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Abstract: In this study, tantalum coatings are deposited by a plasma spraying method aiming at
enhancing the biocompatibility of the titanium implant. Tantalum oxide coatings are gained through
the thermal oxidation of tantalum coatings at different temperatures for photothermal therapy. The
effect of thermal oxidation on the morphology, composition, and structure of tantalum coatings has
been studied. The UV–VIS–NIR spectra results, cancer therapy effect in vitro, and photothermal
conversion properties among the tantalum oxide coatings under varied thermal treatment conditions
are compared comprehensively. It has been proven that the tantalum coating treated at 200 ◦C
exhibits the most intense NIR adsorption, the highest photothermal conversion effect, and the most
excellent photothermal ablation effect in vitro. The results reveal that incomplete oxidation at a low
temperature leads to the formation of oxygen vacancies, which narrow the band gap; this promotes
its photothermal conversion ability.

Keywords: tantalum oxides; thermal oxidation; photothermal conversion; oxygen vacancy

1. Introduction

Tantalum (Ta) and its oxides are gaining increasing interest for their excellent bio-
compatibility [1–3]. Plasma-sprayed tantalum coating with a high bonding strength and a
porous surface structure is suitable for metal implants, as the biological performance can
be improved by combining the substrate with such biocompatible and corrosion-resistant
surfaces [4,5]. Metal implants of titanium and its alloy have been used extensively for hard
tissue disorder treatments, owing to their excellent mechanical properties and biocompat-
ibility [6]. Some studies have demonstrated that plasma-sprayed tantalum coating can
enhance the osteogenic properties of the titanium implant in the early stage [7–9].

Currently, the photothermal conversion property of biocompatible materials is con-
sidered a key parameter for photothermal therapy in bone cancer post-surgery [10,11].
Photothermal conversion means converting the absorbed photon energy from optical illu-
mination into heat energy, which makes it a promising method of therapy to kill cancer
cells through the generated heat. Therefore, it is particularly important to develop a bifunc-
tional coating with properties of bone defect regeneration and photothermal conversion
for killing the remaining tumor cells.

This photothermal conversion property is critical for photothermal therapy in bone
cancer post-surgery. Furthermore, photothermal agents with enhanced visible and near-
infrared (NIR) light absorption exhibit a higher photothermal conversion efficiency, which
is expected to cure bone cancer effectively [12]. In recent years, black oxidation materials
such as hydrogenated-black TiO2 and black plasma-sprayed tantalum oxide coatings have
been explored for their thermal conversion efficiency [13,14]. Black TiO2 and Ta2O5 have
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been demonstrated to possess an enhanced NIR absorption and visible light absorption
that are mainly attributed to the existence of oxygen vacancies.

In metal oxides, the major structure defect is oxygen vacancy, which directly leads
to the narrowed band gap and a resultant increase in photo absorption. Consequently,
the photothermal conversion efficiency in the visible–NIR region can be enhanced [15].
Ta can become oxidized into various oxidation states such as pentoxide and many other
suboxide states. The oxidation states of Ta through the diffusion of oxygen depend on
different thermal treatment temperatures [16]. According to different oxidation treatment
conditions, the treated tantalum coatings consist of different phase compositions, including
fully oxidized Ta2O5, single-phase tantalum, and tantalum suboxides [17,18]. To note, the
formation of suboxides is usually accompanied by oxygen deficiency, which can promote
the photothermal efficiency of tantalum coatings.

In this study, plasma-sprayed tantalum coatings after thermal oxidation at different
temperatures have been prepared and the effect of thermal oxidation on the photothermal
conversion property has been analyzed. Our study aims to explore a way to achieve
a bifunctional surface modification layer that can be used post-surgery for bone cancer
photothermal therapy.

2. Materials and Methods
2.1. Preparation of Plasma Sputtered Tantalum Coatings

Commercially available pure tantalum powder (purity 99.99%, particle size of about
70 µm,) and titanium plates (purity 99.9%) (both from Zhongsheng Hengan New Material
Technology Co., Ltd. Beijing, China) were used in the preparing work. A vacuum plasma
spraying (VPS) system (Sulzer Metco, Winterthur, Switzerland) was used to fabricate the
tantalum coating. Ta coatings with a thickness of 300 µm were sprayed on titanium plates
with a dimension of Φ 10 mm × 2 mm. The spraying power was 40 kW at a spray distance
of 280 mm, under a plasma Ar and H2 gases of 40 and 10 slpm, respectively. The powder
feed rate was 24 g/min.

