaction network is composed of

proteins that interact with each other to participate in all

aspects of biological processes such as signal transmission,

gene expression regulation, energy and material metabolism,

and cell cycle regulation. Information about the roles of

multiple proteins in cells can be integrated into databases

and visualized through protein network diagrams.

GeneMANIA (http://genemania.org/) (Franz et al., 2018)

and STRING (version 11.5, https://string-db.org/)

(Szklarczyk et al., 2021) were utilized to explore the PPI

networks and hub genes of those identified C-DEGs for

further understanding of the physical and functional

interactions between AML and COVID-19. All results were

visualized by Cytoscape (v.3.7.1, https://cytoscape.org/)

(Shannon et al., 2003), which is an open-source network

visualization tool to produce an improved performance for

different interactions.

Exploration of candidate drugs

In addition, we also explored the protein–drug interactions

or candidate drugmolecules based on these identified C-DEGs by

TABLE 1 Basic information on datasets in the study.

Series
accession
number

Platform
used

No.
of
normal
samples

No.
of tumorous
samples

FAB morphology
code
(%)

Gender
(%)

Mean
age
[min,
max]

Vital
status
(%)

Survive
time
(�x± s)

Merge (GTEx
and TCGA-
LAML)

Illumina RNAseq 70 179 (153 samples
with complete
clinical data)

M0: 13 (8.5); M1: 34
(22.2); M2: 35 (22.9)

Female:
73 (47.8)

54.2 [18,
88]

Alive:
59 (38.6)

620.8 ±
585.2

M3: 14 (9.2); M4: 34
(22.2); M5: 17 (11.1); M6:
2 (1.3); M7: 3 (2.0)

Male:
80 (52.2)

Dead:
94 (61.4)

Unknown: 1 (0.7)

GSE114868 Affymetrix Human
Transcriptome Array 2.0
(GPL17586)

20 194 NA NA NA NA NA

GSE37642 Affymetrix Human Genome
U133A Array (GPL96) and
Affymetrix Human Genome
U133 Plus 2.0 Array (GPL570)

0 553 M0: 22 (4.0); M1: 113
(20.4); M2: 164 (29.7)

NA 54.9 [18,
85]

Alive:
147 (26.6)

997.0 ±
1,292.5

M3: 26 (4.7); M4: 121
(21.9); M5: 66 (11.9); M6:
22 (4.0); M7: 3 (0.5)

Dead:
406 (73.4)

Unknown: 16 (2.9)

Abbreviation: FAB, French American British.
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the Drug Signatures Database (DSigDB) via Enrichr (https://

maayanlab.cloud/Enrichr/), and the latter is a web-based

comprehensive gene set enrichment analysis tool and can

utilize the DSigDB resource to explore related drugs and small

molecules.

Construction of the risk model and
analysis of its effect on tumor-infiltrating
immune cells and expression of common
or emerging immune checkpoints

Samples with completed clinical data in TCGA and

GSE37642 databases were applied to construct and validate

a prognosis model related to C-DEGs, respectively.

Univariate Cox and LASSO regression analyses identified

the potential prognosis-associated C-DEGs, and then,

multivariate Cox regression analysis was executed to build

COVID-19 gene-related prognostic models (C-GPMs) and to

assure it was not overfitted. The risk score (riskScore) of each

individual was estimated by the following formula:

riskScore = [Coefficient 1] p [Expression1] + [Coefficient

2] p [Expression 2] + [Coefficient 3] p [Expression 3] +

[Coefficient n] p [Expression n], and the coefficient of

each factor was calculated by the LASSO-Cox model. The

Kaplan–Meier curve and the receiver operating characteristic

curves (ROCs) were utilized to measure the discriminative

ability of the C-GPM. In addition, to explore the relationship

of this model on the immune microenvironment, the ssGSEA

and ESTIMATE algorithms were utilized to calculate the

abundance of tumor-infiltrating immune cells (TIICs) and

the scores of the tumor microenvironment in each sample,

and their correlation and differentiation were separately

analyzed by Spearman analysis and Wilcoxon signed-

rank test, as they were common or emerging immune

checkpoints.

Cell culture and treatment

The AML cell line KG-1 was provided by Shanghai Yihe

Applied Biotechnology Co., Ltd. and was cultured in RPMI-1640

(Gibco, Life Technologies, Carlsbad, CA, USA) that contained

10% fetal bovine serum and 1% penicillin/streptomycin. Cells

were grown in a humidified atmosphere with 5% CO2 at 37°C.

