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Effect of nitrogen on grain growth 
and formability of Ti-stabilized 
ferritic stainless steels
Mun Hyung Lee, Rosa Kim & Joo Hyun Park   

The relationship between the grain size of as-cast and cold rolled 16%Cr ferritic stainless steel and 
the surface roughness defect, called ridging during forming was investigated. The ridging height 
corresponded to the grain size of the as-cast sample. The nitrogen content of 140 ppm yielded the 
minimum grain size and the minimum ridging height observed, whereas the nitrogen content of 50 
ppm yielded the maximum grain size and the maximum ridging height observed. Ridging results from 
different plastic anisotropies of band structure composed of colonies. Through the EBSD analysis, the 
texture of mixed colonies composed of ND//{112} and ND//{331} in the 50 ppm nitrogen steel underwent 
more severe ridging than the randomly texture in the 140 ppm nitrogen steel sample. Therefore, an 
effective means to reduce the ridging of ferritic stainless steel during the forming process is to form a 
random texture by enhancing the formation of fine equiaxed grain during the casting process. During 
equal holding times at 1200 °C, the 80 ppm nitrogen sample was definitely coarsened, whereas the 200 
ppm nitrogen sample underwent slower grain growth. Zener pinning force, which is proportional to 
the number of TiN particles on grain boundaries, was relatively strong in samples of 200 ppm nitrogen 
content, corresponding to slower grain growth. Although the Zener pinning force great affected with 
increasing nitrogen content, there may not affect the trend of initial cast grain size to be changed as 
much during annealing.

Ferritic stainless steels (FSSs) are widely used in automobile manufacturing and in various other fields because of 
their low thermal expansion and high resistance to corrosion. However, their limited formability due to ‘ridging’ 
defects must be resolved to expand their use. Ridging is typically observed on the surface of an FSS sheet after 
cold forming or deep drawing, degrading the surface quality of the sheet. “Many researchers have observed” that 
ridging arises from differences of plastic strain anisotropies between the matrix and colonies1–14.

Viana et al.11 studied the ridging behavior of three kinds of FSS and reported that ridging was largely depend-
ent on the plastic behavior of the colonies. They claimed that the ridging arose from the different plastic behaviors 
of {111} 〈uvw〉 and {001} 〈uvw〉 grain colonies in the sheet. Shin et al.5 studied the effect of texture on ridging of 
430 (16%Cr) and 409L (11%Cr) grade FSSs and tested ridging models quantitatively using a simulation tool. The 
409L showed more severe ridging than 430 steel, and colonies found in 409L steel specimens well represented the 
tendency of ridging. Their simulation results showed that low plastic strain ratios of colonies gave rise to ridging.

Various methods have been proposed to improve ridging. Huh and Engler studied the effect of intermediate 
annealing on ridging in 17%Cr FSS3, reporting that a sheet that underwent intermediate annealing showed much 
less ridging than an ordinarily rolled sheet. During intermediate annealing, recrystallization gave rise to the more 
desirable γ-fiber texture, which was reflected by a greater R-value and led to improved formability of the sheet. 
Huh et al.7 also reduced the ridging phenomenon by means of cross rolling. Modification of the initial texture 
and microstructure by means of 45° ND cross rolling resulted in improved macro- and microscale texture in the 
finally recrystallized sheets. These modifications led to enhanced planar anisotropy and less ridging. Tsuchiyama 
et al.8 studied the production of ridging-free FSS through the recrystallization of lath martensitic structure, by 
which the flat surfaces after a 20% tensile test were formed with crystallographically isotropic or near isotropic 
ferritic structures with no colonies. The lath martensitic structure was originally isotropic due to the multi-valent 
transformation mechanism.

