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Head and neck squamous cell carcinoma (HNSCC) is the fifth most common cancer in men with an incidence of about 780 000 new
cases per year worldwide and a poor rate of survival. There is a need for a better understanding of HNSCC, for the development of
rational targeted interventions and to define new prognostic or diagnostic markers. To address these needs, we performed a large-
scale differential display comparison of hypopharyngeal HNSCCs against histologically normal tissue from the same patients. We have
identified 70 genes that exhibit a striking difference in expression between tumours and normal tissues. There is only a limited overlap
with other HNSCC gene expression studies that have used other techniques and more heterogeneous tumour samples. Our results
provide new insights into the understanding of HNSCC. At the genome level, a series of differentially expressed genes cluster at
12p12–13 and 1q21, two hotspots of genome disruption. The known genes share functional relationships in keratinocyte
differentiation, angiogenesis, immunology, detoxification, and cell surface receptors. Of particular interest are the 13 ‘unknown’ genes
that exist only in EST, theoretical cDNA and protein databases, or as chromosomal locations. The differentially expressed genes that
we have identified are potential new markers and therapeutic targets.
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Head and neck squamous cell carcinoma (HNSCC) arises from the
surface epithelium of the upper-aerodigestive tract (pharynx,
hypopharynx, and larynx) and the oral cavity. Extensive epide-
miological studies show that alcohol potentiates tobacco-related
carcinogenesis and is also an independent risk factor. Head and
neck squamous cell carcinoma is the fifth most common cancer in
men with an incidence of about 780 000 new cases per year
worldwide (Sankaranarayanan et al, 1998). Surgery and radio-
therapy are highly effective in the treatment of stage I and II
tumours, but over 70% of patients present with locoregionally
advanced stage III or IV disease. Locoregional disease recurs in
60% of patients and metastatic disease develops in 15– 25%
(Genden et al, 2003). Furthermore, patients develop second
primary tumours at an annual rate of 3– 7% (Leon et al, 2002).
However, less than 30% of HNSCC patients are free of disease after
3 years, and 5-year survival rates have remained largely unchanged
in the last three decades (Dimery and Hong, 1993). The
characterisation of the molecular determinants of the head and
neck carcinogenesis process is essential for the better under-
standing of this malignancy and the development of rational
targeted intervention.

Specific genes have been associated with the development
or presentation of HNSCC, but these individual alterations
have failed to define prognostic or diagnostic markers (reviewed
in Leonard et al (1991) and Scully et al (2000)). Addressing
this issue requires large-scale analysis of gene expression
profiles. A number of recent studies have reported gene
expression profiles of small numbers of HNSCC patients using
commercial or focused microarrays (Leethanakul et al, 2000;
Xie et al, 2000; Alevizos et al, 2001; Al Moustafa et al, 2002;
Belbin et al, 2002; El-Naggar et al, 2002; Mendez et al, 2002). The
microarray analysis is limited by the set of genes on the
arrays, whereas polymerase chain reaction differential display
(PCR-DD) randomly samples the transcriptome. The PCR-DD has
been used to discover novel genes that would not have been
identified using methodologies that cover a predefined range of
genes (Glynne-Jones et al, 2001; Sasaki et al, 2001; Ying
et al, 2001). We have performed the first randomised
comparative analysis of gene expression of HNSCC patients using
PCR-DD. We did not use microdissected tumour or normal
components for this analysis since numerous studies have shown
that the host tumour microenvironment influences tumour cells
(van den Hooff, 1988; Nelson et al, 2000; Coussens et al, 1999; St
Croix et al, 2000). We have identified a series of novel genes that
exhibit striking differences in expression between HNSCC tumours
and histologically normal matched tissues. They should contribute
to a better understanding of HNSCC and provide new targets for
therapeutics.
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MATERIALS AND METHODS

Samples

Hypopharyngeal tumours and the corresponding histologically
normal tissue, used with consent, were derived from surgical
resections of squamous cell carcinoma. The patients had not been
treated at the time of surgery, but were subsequently treated with
radiotherapy. The samples used were resected near the advancing
edge of the tumours avoiding their necrotic centres. They were
comprised of 70–80% cancer cells in almost all cases, as assessed
on adjacent histological stained sections. Normal samples were
collected from the farthest margin of the surgical resections
(usually uvula). The tumours were classified according to TNM
stages (tumour, node, metastasis) based on the UICC criteria
(Sobin and Wittekind, 1997), and grouped into three categories.
The early (E) stage corresponds to small-sized tumours (T1/T2),
moderately to well differentiated, without lymph node involve-
ment. The two later-stage tumour types were of medium size (T2/
T3), homogeneous differentiation and lymph node involvement
(N1–N2c). At the time of resection, these later-stage tumours
appeared clinically and histologically similar. However, during 3-
year follow-up, one group of patients did not develop metastases
(no metastatic propensity: NM), whereas the other developed
metastases predominantly in the lung, bone, and liver (with
metastatic propensity: M).