KG-1 cells were seeded in complete RPMI-1640 medium at

appropriate cell numbers and then incubated in the presence

of ATRA or RAD001 for the indicated times. RAD001

(everolimus) and all-trans retinoic acid (ATRA) were

purchased from APExBIO (Houston, USA) and Sigma

Chemical Co. Ltd. (St. Louis, MO), respectively. RNA

isolation and real-time PCR were performed based on the

corresponding kit instructions.

Cell counting Kit-8

The CCK8 assay was conducted in accordance with the

manufacturer’s instructions (GK10001, GLPBIO). For the

assay, 2000 cells/well in 96-well plates containing 100 μL of

the culture medium were seeded. A measure of 10 μL of the

CCK8 reagent was added to each well at the indicated time, and

the plates were given shock for 20 s and then incubated at 37 °C

for 2 h. Lastly, we measured the OD value of each hole at 450 nm.

These experiments were performed with three replicates, and five

parallel samples were measured each time.

Statistical analysis

Statistical analyses were performed by R software (version:

3.5.2) with multiple packages (including Limma, ggplot2, glmnet,

rms, preprocessCore, survminer, and ConsensusClusterPlus) and

GraphPad Prism (version 8.4.3, La Jolla, CA, United States)

software. Student’s t-test was used to test for significant

differences between any two groups of data, and one-way

ANOVA was used when evaluating multiple groups of data.

All hypothetical tests were two-tailed, and a p-value < 0.05 was

considered statistically significant.

Result

Identification of common DEGs
associated with COVID-19 in acute
myeloid leukemia and enrichment analysis

The COVID-19-related gene sets comprising 3,804 genes

were downloaded from the GSEA database (Supplementary

Table S1). A total of 76 C-DEGs were identified with

DESeq2 and Limma packages using the adjusted p-value <
0.001 as screening criteria (Figure 2A, Supplementary Tables

S2 and S3). The top 15 enriched GO terms strikingly exhibited in

the bubble chart were intimately concerned with immune

inflammation and tumor progressions, such as the positive

regulation of cytokine production, the cytokine-mediated

signaling pathway, myeloid leukocyte activation, leukocyte

chemotaxis, and migration in biological processes (BP);

immune, cytokine, and pattern recognition receptors’ activity,

heat shock protein binding, and protein folding chaperone in

molecular function (MF); and secretory and tertiary granule

lumen, cytoplasmic vesicle lumen, and tertiary granule in

cellular component (CC) (Figure 2B) (Supplementary Table

S4). The KEGG pathways were mainly involved in

hematopoietic cell lineage, viral protein interaction with

cytokines and cytokine receptors, cytokine–cytokine receptor

interaction, and other immune or viral infection-related

pathways (Figure 2B) (Supplementary Table S5).
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Construction of the protein–protein
interaction network and identification of
their candidate drugs

Next, a PPI network was built to systematically analyze the

interaction of those C-DEGs in biological systems and

understand the response mechanism of biological signals and

energy metabolism in special physiological states in-depth, as

well as the functional connections among proteins. In our study,

PPI networks associated with C-DEGs were constructed through

GeneMANIA and STRING tools, and 15 hub signatures (TNF,

ITGAM, CCL4, IL7R, CD28, CXCR1, S100A12, CD2, TREM1,

FPR1, CD3E, CD34, NCF2, KIT, and CXCR2) were identified

based on the network maximal clique centrality (MCC)

algorithm of Cytoscape plugin (cytoHubba) (Figure 3A).

NetworkAnalyst 3.0 and DrugBank were then employed to

FIGURE 2
Identification and enrichment analysis of C-DEGs. (A)C-DEGs were identified by Venn analysis. GO (B) and KEGG (C) analyses of those C-DEGs.

FIGURE 3
Construction of PPI (A) and protein–drug interaction (B) networks on those identified C-DEGs byGeneMANIA, STRING, Enrichr, and Cytoscape.
Pink represents core C-DEGs that were identified by the MCC algorithm of the Cytoscape plugin (cytoHubba), green represents other C-DEGs, sky
blue represents co-expressed genes identified by GeneMANIA, and ginger represents candidate drugs obtained in DSigDB via the Enrichr database.
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explore potential and available drugs targeting these C-DEGs,

and a total of 101 drugs were separated using an adjusted

p-value <0.001 as the threshold (Supplementary Table S6).

Here, we visualized 11 of them that targeted more genes,

including estradiol, benzo [a]pyrene, decitabine, progesterone,

ZINC, cephaeline, arsenenous acid, emetine, mebendazole, and

phorbol 12-myristate 13-acetate (Figure 3B).