Alternatively, to eliminate the colony structure that causes the ridging phenomenon, many researchers have 
tried to form fine equiaxed grains during solidification process15–23. Park et al.15–18 studied the grain refinement 

Department of Materials Engineering, Hanyang University, Ansan, 15588, Korea. Correspondence and requests for 
materials should be addressed to J.H.P. (email: basicity@hanyang.ac.kr)

Received: 8 January 2019

Accepted: 10 April 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-42879-3
http://orcid.org/0000-0002-2853-6064
mailto:basicity@hanyang.ac.kr


2Scientific Reports |          (2019) 9:6369  | https://doi.org/10.1038/s41598-019-42879-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

using inoculants. The grain size of the as-cast structure decreased with increasing content of Ti in an Al-Ti deox-
idized 16%Cr FSS, and single TiN as well as MgAl2O4-TiN complex inclusions were formed in steels with fine 
equiaxed grains. Takeuchi et al.19 studied the effect of electromagnetic stirring on cast structure of 430 steels. The 
equiaxed crystal zone was increased with increasing stirring intensity. We previously varied the nitrogen content 
as a means to refine the cast structure, specifically by controlling the number density of TiN particles at a specific 
nitrogen content during melting and casting of 16%Cr FSS23. It was confirmed that fine equiaxed structure was 
promoted as the number of TiN particles per unit area (or volume) in the melt increased.

Even though there are many studies about refinement of the solidification structure in order to reduce ridging 
phenomenon, the effect of grain growth by pinning particles on the degree of ridging is not certain. Therefore, 
the aim of the present study is to evaluate the influence of the equiaxed grain formation in the cast samples and 
that of grain growth on the degree of ridging of final products, and to identify which is the more dominant factor 
affecting the ridging height. Hence, we analyzed the Zener pinning effect of TiN particles on grain boundaries 
and discussed its influence on grain growth during annealing at 1200 °C.

Materials and Methods
Materials preparation and measurement of ridging height.  In our previous study23, a Fe-16Cr-0.3Mn-
0.3Si-0.2Ti-0.03Al-0.004 C (wt%) steel was melted and supplemented with nitrogen at 1550 °C using an induction  
furnace. The furnace was then turned off, and the melt was solidified at a cooling rate of about −50 °C/min  
to yield a cylindrical cast ingot. The chemical compositions of solidified ingots are listed in Table 1. To measure 
the ridging height of the sheet, samples of the cylindrical cast ingot (diameter: 50 mm, height: 10 mm), which 
included grains of various sizes, were cold rolled to 1.0 mm thickness. The cold rolled sheets with 90% reduction 
rate were cut to 100 mm in length and 20 mm in width, which were then annealed at 1050 °C for 120 sec, cooled, 
and surface pickled. The resulting samples were deformed to 15% tensile elongation along the rolling direc-
tion. The shape of as-cast ingot, cold rolled sheet and 15% deformed sample with 10 positions for ridging height 

Sample ID Titanium Aluminum Oxygen Nitrogen

50N 0.16 0.010 0.0027 0.0050

80N 0.17 0.013 0.0025 0.0080

140N 0.14 0.011 0.0034 0.0140

200N 0.15 0.009 0.0030 0.0200

260N 0.13 0.011 0.0035 0.0260

Table 1.  Chemical composition of materials (wt%). *[Cr] = 16.0 wt%, [Mn] = 0.3 wt%, [Si] = 0.3 wt%, 
[C] = 0.004 wt%.

Figure 1.  Sample preparation and measurement of ridging height. (a) as-cast ingot, (b) cold rolled sheet, and 
(c) 15% deformed sample.
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measurement are illustrated in Fig. 1. The surface roughness profile of the sheets was measured using an alpha 
step (ET200; Kosaka Ltd., Japan). Ridging heights were obtained as average values of 10 surface measurements 
performed in different places on each sample.

Texture analysis.  To prepare samples for texture analysis, annealed sheets were polished with 2000 SiC 
paper and then electrically polished under 43 V in a solution of 40 mL perchloric acid and 1 L ethanol. Local 
texture were measured by field emission scanning electron microscopy paired with energy dispersive X-ray spec-
troscopy (FESEM-EDS; MIRA3; TESCAN Ltd., Czech) and electron backscatter diffraction analysis (EBSD). 
Crystallographic orientation measurements were performed on the ND planes of the sheets.

Figure 2.  Surface profiles of (a) 50 ppm nitrogen and (b) 140 ppm nitrogen sheets deformed to 15% elongation 
in rolling direction.