The vacuum-sprayed tantalum coatings were thermally treated in an ambient atmo-
sphere at different temperatures (200 ◦C, 400 ◦C, and 600 ◦C) for 1 h. Thermal treatments
were handled in the tubular furnace closed with double insulation plugs. Ta coatings
treated at different temperatures were obtained and referred to as VT, VT200, VT400, and
VT600, respectively.

2.2. Characterization and Photothermal Test

The phase identification of VT, VT200, VT400, and VT600 was performed using XRD
(D8 Discover, Bruker AXS Gmbh, Karlsruhe, Germany) over a 2Theta range, from 20◦ to
80◦ operating at 45 kV and 30 mA. The XRD data analysis and phase identification were
done with Jade software. The surface morphologies of the VT, VT200, VT400, and VT600
coatings were characterized by SEM (Hitachi S-4800, Tokyo, Japan).

Electron spin resonance (ESR; JEOL, FA200), and photoelectron spectroscopy (XPS;
ThermoFisher Scientific Escalab 250 spectrometer, Waltham, MA, USA) were also carried out.

The electrochemical properties were tested using a CHI166E electrochemical work-
station (CH Instrument Inc., Shanghai, China) in a standard three-electrode cell of 300 mL
at 37 ◦C. VT, VT200, VT400, and VT600 were used as the working electrodes. A quadrate
platinum slice with a size of 15 mm × 15 mm × 2 mm was used as the counter electrode.
A saturated calomel electrode (SCE) was used as the reference electrode. The polarization
curves of these films were measured at a scan rate of 0.01 mV/s. The tests were carried out
in simulated body fluid (SBF).

To compare the photothermal conversion performances of different tantalum coatings,
a multimode pump laser with a wavelength of 808 nm with a high power (Connect Fiber
Optics Co., Shanghai, China) was employed to directly irradiate the coatings contained in
the plastic tube. Then, the temperatures of the coatings were recorded.
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2.3. Photothermal Ablation In Vitro

MG-63 cells (Sciencell, Carsbad, CA, USA) were seeded into 48-well culture plates at a
density of 1 × 104 cells per well in fresh DMEM at 37 ◦C in 5% CO2. These cells were then
irradiated for various times (0, 10, and 20 min) with an 808 nm laser at power densities of
0.5 W cm−2. Then, a standard CCK-8 assay was used to evaluate the viability of cells (n = 5).
The photothermal effect of the coatings was verified by confocal laser scanning microscopy
(CLSM) images acquired using a FV1000 microscope (Olympus Co., Tokyo, Japan).

3. Results and Discussion
3.1. Surface Characterization

Figure 1 shows the XRD pattern of Ta coatings under different thermal treatment
conditions for 1 h. It can be observed that the untreated tantalum coating (VT) contains
only the single-phase Ta, whose diffraction peaks mainly come from 2Theta = 38.47◦, 55.55◦,
and 69.58◦, corresponding to (110), (200), and (211) planes of a cubic structure, respectively.
After thermal treatment of 200 ◦C and 400 ◦C, the Ta coatings contain multi-phases of
tantalum oxide, which are a mixture of Ta2O5 and TaO2 [19]. The single Ta phase is still
present as the coatings are incompletely oxidized in a sealed heating furnace at 200 ◦C
and 400 ◦C. When the thermal treatment temperature increases to 600 ◦C, the VT600
coating is completely oxidized to Ta2O5, which is a mixture of orthorhombic β−Ta2O5 and
hexagonal δ−Ta2O5.

Figure 2 shows the surface morphology of the Ta coatings under different thermal
oxidation conditions. Under the conditions of 200 ◦C and 400 ◦C heat treatments, there is
no significant difference in the surface morphology of coatings, with both exhibiting rough
porous structures similar to those without the heat treatment. When the heat treatment
temperature reaches 600 ◦C, a complete thermal oxidation emerges and the porous structure
of the coating disappears. It can be seen from the image that the coating under the highest
temperature experiences pulverization and peeling due to the increase in temperature.
Powder particles appear throughout the coating. Combined with the analysis of the XRD
pattern of VT600, the complete oxidation coating, which could undergo a polymorphic
transformation during thermal treatment at a high temperature, can result in spallation,
owing to the stress generated by the phase transformation [20].