Construction and validation of a risk
model with four C-DEGs for AML

To explore whether these C-DEGs are associated with

patients’ overall survival, a total of 19 genes were integrated

into the Lasso regression analyses after univariate Cox

regression (p-value < 0.05, Figures 4A,B; Supplementary

Table S7). A multivariate Cox proportional hazards

regression model was subsequently utilized to construct

the C-GPM with riskScore; patients were divided into

high- and low-risk groups using the median riskScore as

cutoff (Supplementary Table S8). A C-GPM consisting of

four genes (TNF, ITGAM, HSPA1B, and HCP5) was

identified, and they could all serve as independent indices

for predicting the patients’ overall survival (Figure 4C).

ITGAM, HSPA1B, and HCP5 were then confirmed to

negatively correlate with the prognosis of AML patients

using the Kaplan–Meier method (Figure 4D), and patients

with high riskScore had significantly shorter overall survival

than those with low riskScore and a favorite prognostic

predictive value in determining the survival rates of AML

patients (1-year AUC = 0.694, 3-year AUC = 0.751, and 5-

year AUC = 0.772; Figure 4E (a) and (b)). Furthermore, the

principal component analysis (PCA) and t-distributed

random neighbor embedding (t-SNE) analysis showed that

the C-GPM could well differentiate patients into two

different risk groups (Figure 4Ec). These findings

were subsequently validated in the GSE37642 database

(Figure 4F).

FIGURE 4
Construction and validation of a risk model associated with identifying C-DEGs. (A)Nineteen C-DEGs with prognosis in AML were identified by
univariate Cox regression analysis (p < 0.05). (B,C) LASSO- and multivariate Cox regression analyses were applied to build a risk model (C-GPM), and
the forest map exhibited four C-DEGs with their p values and hazard ratios (HR) with confidence intervals (CI). (D) Kaplan–Meier method was used to
calculate their differences in overall survival. (E) Predictive and discriminative abilities of the C-GPM in AMLwere evaluated bymultiplemethods,
including survival- (a), ROC- (b), PCA-, and t-SNE (c) analyses. (F) Validation of the predictive and discriminative abilities of the C-GPM in the
GSE37642 dataset.
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Effects of the C-GPM on the immune
status and tumor microenvironment

In addition, several recent studies have indicated that the

abundance of TIICs within the tumor microenvironment

(TME) could predict phases of tumor inflammation and

were related to the poor prognosis of AML patients. Thus,

we explored the impact of the C-GPM on them based on

ssGSEA and ESTIMATE algorithms. The cohort was

stratified into high riskScore (N = 76) and low riskScore

(N = 77) groups according to their medians; most TIICs were

more abundant in high-risk groups (Wilcoxon signed-rank

test, p-value < 0.05, Figure 5A), and stromal (StromalScore),

immune (ImmuneScore), and ESTIMATE

FIGURE 5
Evaluation of the relationship between the C-GPM and immune microenvironment. (A,B) Differences in common TIICs and the tumor
microenvironment in the C-GPM were assessed, and the results indicated that patients in the high-risk group had a more pronounced immune or
inflammatory activation phenotype. (C) Exploration of the difference between GZMA and GZMB that represents immune infiltration and immune
cytolytic activity in the C-GPM. (D)Heatmap was used to directly show the correlation between the C-GPMwith four C-DEGs and the immune
microenvironment. (E,F) Exploration of whether emerging therapeutic targets are differentially expressed in the two distinct groups of the C-GPM
and analysis of their correlation with riskScore. (G) Analysis of the correlation between the novel therapeutic target (FLT3) and riskScore. (H) Survival
analysis of FLT3 with or without riskScore. (I) Analysis of the effect of the C-GPM on the sensitivity of midostaurin and sorafenib that modulates the
receptor tyrosine kinase FLT3. (J) Analysis of the effect of the C-GPM on the sensitivity of other common AML drugs.
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(ESTIMATEScore) scores were all increased with statistically

significant differences in the high-riskScore group, while the

tumor purity (TumorPurity) was contrary to their trend

(Wilcoxon signed-rank test, p-value < 0.05, Figure 5B).

Also, we explored the expression levels of granzyme A

(GZMA) and granzyme B (GZMB) representing immune

infiltration and immune cytolytic activity (Arias et al.,

2017). They all showed higher expression in the high-

riskScore group, as was expected (Wilcoxon signed-rank

test, p-value < 0.05, Figure 5C). All these findings

suggested that patients with high riskScore had more

pronounced immune and inflammatory responses along

with more risks and worse prognoses (Figure 5D).