PCR-Differential display

Total RNA was isolated with RNAeasy (Qiagen, Courtaboef, France),
DNAseI treated, column purified (Qiagen) and pooled according to
the tumour type (3 E, 2 NM and 2 M patients). The corresponding
normal RNAs were similarly pooled. The PCR-DD was performed
on the pooled samples using 58 50 primers (HAP) in combination
with three 30 primers (HT11A/G/C) according to the GenHunter
protocol and as described by Liang et al (Liang, 1998). All samples
were prepared in duplicate from the reverse transcription stage to
reduce experimental variability. Differential bands were isolated,
reamplified with the corresponding primers, verified by agarose gel
electrophoresis, and cloned in the pGEMt-Easy vector (Promega,
Charbonnères, France). Eight colonies per band were expanded in
liquid culture. A volume of 2ml of the cultures were used for PCR, in
the same conditions as the reamplification, with the pGEME1 and
pGEME2 primers (50-CGC GGT ACC GGA TCC ATG CAT TGG CGG
CCG CGG GAA TTC-30 and 50-CGC GGT ACC GGA TCC ATG CAT
CAT ATG GTC GAC CTG CAG-30, respectively). The fragments
(50–800 base pairs) were verified by agarose gel electrophoresis,
and subsequently the DNA was spotted directly onto nitrocellulose
membranes (Hybond Nþ , Amersham, Les Ulis, France) using a 96-
well vacuum-driven dot blot manifold (Bio-Rad, Marnes-la-Co-
quette, France). Filters underwent denaturation (1.5 M NaCl, 0.5 M

NaOH) and neutralisation (1.5 M NaCl, 0.5 M Tris-HCl pH 7.2,
0.001 M EDTA) followed by UV cross-linking.

Table 1 Real-time quantitative PCR primers and reaction conditions.

Clone Primer PCR

Name Acc. no. Name Sequence Location Size (bp) T (1C), [MgCl2] (mM), [NTP] (lM)

EMP1 NM_001423.1 EMP1-2F GACCTCATGCCATGGTCTTT 1393–1412 237 62, 4, 0.5
EMP1-2R CTGCATTGAGGGGAATCCTA 1556–1575

PIGR AF272149.2 TB6-1F CCACCGTGGAGATCAAGATT 1532–1551 186 62, 4, 0.5
TB6-1R CAGCCCGTGTTATTCCACTT 1669–1688

PON2 NM_000305 AEY125-F GCCAACAATGGGTCTGTTCT 993–1012 198 62, 4, 0.5
AEY126-R TGGGTCAATGTTGCTGGTTA 1171–1190

Apol2 AF305225 AEY131-F AGGCAGATGAGCTCCGTAAA 363–382 185 62, 4, 1
AEY131-R GACCTGCTCAACTCCTCTG 528–547

DRG1 D87953 AEY139-F GCTTTGGTCAGAGTGAATTGAA 2717–2736 182 62, 4, 0.5
AEY140-R CCGATCCCCGACTTTTCTAC 2879–2898

PSMD8 NM_004159 AEY147-F GAAGGAAGATGGTTGGGTA 981–998 189 62, 4, 0.5
AEY147-R TCTCTTTGGCTCAGGCTAGG 1150–1169

RP1-68D18 BM285393 EAW253-F TGCAAGTCACCACAACAGGT 153 589–153 608 185 62, 4, 0.5
EAW254-R AGCCTTGCATAAATGGCTGT 153 753–153 773

HSPC150 NM_014176 AEY151-F TGTTCTCAAATTGCCACCAA 390–409 191 62, 4, 1
AEY152-R TTGCATGCTTCTCTGTCCAC 516–580

RPLP0 M17885 RPP0-3F GAAGGCTGTGGTGCTGATGG 224–243 103 62, 3, 1.5
RPLP0-R CCGGATATGAGGCAGCAGTT 307–326

Listed above are the clone names and accession numbers; the primer name, sequence (50 –30) and location on the sequence associated with the accession number; and the PCR
product size and reaction conditions (annealing temperature and concentrations of MgCl2 and NTP).