Figure 3.  Ridging height as a function of nitrogen content.
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Characterization of grain size and TiN precipitates after isothermal heat treatment.  Specimens 
of 10 mm × 10 mm were cut from the centers of the ingot samples with nitrogen contents of 80, 140 and 200 
ppm. The specimens were heated at 1200 °C and held at that temperature for 2, 10, and 60 min, followed by water 
quenching to room temperature. The specimens were polished and etched (in a mixture of 2 g picric acid, 90 mL 
ethanol, and 10 mL HCl), and then their grains were observed at × 50 magnification using optical microscopy 
(OM; GX41, Olympus, Essex, UK); the total observation area for each specimen was 40 mm2. The average grain 
size in each observation area was measured using automatic image analysis computer software. Density and size 
of TiN particles was also observed using optical microscopy and transmission electron microscope (TEM; JEM-
2100F, JEOL, Japan). The TEM sample was prepared by carbon replica technique.

Results and Discussion
Effect of As-cast grain size on ridging height.  Surface profiles of cold rolled sheets after 15% tensile 
deformation are shown in Fig. 2. The sheet with a nitrogen content of 50 ppm yielded the poorest surface quality 
(Fig. 2a), whereas the sheet with higher nitrogen content of 140 ppm yielded the smoothest surface (Fig. 2b). 
Ridging height is defined as the height difference between the valley and the peak of a surface profile; ridging 
heights averaged from 10 measurements are plotted versus nitrogen content in Fig. 3. The ridging height was low-
est at the nitrogen content of 140 ppm and highest at the nitrogen content of 50 ppm. The trend in ridging height 

Figure 4.  Average grain size of as-cast sample as a function of nitrogen content.

Figure 5.  EBSD inverse pole figure maps from ND plane and orientation distribution function (φ2 = 45°) of (a) 
50 ppm N and (b) 140 ppm N containing sheets after cold rolling and annealing.
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generally matched the trend in grain size of as cast samples reported in our previous study23; the minimum grain 
size and minimum ridging height were both observed at the nitrogen content of 140 ppm, and the maximum 
grain size and maximum ridging height were both observed at the nitrogen content of 50 ppm (Fig. 4).

Effect of texture on ridging height.  Figure 5 shows inverse pole figure (IPF) maps indicating the crystallo-
graphic axis of each point parallel to the normal direction (ND) in specimens from sheets of nitrogen content 50 
ppm (Fig. 5a) and 140 ppm (Fig. 5b). At the bottom of each figure, corresponding ODF sections, at ϕ2 = 45° (Bunge 
notation) are attached together. In IPF map, red color code denotes the {100}//ND cube orientation, and blue 
denotes the {111}//ND γ-fiber orientation. Generally, the R-value depends on the relationship between the grain 

Figure 6.  Grain size of annealed samples with various nitrogen contents as a function of holding time at 
1200 °C.

Holding time at 1200 °C 80 ppm N 140 ppm N 200 ppm N

0 min 2.8 50.0 62.8

2 min 2.0 42.3 66.6

10 min 1.7 36.8 60.0

60 min 2.2 29.4 43.4

Table 2.  Fraction of particles on grain boundary (%); The number of TiN particles on grain boundary divided 
by the total number of TiN particles.

Figure 7.  Number of TiN particles on grain boundary per unit grain as a function of nitrogen content.
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orientation and the deformation direction5. The sheet of nitrogen content 50 ppm mainly comprised orientation 
colonies close to {112}//ND and {331}//ND. The ODF maximal value clearly indicates very sharp texture in those 
directions. Ma et al.10 conducted a simulation to predict ridging height. They inserted specifically oriented colonies 
into the matrix and simulated the ridging height. The colonies and the matrix with different texture showed plastic 
anisotropies, resulting in large difference in calculated ridging heights. It is deduced that the band structure com-
prised of large colonies formed by grains with similar orientations, led to plastic anisotropy during the tensile test 
and thus caused ridging. On the other hand, the sheet of nitrogen content 140 ppm comprised relatively weak tex-
ture, with maximal value of 12 near (221) [114]. The increase of randomness in the crystallographic orientation of 

Figure 8.  Simulated equilibrium cooling curve for Fe-16%Cr-0.3%Mn-0.3%Si-0.2%Ti-0.03%Al-0.004%C-
0.0001%Mg-0.002%O-N system using FactSageTM with nitrogen content of (a) 80, (b) 140 and (c) 200 ppm.
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grains would have helped this structure receive almost equal strain in all grains during the tensile test and thus 
minimize the ridging.