Analysis of the impact on immunotherapy
and evaluation of sensitivity to commonly
used drugs

Many explorations have shown that immune checkpoint

testing is a reliable way to assess the patient’s response to

immunotherapy, which is blossoming into the backbone of

cancer treatment, while AML patients with high expression of

conventional immune checkpoints [such as programmed cell

death 1 (PDCD1, best known as PD1)] did not well benefit

from immunotherapy based on most clinical trials, and these

are closely related to immune complications in AML patients.

In our study, patients with high riskScore had higher

expressions of the common immune checkpoints such as

PD1, programmed cell death ligand 1 (PDL1/CD274), and

cytotoxic T-lymphocyte antigen 4 (CTLA4) and had lower

levels of the emerging checkpoints including fms-like

tyrosine kinase-3 (FLT3), isocitrate dehydrogenase (NADP

(+)) 2 (IDH2), and B-cell leukemia/lymphoma 2 (BCL2)

(Figures 5E,F). Additionally, studies have shown that

FLT3 is highly expressed in more than 70% of AML

patients, and for this, it was considered an important

target for the treatment of AML. Here, the

FLT3 expression was negatively correlated with riskScore

and prognosis of patients with AML; patients with low

FLT3 combined with low riskScore had significantly better

overall survival than others. Also, those with low riskScore

had more sensitivity to drugs, such as midostaurin and

sorafenib, that modulate the receptor tyrosine kinase

FLT3; the former has been approved as a new treatment

option for relapsed or refractory FLT3-mutated AML

(Figures 5G–I). In addition, we also explored the effect of

C-GPM on the sensitivity of other common AML drugs, and

patients in the high-riskScore group were more sensitive and

beneficial to cytarabine, camptothecin, thapsigargin,

nilotinib, and tipifarnib but were less sensitive to

rapamycin. The sensitivity to doxorubicin had no

significant difference in both groups (Figure 5J).

HCP5 might be a novel prognostic
immune-related biomarker of AML

Also, we delved into the differential expression of these four

genes between AML and healthy patients, high-, and low-risk

groups, respectively (Figure 6A). HCP5 and ITGAM were both

highly expressed in AML patients and high-risk groups, and the

latter was considered a marker for monocytes, and a very strong

correlation between them was confirmed (Figure 6B). HSPA1B, a

receptor that assisted virus entry into cells, is highly expressed in

patients in the high-risk group, while TNF has no significant

difference in both risk groups. Among them, HCP5 has been

shown to have a prognostic role in multiple external datasets, and

its high expression is closely associated with poor prognosis in

AML (Figure 6C). We subsequently found in vitro that silencing

of HCP5 significantly affected the proliferation of KG-1 cells

derived from the human acute myelogenous leukemia cell line

(Figures 6D,E). We identified 413 genes significantly associated

with HCP5 through the LinkedOmics database and found that

they were mainly associated with immunity in AML patients,

including regulation of T-cell activation, lymphocyte-mediated

immunity, and Th17 cell differentiation (Supplementary Figure

S1). Additionally, all-trans retinoic acid (ATRA) is a traditional

drug for the treatment of AML, and everolimus (RAD001) is a

new type of immunosuppressant. ATRA (1 μM) in combination

with RAD001 (10 nM) strikingly downregulated the expression

of HCP5. Notably, RAD001 (10 nM) significantly enhanced the

ATRA-inhibited cell growth, and these were more pronounced in

HCP5-silenced cells (Figure 6F).

Discussion

The COVID-19 pandemic has been going on worldwide for

over two years; although posing a huge threat to the health of

normal people, it also seriously affects the treatment of cancer

patients (Henderson et al., 2021). AML is the most common

leukemia in adults and accounts for about 80% of all cases, and its

treatment and care have been further complicated by the

COVID-19 pandemic (Ferrara et al., 2020; Wilde et al., 2020).

In this study, we attempted to analyze the potential connections

between COVID-19 infections and AML and to explore its

impact on prognosis and candidate medications’ susceptibility

of AML patients with COVID-19, providing a new insight into

their clinical diagnosis and treatment.