Table 2 Characteristics of the tumours

Patient Tumour T N M Diff Sex
Age

(years)
Treatment

after surgery Evolution
Disease-free

survival (months)
Overall

survival (months)
Actual
state

1 E 2 0 0 2 M 53 RX 0 11 15 D
2 E 1 0 0 2 M 61 N 0 15 25 D
3 E 2 0 0 2 M 44 N 0 41 41 A
4 NM 3 2b 0 3 M 66 RX 0 54 58 D
5 NM 3 2b 0 2 M 52 RX SC 39 44 A
6 M 2 2c 0 3 M 54 RX M 16 25 D
7 M 3 2b 0 2 M 54 RX M 5 7 D

All the tumours were localised in the hypopharynx. T, N, and M correspond to the TNM nomenclature for tumour stage (tumour, node, and metastasis). Diff (differentiation):
1¼well, 2¼moderate, 3¼ poorly. Treatment after surgery: RX¼ radiotherapy; N¼ no treatment. Evolution: 0¼ no evolution, M¼metastasis, SC¼ secondary cancer. Actual
state: D¼ dead, A¼ alive.
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Reverse Northerns

Owing to the limiting quantity of patient RNA, the SMART cDNA
synthesis system (Clontech, Lee Pont de Claix, France) was used to
reverse transcribe and amplify total RNA to be used as a probe.
The first strand, synthesised from 0.2mg of total RNA, was
amplified for a controlled number of cycles, to ensure linearity, as
described by the manufacturer. The labelling was performed with
100 ng of SMART cDNA and a mix of the DD primers that
originally generated the clones. The probes were purified through
Sephadex G50 columns (Bio-Rad). The filters were hybridised in
10% dextran sulphate/0.1% SDS/10 mM NaCl overnight at 651C,
washed to a stringency of 0.2� SSC/0.1% SDS at 651C and exposed
on Biomax film for 3 –24 h at �801C, and subsequently on
Molecular Dynamics PhosphorImager screens (Orsay, France) for
quantification on a Typhoon PhosphorImager analyser (Orsay,
France). Positive clones were then expanded from the original
liquid cultures and plasmid DNA extracted using standard alkaline
lysis followed by purification through Nucleospin miniprep
columns (Macherey-Nagel, Hoebdt, France). The sequences of

the inserts were analysed with the BLAST algorithm at http://
www.ncbi.nlm.nih.gov/blast/. Positive clones were then confirmed
at least twice with probes generated (as above) from two
independent SMART cDNA preparations. The filters included
control positive clones that were systematically used for cross
comparison.

Classical Northerns

Total RNA was extracted from tissue samples with Trizol (Life
Technologies, Cergy Pontoise, France). A measure of 20 mg of RNA
was subjected to agarose/6% formaldehyde gel electrophoresis,
then transferred to Hybond Nþ membranes (Amersham). [32P]-
labelled probes were generated with the Rediprime system
(Amersham). Membranes were prehybridised and hybridised in
50% formamide at 421C according to the manufacturer’s

Sample
preparation

Reverse
Northern

PCR
differential

display

Confirmation
of expression

Analysis

Tumours identified and
characterised by histopathology

and patient history

RNA extracted and DNAseI treated

Reverse transcription
3×3′ primers (HT11A/G/C)

PCR 
3′ primer (HT11A/G/C) 

5′ primer (58×5′ HAP primers)

1750 bands isolated

14 000 clones tested

36 genes tumour + 
34 genes tumour −

Classical Northerns,
virtual Northerns,

real-time quantitative PCR

Functional links
between

candidates

Figure 1 Flowchart outlining the study. The flowchart indicates how the
tumour samples were selected and processed, the PCR-DD primers that
were used and the number of bands isolated, the number of clones tested
by reverse Northern, the resulting number of genes identified, the types of
confirmation used to validate the results, and the bioinformatics analysis to
analyse the results.
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Figure 2 Differential display gel comparing the three stages of tumours
(T) with their corresponding normal (N) samples. E¼ early; NM¼ no
metastatic potential; M¼metastatic propensity. Highlighted are the three
types of profiles (A, overexpressed in tumour; B, tumour-specific profiles;
C, underexpressed in tumour), and the percentages give the overall
proportions in these categories.
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Figure 3 Reverse Northerns using tumour (T) or normal (N) tissue
probes. The genes shown, which are overexpressed (A) or under-
expressed (B) in tumours, are the first four in Tables 3A and B,
respectively.
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specifications, washed to a stringency of 0.1� SSPE/0.1% SDS at
501C and exposed to X-ray film (Kodak, Les Ulis, France). The
level of expression in tumour samples was analysed in comparison
with the matched normal tissues after correction for loading using
RPLO. Ribosomal phosphoprotein P0 (RPLP0, originally called
36B4) is a ubiquitous expressed gene that has been routinely used
in different laboratories as an internal control to normalise for the
amount of RNA. In a large study (98 cases), we confirmed by real-
time quantitative PCR (RT-QPCR) that its expression level remains
relatively constant between HNSCC tumours and matched normal
tissues (data not shown). RPLP0 gave better results than the
commonly used control GAPDH, which was more variable between
samples in our experiments.