In steel sheets that showed severe ridging, the initial solidification structure was usually coarse and colum-
nar, whereas the initial solidification structure of steel sheets represented minimum ridging was fine and equi-
axed. The columnar structure develops long grain colonies during cold rolling and survives even after annealing5. 
Therefore, one way to reduce the ridging phenomenon of ferritic stainless steel during the forming process is to 
form a random texture by enhancing the formation of fine equiaxed grain during the solidification process.

Relationship between number density of TiN particles and grain growth behavior.  The grain 
size of heat treated samples with different nitrogen contents is plotted in Fig. 6 against holding time at 1200 °C. 
During the overall holding time of 60 min, the grain definitely coarsened in the sample with a nitrogen content 
of 80 ppm, while the 200 ppm sample underwent slower grain growth. This can be explained by the difference 
in fraction of TiN particles observed on grain boundaries. The fraction of particles on grain boundary was cal-
culated by the number of TiN particles on grain boundary divided by the total number of TiN particles in the 
observation areas24. The fraction of particles was increased with increasing nitrogen content as listed in Table 2.

If a greater number of grains exist in a given area, there is a possibility that more TiN particles exist on their 
boundaries. Hence, to accurately count the number density of TiN particles on grain boundaries, the number of 
TiN particles on grain boundaries was divided by the total number of grains in the observation areas; the results 
are plotted against nitrogen content in Fig. 7, showing that the number of TiN particles on grain boundaries per 
single grain also increased with increasing nitrogen content. Figure 8 shows the equilibrium cooling curves for 
the Fe-16Cr-0.3Mn-0.3Si-0.2Ti-0.03Al-0.004C-0.0001Mg-0.002O-N (wt%) system calculated using FactSageTM 
software (version 7.0) for the nitrogen contents of 80, 140, and 200 ppm25. The thermodynamic calculations con-
firmed that the content of TiN particles increased with increasing nitrogen content under equilibrium conditions.

TiN particles present on grain boundaries play a role in the retardation of grain growth. The retardation force 
by these particles is called the Zener pinning force and can be expressed as follows26;

σ
=Z

Vf
r

3
, (1)

v

where σ is the grain boundary energy (=6 × 10−7 J/mm2)27, V is the molar volume of Fe-16%Cr steel (=7.04 × 103 
mm3/mol), fv is the particle volume fraction, and r is the particle radius. The restraining force due to these par-
ticles is directly proportional to their volume fraction and inversely proportional to their size. The fv can be esti-
mated from the spatial size distribution of TiN particles as expressed in Eqs (2) and (3)28.
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where Na is the number of inclusions per unit area in the specimen, d  is the harmonic mean of the TiN particle 
size, and di is the cross-sectional particle diameter.

The relationship between Zener pinning force and the difference of grain size between before and after 60 min 
heat treatment is represented in Fig. 9. The Zener pinning force increased with increasing nitrogen content, 
corresponding to increased force suppressing the grain growth. Sasaki et al.29 studied the effects of titanium 

Figure 9.  Relationship between Zener pinning force and the difference in grain size between before and after 
60 min heat treatment at 1200 °C.
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addition on the microstructure of S45C steel, finding that increments of Ti addition decreased the grain size. They 
explained that the grain size decreased with increasing Zener force. Ohta et al.27 also studied the inhibition of 
austenite grain growth by TiN particles, reporting that the grain size decreased with increasing Zener force when 
the TiN particles were uniformly dispersed. Janis et al.30 studied the effect of particles on the migration of grain 
boundaries in a Fe–20%Cr alloy, reporting that grain size decreased with increasing particle number. The change 
in the pinning effect according to particle number was explained using the ratio of the perimeter to the area of 
grain, PGB/AG. Larger values of PGB/AG, which correspond to large grain boundary curvatures, corresponded to 
smaller grains.