Here, we identified 76 C-DEGs in AML, and they were

mainly involved in hematopoietic cell lineage, viral protein

interaction with cytokines and cytokine receptors,

cytokine–cytokine receptor interaction, and other viral

infection or tumor progression pathways. In addition, the PPI

network constructed by STRING and GeneMANIA has shown

that most of them have obvious interactions, and 15 hub C-DEGs

(TNF, ITGAM, CCL4, IL7R, CD28, CXCR1, S100A12, CD2,
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TREM1, FPR1, CD3E, CD34, NCF2, KIT, and CXCR2) were

identified and were involved in the maintenance of human

homeostasis. Meanwhile, their candidate drugs were also

explored, multiple drugs (estradiol, benzo [a]pyrene,

decitabine, progesterone, ZINC, cephaeline, arsenenous acid,

emetine, mebendazole, and phorbol 12-myristate 13-acetate)

were identified, and most have been reported to have

antitumor effects. For example, mebendazole has been

reported to exhibit potent antileukemic activity against AML,

and it is considered to have the potential to bind to SARS-CoV-

2 B.1.1.7 (alpha) and P.1 (gamma) variants (He et al., 2018; Yele

et al., 2022).

Subsequently, a C-GPM consisting of four genes (TNF,

ITGAM, HSPA1B, and HCP5) was constructed by multiple

analyses, and these genes could serve as independent indices

for predicting the patients’ overall survival. TNF, generally

known as TNF-α, is mainly secreted by mononuclear

macrophages and is a cytokine involved in systemic

inflammation. Some studies have reported that TNF can

inhibit the replication of different viruses to exert antiviral

effects, as well as regulate the function of immunocytes (Liu

et al., 1998; Bruunsgaard et al., 2003). Integrin subunit alpha M

(ITGAM) is implicated in mediating the uptake of pathogens and

in various adhesive interactions of macrophages, monocytes, and

granulocytes, and it is also required for CD177-PRTN3-mediated

activation of TNF-sensitized neutrophils (Boguslawska et al.,

2016; Lyu et al., 2020). Heat shock protein family A (Hsp70)

member 1B (HSPA1B) is one of three protein-encoding genes

belonging to the HSP70 family and is involved in the human

immune response after infection with Epstein–Barr virus,

Legionella, and influenza A (Sistonen et al., 1994; Soncin

et al., 1997; Kiang and Tsokos, 1998). HLA complex P5

FIGURE 6
Exploration of the relationship between these genes in the model and AML. (A) Analysis of differential expressions of these four genes between
AML and healthy patients (a), high-, and low-risk groups (b), respectively. (B) Assessment of their correlation with monocytes. (C) Survival analysis of
HCP5 in the GSE37642 dataset showed that its expression was associated with prognosis. (D,E) CCK8 results showed that silencing of
HCP5 significantly affected the proliferation of KG-1 cells. (F,G) ATRA (1 μM) in combination with RAD001 (10 nM) strikingly downregulated the
expression of HCP5 and inhibited cell growth, especially in HCP5-silenced cells.
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(HCP5) is a long non-coding RNA, and emerging studies have

recently indicated that it plays an important role in the

progression of AML. Research has shown that

HCP5 promoted lung adenocarcinoma metastasis via the

miR-203/SNAI axis and tumor growth and upregulated the

expression of PD-L1/CD274 via a competing endogenous

RNA mechanism of sponging miR-150–5p, and these were

also consistent with our findings (Jiang et al., 2019; Xu et al.,

2020). The C-GPM could well stratify patients into high- and

low-risk groups based on their median riskScores, and patients in

the former had worse overall survival, which had also been

demonstrated in external cohorts.

Furthermore, we explored the impact of the C-GPM on the

immune microenvironment, which was considered a vital

criterion in tumor progression and metastasis. The results

suggested that patients with high riskScore had more TIICs,

higher scores of the tumor microenvironment, and lower tumor

purity, implying their immune and inflammatory responses were

in a more active state, which increased the difficulty of treatment

and the risk of life for AML patients. Notably, patients with high

riskScore were shown to have a poor prognosis; this

phenomenon may be associated with their immune active

status, including immune checkpoints that are highly

expressed. Many explorations have shown that immune

checkpoint testing is a reliable way to assess the patient’s

response to immunotherapy, which is blossoming into the

backbone of cancer therapy. Studies show that AML patients

with high expression of conventional immune checkpoints (such

as PD1, CD274, and CTLA4) did not benefit from

immunotherapy, and these are closely related to immune

complications (Berger et al., 2008; Chen et al., 2020). In this

study, patients with high riskScore had significantly poor

prognoses and had obviously high expressions of common

immune checkpoints, including PD1, CD274, and CTLA4.