Virtual Northerns

A measure of 0.2 mg of total RNA from individual patients was
converted into SMART cDNA ((Franz et al, 1999) and the Clontech
protocol). The optimal number of cycles for each sample was
determined according to the manufacturer’s instructions. Aliquots
of the PCR products, after different numbers of cycles (15–25),
were analysed by agarose gel electrophoresis and Northern blotting
with RPLP0 as the probe. The amplification and the fidelity are
considered to be optimum when the PCR is in the exponential
phase of amplification, one or two cycles before reaching the
plateau (range 17–20 cycles). The RPLP0 signal of the optimum
PCR was used as an internal standard to equilibrate loading of the
virtual Northerns. Appropriate amounts of this ‘SMART’ cDNAs
were electrophoresed on agarose gels, transferred to Amersham
Hybond Nþ nylon filters. Probes were labelled with [32P]dCTP by
random priming or PCR with the pGEME1 and pGEME2 primers
(see above). Filters were hybridised in dextran sulphate (as above),
exposed overnight to PhosphorImager screens and quantified
using the Typhoon ImageQuant software. Filters were finally
reprobed with RPLP0 to verify equal loading.

Real-time quantitative PCR

RNA was quantitated with the LightCycler system (Roche Diag-
nostics, Meylan, France). A measure of 1mg of total RNA was reverse
transcribed with random primers and the Superscript II RT–PCR
system (Life Technologies). The PCR reactions were performed with
the LC Fast start DNA master SYBR green I reaction mixture
according to the manufacturer’s instructions. Volumes of 2ml of
1 : 50 diluted RT products were used in 20ml reactions. The
nucleotide sequences of the primers and their localisations are
shown in Table 1. The primers were chosen with the Primer3
software and their specificity was verified by BLAST analysis on the
nr database (non redundant set of GenBank, EMBL, and DDJB
databases). For each gene, a standard curve was constructed using
serial dilutions of a single standard cDNA (equivalent to 100, 40, 20,
10, 4, 2, and 1 ng of total RNA) derived from a pool of 10
hypopharyngeal tumours. The concentrations of primers, MgCl2,
probes, and cDNA were optimised to obtain linear standard curves.
Unknown samples were estimated relative to these standard curves.
For genes overexpressed in tumours, expression levels were
calculated relative to the median values for normal tissue, and vice
versa for genes expressed at higher levels in normal tissues. PCR
reactions were run at least twice for each sample. The mean value
was retained whenever the standard deviation did not exceed 15%,
and normalised using RPLP0 as an internal control.

RESULTS

PCR differential display

A large-scale PCR-DD was performed on patient RNA derived
from three stages of HNSCC (Table 2) and corresponding normal

tissues (see Figure 1 for a methodology outline). Three 30 primers
(HT11A/G/C) and 58 50 primers (HAP1-10, 33–80) were combined
to cover theoretically over 90% of expressed sequences (Liang,
1998). This experimental design maximises the detection of ‘novel’
sequences, a strength of PCR-DD compared to DNA arrays.
Around 95% of the bands showed no difference in signal intensity
across the different samples, as expected. Of the 1750 bands that
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Figure 4 Classical Northerns: tumour (T), lymph node (LN) and normal
(N) samples from the same patients were analysed. The RPLP0 control is
shown under each lane. (A) Genes overexpressed in tumours: (a) DRG1,
(b) APOL2. (B) Genes underexpressed in tumours: (a) PIGR, (b) LPRP.
The lines separate the samples from particular patients, and comparisons
should be made between the samples from each patient.
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Figure 5 Virtual Northerns: the lanes 1–3 (E), 6,7 (NM) and 8,9
correspond to individual patients who were pooled for the PCR-DD.
Tumour (T) and normal (N) samples from the same patient were
compared. (A) Genes overexpressed in tumours: (a) HSPCB, (b) TRA1,
and (c) LTBP1. (B) Genes underexpressed in tumours: (a) PIGR, (b) LPRP,
and (c) PLUNC. (C) RPLP0 is the internal control.
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did show a difference, 40% were increased and another 40% were
diminished in all the tumour samples (Figure 2). These two groups
are the focus of this initial study. The 19% of the bands that
differed between the tumour types will be addressed in future
studies. Less than 1% of the bands differed in intensity between the
normal samples from different patients, indicating that the
differences observed between the normal and tumour samples
were due specifically to the development of the tumours and not
due to either patient polymorphism or PCR-derived artefacts
(Figure 2). The differential bands were isolated and cloned, and
eight clones were taken from each band for further analysis.