Figure 3 presents the high-resolution XPS Ta 4f spectra and O1s spectra of the Ta
coatings. As shown in Figure 3a,c,e,g, the high-resolution XPS Ta 4f spectra can be de-
convoluted into multiple peaks. The contribution of Ta5+, which comes from tantalum
pentoxide, is clearly observed in all four spectra, with the Ta 4f7/2 and Ta 4f5/2 peaks at
binding energies of 26.0 eV and 27.9 eV, respectively [21,22]. After thermal treatment at
200 ◦C and 400 ◦C, the Ta 4f spectra is separated into four sets of peaks representing the
different states of the oxides and metals. Beside the peaks at Ta 4f7/2 and Ta 4f5/2, the Ta 1f
specta also displays two peaks at energies of 25.2 eV and 23.4 eV, in accordance with the
states of Ta4+ and metallic Ta [23,24]. The existence of the Ta suboxide TaO2 in the film is
confirmed by the peak between Ta5+ and metallic Ta [25]. Hence, the thermal treatment
of the Ta coating at 200 ◦C and 400 ◦C can generate surface layers composed of Ta2O5, Ta
suboxide, and Ta, which is perfectly in line with the results of the XRD patterns. It can be
seen from Figure 3g that the XPS line drift of VT600 is close to that of Ta2O5.

Figure 3b,d,f,h shows the high-resolution XPS O spectra. In Figure 3b, it can be seen
that the peak positions of the O1s spectra of VT200 and VT400 are 0.58 eV higher than
that of Ta2O5, which is consistent with the oxygen vacancy ionization energy measured by
Mikhaelashvili et al. [26]. The shift of the O1s spectra is due to the formation of oxygen
vacancy, which leads to the introduction of additional localized states in the band, thus
changing the Fermi level [27,28]. It can be seen from Figure 3h that the XPS line drift of
VT600 recovered in the same way as that in Figure 3b. This is because when the thermal
treatment temperature increases to 600 ◦C, VT600 has been fully oxidized, and there is no
oxygen vacancy in the coating, with all of them being +5 valence Ta.
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Figure 1. The XRD diffraction patterns of the surface of tantalum coatings thermal treated at
different temperatures.

To further study the oxygen vacancy defects in the tantalum coating samples, ESR tests
were carried out. Figure 4 shows the spectra of the coatings thermally treated at different
temperatures. VT200 and VT400 have stronger ESR signals, which are attributed to oxygen
vacancies [29,30]. The ESR signals of VT and VT600 are relatively weakened compared
with VT200 and VT400, indicating decreased concentrations of the oxygen vacancies.

For biomaterial implants, being biologically innocuous is expected. Thus, corrosion
resistance is also significant, which is responsible for the chemical stability. Figure 5
shows the polarization curves of the tantalum coatings thermally treated at different
temperatures. The electrochemical results indicate that the untreated VT sample has a
relatively smaller Ψre of −0.42 V (vs. SCE) and Io of 3.5 × 10−7 A/cm2, which indicates a
lower resistance ability against the charge transfer at the layer/substrate interface. After
thermal treatment for 1 h, the Ta coating samples are initially covered by inert Ta2O5 and Ta
suboxides. Thus, the VT200 and VT400 samples exhibit smaller Icorr of 1.8 × 10−7 A/cm2

and 5.0 × 10−8 A/cm2, respectively. The smaller the corrosion current density, the lower
the corrosion rate [31]. It is proven that the thermal treatment can enhance the corrosion
resistance of the Ta coating. The Ta coating sample treated at 600 ◦C achieves the lowest Io
of 2.2 × 10−8 A/cm2.
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3.2. Photothermal Effect of Tantalum Coatings