With the rapid development of targeted therapy, more and

more targets have been discovered with the potential for

anticancer, which means that more patients are expected to be

covered by targeted therapy drugs. FLT3 is a type III receptor

tyrosine kinase (RTK) and plays an important role in the

proliferation, differentiation, and survival of hematopoietic

stem cells and precursor B cells (Smith et al., 2012; Wu et al.,

2018). FLT3 can lead to abnormal cell proliferation and induce

tumorigenesis, especially those closely related to the occurrence

and development of AML. Studies have shown that FLT3 is

highly expressed in more than 70% of AML patients, and for this,

FLT3 is considered an emerging important target for the

treatment of AML (Gebru and Wang, 2020). Here, the

FLT3 expression was negatively correlated with riskScore and

prognosis of patients with AML, patients with low

FLT3 combined with low riskScore had significantly better

overall survival than others, and those with low riskScore had

more sensitivity to its inhibitors, such as drugs like sorafenib and

the recently approved midostaurin for relapsed or refractory

FLT3-mutant AML (Antar et al., 2017; Brinton et al., 2020;

Döhner et al., 2020). In addition, we also explored the effect

of the C-GPM on the sensitivity of other common AML drugs,

and patients in the high-riskScore group were more sensitive and

beneficial to cytarabine, camptothecin, thapsigargin, nilotinib,

and tipifarnib but were less sensitive to rapamycin. Among them,

nilotinib, a second-generation tyrosine kinase inhibitor, is

primarily utilized in the treatment of chronic myeloid

leukemia and has limited results in the treatment of AML.

According to studies, nilotinib has a considerable suppressing

effect on CD8+ T-lymphocyte activity, which could be one of the

reasons why it is more sensitive to patients with a high riskScore

(Chen et al., 2008). Tipifarnib is a chemical being explored for the

treatment of AML and other types of cancer, and it exhibits

substantial immunosuppression. These features may be used as a

targeting approach in AML therapy in high-riskScore patients

with strong immune activation (Bai et al., 2012; Guo et al., 2020).

Additionally, the sensitivity of doxorubicin had no significant

difference in both groups; this may be because doxorubicin

promotes tumor cell metastasis by releasing inflammatory

chemicals, which in turn aggregates monocytes and

macrophages and worsens the underlying illness (Keklikoglou

et al., 2019). Thapsigargin has antiviral properties and is thought

to help curb the spread of epidemics including COVID-19 (Al-

Beltagi et al., 2021a; Al-Beltagi et al., 2021b). These results suggest

that there are established links between COVID-19 infection and

AML progression, and they are related to the overall immune

status of patients.

In addition, we did not retrieve reports using public datasets

to explore the role of COVID-19-related gene sets in AML

patients, although there have been many reports in other

tumors. For example, Huang et al. identified a novel

prognostic signature and nomogram based on SARS-CoV-2-

related genes as reliable prognostic predictors for KIRC patients

and provided potential therapeutic targets for KIRC with

COVID-19 infection, and Liang et al. revealed commonality

in specific gene expression by patients with COVID-19 and

LUAD (Huang et al., 2021; Liang et al., 2022). Both COVID-

19 and cancers provide complicated challenges that require

ongoing research and development in medicine. It is

challenging to confirm the results of most research excursions

in the clinic because they rely on publicly available datasets,

which is one of the primary reasons why these methods have, up

to this point, been unable to produce convincing findings.

Additionally, the methods by which these putative differential

genes contribute to AML development or COVID-19 infection

have not been exhaustively investigated.

Conclusion

AML patients have a high risk of getting infected by SARS-

CoV-2 owing to their poor resistance and immunity, so we have
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analyzed the potential interactions between AML and COVID-19

infection by multiple bioinformatics, such as identifying C-DEGs,

exploring their interactions with one another, and discovering

candidate drug molecules by the DSigDB database. In addition, a

prognostic model with satisfactory prediction performance was

constructed through these identified C-DEGs, and patients were

divided into high- and low-risk groups with distinct overall survival.

We found that patients in the former had poor prognoses and had

apparently immune-activated phenotypes, such asmore immune cell

infiltrations and higher expression of immunosuppressive points.

Instead, patients in the latter had more sensitivity to emerging

targeted inhibitors, such as midostaurin and sorafenib that

modulate the receptor tyrosine kinase FLT3. At present, the

number of people infected with SARS-CoV-2 is still increasing

sharply; more research studies on the commonality of COVID-19

and other diseases are necessary to provide more treatments for

patients.
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