Identification of the genes

Reverse Northern hybridisation (Zhang et al, 1997; Trenkle et al,
1999) was performed on the 14 000 clones resulting from the DD to
determine which clones among the eight clones derived from each
band contained differentially expressed sequences. Macroarrays of
the clones were hybridised with probes derived from either pooled
tumour or pooled normal RNA, and the resulting signals were
quantified. In total, 2500 clones presenting a tumour/normal signal
ratio of 42.0 or o0.5 were grouped onto secondary arrays and
reprobed twice for confirmation (Figure 3). Clones with consis-
tently differential profiles after multiple hybridisations and
tumour/normal ratio of 42.0 (2–5-fold) or o0.5 (0.5–0.07-fold)

were sequenced and identified using the BLAST algorithm. Some
of the clones with consistent profiles corresponded to the same
gene (1–85 clones per gene). Our final list contains 36 genes that
are overexpressed in tumours (Table 3A) and 34 genes that are
under expressed (Table 3B). Six of the overexpressed and seven of
the underexpressed sequences are novel, in that they do not
correspond to known genes.

Validation of gene expression profiles

To confirm that the large-scale analysis had correctly identified
differentially expressed sequences, some up- and downregulated
genes were analysed by the classical Northern analysis (Figure 4).
As the amount of patient material was too limited to do numerous
classical Northerns, SMART technology (Clontech) was used to
generate virtual Northerns (Figure 5). In addition, RT-QPCR was
used with a panel of 14 hypopharyngeal carcinomas and matched
normal tissues (Figure 6). The results were consistent across these
validation techniques (DRG1, Figures 4Aa and 6Aa; APOL2,
Figures 4Ab and 6Ab; PIGR, Figures 4Ba, 5Ba, and 6Ba; LPRP,
Figures 4Bb and 5Bb; note that the patients were different). We
found that PIGR, LPRP, PLUNC, and EMP1 are downregulated in
almost all the tumours (Figures 4B, 5B, and 6B). DRG1, APOL2,
HSPCB, TRA1, LTBP1, PON2, HSPC150, PSMB8, and clone RP1-
68D18 are overexpressed in tumours at various frequencies
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(Figures 4A, 5A, and 6A). The differences in expression, measured
by RT-QPCR, were at least two-fold in at least half of the tumours
for seven of the eight genes analysed. DRG1, APOL2, HSCPC150,
and PSMB8, and the novel sequence clone RPI-68D18 are
overexpressed in nine, eight, 12, eight, and six patients,
respectively. Overall, the expression profiles correlate well with
the behaviour observed at the DD band level.

DISCUSSION

We have compared the expression profiles of hypopharyngeal
tumours with matched normal tissues by the PCR-DD. This study
of a specific site of HNSCC provides a novel collection of cancer-
related genes. Our results are of high quality since the DD
sequences were reselected with several rounds of reverse North-
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erns, and there was a consistent correlation between the DD
profiles and analyses by classical Northerns, virtual Northerns, and
RT-QPCR. The sequences reported here had a consistent DD
profile across the tumour samples, whereas other bands (about
20%) with tumour stage-specific profiles need to be studied further
with a larger number of tumours. Only eight out of 70 genes
overlap between our and other profiles of HNSCC (Leethanakul
et al, 2000; Alevizos et al, 2001; Al Moustafa et al, 2002; Belbin et al,
2002; El-Naggar et al, 2002; Mendez et al, 2002; Xie et al, 2000),
possibly because, in contrast to these other studies, we did not
restrict the profiling to particular genes on arrays, since PCR-DD
samples the whole transcriptome. Moreover, we restricted our
analysis to a very specific site. Six of the common genes are
expressed in the same manner (ITGA6, PON2, STAT1, KRT13,
SPR2, and EMP1). In contrast to these studies, we found that GJB2
is underexpressed in tumours and DRG1 is overexpressed. In our
experiments, DRG1 was shown to be overexpressed by four
techniques (DD-PCR, reverse Northerns, classical Northerns, and
RT-QPCR). Furthermore, DRG1 has been shown to be over-
expressed in other tumours (see Cangul et al, 2002). There is some
overlap between our list and profiles of other cancers (see Table 4),
which potentially identifies genes with general functions in cancer.