The VT600 sample was shed from the Ti surface as a result of pulverization under
a higher temperature of 600 ◦C. The VT600 sample lost the typical porous structure of
the plasma spraying coating, which is beneficial for adhering and living. So, the VT600
sample was not discussed in the following studies. The photothermal conversion properties
of tantalum coatings of VT, VT200, and VT400 were investigated using an 808 nm laser
(intensity: 0.5 Wcm−2) in PBS solutions. The temperatures of VT, VT200, and VT400
increase with the increase in irradiation time. Compared with VT, VT200 and VT400 show a
relatively rapid rate of increase. As shown in Figure 6, after 600 s, the temperature increases
from 25 ◦C to 32.8 ◦C, 37.2 ◦C, and 47 ◦C for VT, VT400, and VT200, respectively.

3.3. Photothermal Effect of Tantalum Coatings for Killing Bone-Tumor Cells

To investigate the photothermal effect of thermal oxidation treatment at different
temperatures on the tantalum coatings, we incubated MG-63 cells with PBS dispersions
and then tested their viability on VT, VT200, and VT400 with 808 nm laser irradiation
(Figure 7. It can be seen that the viabilities of the MG-63 cells in the coatings are inclined to
reduce drastically after irradiation for 10 min. The longer the photothermal treatment time,
the weaker the cell activity. As shown in the statistical results of Figure 7, the cell activities
decline when the irradiation time increases. VT200 shows the lowest cell activity, which
indicates the best photothermal ablation effect in vitro.
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Figure 8 illustrates the confocal images of the cells on VT, VT200, and VT400 before
and after irradiation. A large number of living cells showing green fluorescence can be
observed on the tantalum coatings before irradiation. After laser irradiation, the number
of living cells decreases significantly, especially those on VT200 and VT400, as shown in
Figure 8e,f. The tendency towards photothermal effects of different tantalum coatings is in
agreement with the results in the CCK-8 assay of cell ablation.
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4. Conclusions

In summary, we prepared tantalum coatings using a plasma spraying method and
thermal treatment. The Ta coating showed partial oxidation after 1 h of heat treatment at
low temperatures (200 ◦C and 400 ◦C), and the formation of oxygen vacancies narrows
the band gap. The Ta coating was completely oxidized after 1 h of heat treatment at a
higher temperature (600 ◦C), and the porous structure of the coating disappeared. Thermal
oxidation treatment further enhanced the chemical stability of the coating, and the corrosion
resistance increased with the oxidation degree. The photothermal conversion effect of
the Ta coating in vitro decreased with the increase in oxygen content. The Ta coating
at lower heat treatment temperatures (200 ◦C and 400 ◦C) showed better photothermal
therapy abilities.

Author Contributions: D.D. conceived, designed, and performed the experiments, and wrote the
paper; Q.Z., F.H., and Z.C. analyzed the data. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported in part by the Postdoctoral Science Foundation of China (No. 2020M672506),
in part by the Research and Development Plan for Key Areas in Hunan Province (No. 2019GK2101),
in part by the Natural Science Foundation of Hunan Province (No. 2019JJ50092), and in part by the
National Natural Science Foundation of China (No. 61804053).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work is supported by X.B. Zheng at Shanghai Institute of Ceramics, Chinese
Academy of Sciences.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.



Materials 2021, 14, 4031 10 of 11

References
1. Cheng, S.; Ke, J.; Yao, M.; Shao, H.; Zhou, J.; Wang, M.; Ji, X.F.; Zhong, G.Q.; Peng, F.; Ma, L.M.; et al. Improved osteointegration

and angiogenesis of strontium-incorporated 3d-printed tantalum scaffold via bioinspired polydopamine coating. J. Mater.
Sci. Technol. 2021, 69, 106–118. [CrossRef]

2. Ding, D.; Xie, Y.; Li, K.; Huang, L.; Zheng, X. Micro/Nano structural tantalum coating for enhanced osteogenic differentiation of
human bone marrow stem cells. Materials 2018, 11, 546. [CrossRef] [PubMed]

3. Rahmati, B.; Sarhan, A.A.; Zalnezhad, E.; Kamiab, Z.; Dabbagh, A.; Choudhury, D.; Abas, W.A.B.W. Development of tantalum
oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility. Ceram. Int.
2016, 42, 466–480. [CrossRef]
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