Zener reported that grain size D would reach a limiting value depending on the particle radius (r) and particle 
volume fraction (fv)26. Since then, many researchers reported the relationship between D, r and fv

31–34. The general 
form of the equation is as follows;

β= ⋅D r
f (4)v

m

where β is pinning factor and m is volume fraction exponent. In Fig. 9, results of theoretical value were plotted as 
open shape. Open square is from the Zener’s theory, which is expressed by the following equation26;

=D r
f

4
3 (5)

However, Zener’s theory assumed that the grain has completely isotropic circle and particles are dispersed 
randomly. Open circle in Fig. 9 is from the Doherty et al.’s theory, which is expressed by the following equation31;

Figure 10.  TiN particles after 10 min heat treatment. (a) TiN particles observed by optical microscopy; (b–e) 
TiN particles observed by TEM.
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Figure 11.  TiN particles after 60 min heat treatment. (a) TiN particles observed by optical microscopy; (b–e) 
TiN particles observed by TEM.

Figure 12.  Changes in grain size of annealed samples according to holding time at 1200 °C as a function of 
nitrogen content.
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Doherty et al.’s theory takes into consideration the fraction of particles on grain boundary (Φ) and radius 
of curvature of grain boundary (β). Through the computational simulation, Φ = 0.5 and β = 2 were obtained, 
indicating that half of particles are located on grain boundary and the radius of curvature of grain boundary is 
twice the radius of the average grain. Comparing two equations, the Doherty et al.’s equation well predicted the 
present experimental results as shown in Fig. 9. As shown in Table 1, approx. half of particles, i.e., 39.6(±8.7)% 
and 58.2(±9.2)% are located on grain boundary in 140 ppm N and 200 ppm N sample, respectively. Therefore, 
it is suggested that half of particles located on grain boundary possibly affected the retardation of grain growth.

In Fig. 6, grain size increased with increasing holding time, irrespective of the nitrogen content. This origi-
nated from the fact that the size of TiN increased with increasing holding time, i.e., Zener force, inversely pro-
portional to the particle size, became weak. The TiN particles found in 10 min and 60 min heat treated sample (80 
ppm N) are shown in Figs 10 and 11, respectively. Figures 10a and 11a represent the TiN particles observed by 
optical microscopy. Figures 10b–e and 11b-e exhibit the cuboidal TiN particles observed by TEM and through 
SAD pattern and EDS analysis. The average TiN particles size was about 50 nm and 100 nm in 10 min and 60 min 
heat treated sample, respectively.

From the above results, although the Zener pinning force affected the grain growth during heat treatment, it 
did not reverse the original trend of as-cast grain size as shown in Fig. 12. Therefore, the formation of fine equi-
axed grain during solidification is more effective to diminish ridging height than retardation force of grain growth 
during annealing.

Conclusions
We investigated the influence of the equiaxed grain formation in the cast samples on the degree of ridging. Also, 
we quantitatively characterized TiN particles on grain boundaries and discussed its influence on grain growth 
during annealing at 1200 °C to clarify which is the more dominant factor affecting the ridging phenomenon. The 
major findings of the present study are as follows.

•	 The ridging height corresponded to the grain size of the solidified sample. The nitrogen content of 140 ppm 
yielded the minimum grain size and the minimum ridging height observed, whereas the nitrogen content of 
50 ppm yielded the maximum grain size and the maximum ridging height observed.

•	 Ridging results from different plastic anisotropies of band structure composed of colonies. The 50 ppm nitro-
gen sample with mixed colonies composed of ND//{112} and ND//{331} texture underwent more severe ridg-
ing than the 140 ppm nitrogen sample which has weaker texture. Therefore, an effective means to reduce the 
ridging of ferritic stainless steel during the forming process is alleviated texture by enhancing the formation 
of fine equiaxed grain during the solidification process.

•	 During equal holding times at 1473 K (1200 °C), the 80 ppm nitrogen sample was definitely coarsened, 
whereas the 200 ppm nitrogen sample underwent slower grain growth. The Zener pinning force, which is 
directly proportional to the number of TiN particles on grain boundaries, was relatively strong in samples 
with a 200 ppm nitrogen content and thus retarded the grain growth.

•	 Although the Zener pinning force affected the grain growth during annealing, it did not reverse the original 
trend of as-cast grain size, indicating that the formation of fine equiaxed grain during solidification is more 
effective to diminish ridging height than retardation force of grain growth during annealing.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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