The genes we have identified have a biased chromosomal
distribution, with many located at 12p12– 13 and 1q21– 22
(Table 3). Out of 70 genes, six localise to 12p12–13 (A2M,
GAPDH, LPRP, CLECSF2, PRH, and EMP1), and three to 1q21– 22
(SPRR3, SPRR2, and S100A9). These are the two most frequently
altered regions in nasopharyngeal carcinoma (Marenholz et al,
1996; Chen et al, 1999; Salomon-Nguyen et al, 2000; Sato et al,
2001), indicating that transformation has complex effects on
epidermoid cell biology.

We identified sequences that might be expressed in non
epidermoid cells in the tumours, including endothelial-specific
and immune-related genes. EFNB2, which is overexpressed in
tumours, is a trans-membrane ligand specifically expressed in
arterial endothelial cells (Gale et al, 2001). Of the 57 known genes, 16
are immune related (Table 3), and, in particular, the nine that are
overexpressed could be considered as potential circulating markers
for diagnostic purposes. Certain of the immune-related genes have
also been associated with epithelial tissue differentiation and growth
control, including PLUNC (Iwao et al, 2001), PIGR (Nihei et al,
1996), Stat1 (Maziere et al, 2000), and HSPCB (Edwards et al, 1991),
PLAUR (Chapman and Wei, 2001; Ahmed et al, 2002) and PLA2G7
(Tao et al, 1996). In particular, PLAUR is a pan T cell activating
antigen that has also been associated with epithelial-derived tumour
development. It interacts with integrins to regulate cell–matrix
interactions (Chapman and Wei, 2001; Ahmed et al, 2002). PLAUR
and PLA2G7 are linked, as PLAUR is activated by PAF, which in
turn is a substrate of PLA2G7 (Tao et al, 1996).

Some of the differentially expressed genes are involved in
detoxification pathways and cellular defences against insults.
Physiological response to environmental insult from tobacco and

alcohol is particularly important in HNSCC (Johnson, 2001) and
the differential expression of xenobiotic and detoxification
enzymes has been reported in other transcriptome level studies
(Alevizos et al, 2001). We identified two genes involved in
antioxidation, GCLC (Talalay, 2000) and PON2 (Ng et al, 2001),
and another involved in the response to oxidative damage to DNA,
TDG (Laval, 1996). Cellular defences against insults could also
account for the overexpression of heat shock and stress proteins,
such as HSPCB, TRA1 (Maki et al, 1990) and DRG1 (Agarwala et al,
2000).

Cell-surface receptors, membrane-associated proteins and en-
zymes that are overexpressed in tumours are potential tumour
markers and targets for drug design (Nam and Parang, 2003). We
identified four overexpressed cell surface and membrane asso-
ciated proteins (ITGA6, GJB2, PLAUR, and EFNB2) and nine
enzymes (PON2, HPRT, HSCP150, APOBEC3, PLA2G7, HSPCB,
MTND4, DIA1, and TDG). Interestingly, inhibitors of HSPCB are
currently being tested in clinical trials (Neckers, 2002).

The major strength of the PCR-DD is to identify unknown genes
from limiting amounts of biological material. We identified 13
differentially expressed sequences that exist only in the EST,
theoretical cDNA or hypothetical protein databases, or correspond
to chromosomal locations. One of these, clone RPI-68D18, was
confirmed to be overexpressed in tumours by RT-QPCR. This
sequence is homologous to a number of ESTs but otherwise has no
significant relationship to cDNAs or proteins in the GENEMBL
databases. The differences in expression we report provide insights
into the biology of HNSCC and subjects for further study. The gene
products that are expressed on the cell surface or have enzymatic
activity are particularly noteworthy, since successful therapeutics
have been developed against these types of molecules. Finally, the
novel sequences may open totally new avenues for further research
and development of new therapeutics and markers.
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de la Santé et de la Recherche Médicale, the Hôpital Universitaire
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