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Abstract: Most of the retinal prostheses use a head-fixed camera and a video processing unit.
Some studies proposed various image processing methods to improve visual perception for patients.
However, previous studies only focused on using spatial information. The present study proposes a
spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation
images for artificial retina arrays by combining spatial and temporal information. Input images were
sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled
this image and generated four different phosphene images. We then evaluated the recognition scores
of characters by sequentially presenting phosphene images with varying pixel array sizes (6× 6, 8× 8
and 10× 10) and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz). The proposed method
showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method
also significantly improved the recognition score for complex characters. This method provides a
new way to increase practical resolution over restricted spatial resolution by merging the higher
resolution image into high-frame time slots.

Keywords: spatiotemporal; subsampling; character recognition; stimulus frame rates;
retinal prosthesis

1. Introduction

Several groups have developed visual prostheses to restore the vision of blind people by electrical
stimulation of visual pathways using implanted microelectrodes [1–6]. As a result, Argus II and
alpha-IMS systems are now commercially available [1,2]. The quality of restored vision is dependent on
various factors, such as the limited number of microelectrodes and the “interplay between stimulating
technology and underlying neurophysiology of the retina” [7,8]. An image-processing algorithm is
required to optimize the transmitted image information under the given spatial resolution.

The reading ability is one of the visual tasks that can be restored when the sight of blind
people is restored through retinal prosthesis implantation. Many researchers have investigated
the psychophysics of pixelized reading using various parameters and methods of finding adequate
parameters with the goal of overcoming the problem of limited number of microelectrodes [9–11].

Sommerhalder et al. studied the recognition of single letters and words to find the appropriate
number of pixels using simulated prosthetic vision [12]. About 300 pixels were needed to recognize
close-to-perfect reading with central vision. Sommerhalder et al. continuously studied reading ability
using a full-page text-reading experiment [13]. The minimum number of stimulus electrodes required
for useful reading ability at eccentric vision was about 600 grid pixels, corresponding to an electrode
size of 3 × 2 mm2. Fu et al. reported that another important parameter is the window width, which is
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defined as the number of characters in the field of view, and is inversely proportional to character
sampling density [14]. They also showed that the minimum possible resolution of reading ability was
6 × 6 at 15 words/min and 8 × 8 at 30 words/min. Recently, Dagnelie et al. studied the effects of
five parameters of pixelized images—dot size, grid size, dot spacing, random dropout percentage
and gray-scale resolution—when stimuli were provided in the form of paragraphs through a video
headset [10]. They reported that all parameters had an influence on the reading speed and accuracy,
and suggested that 3 × 3 mm2 prosthesis with 16 × 16 electrodes may allow paragraph reading
with 90% accuracy at 20–30 words/min. Chai et al. and Zhao et al. studied optimal pixel numbers
to recognize individual Chinese characters and to read Chinese paragraphs [15,16]. They used an
image-processing algorithm that specialized in Chinese characters to transform original character
images into pixelized character images. However, previous researches have focused on using spatial
information and relatively little attention was paid to temporal modulation.

Hafed et al. recently reported that fixational eye movements can enhance visual perception by
a clinical study of patients with a subretinal visual implant (Alpha IMS) [17]. Alpha IMS can use
natural eye movements because it utilizes internal light-sensitive photodiodes without the need for a
camera. Human eyes are continuously moving even during visual fixation. In other words, although
the human gaze is fixed on one point, the eyes are still moving minutely. This phenomenon is called
fixational eye movement. Human eye movements can be divided into three parts: tremor, drifts and
microsaccades. Each of these movements has different frequencies and roles. However, all of them
simultaneously occur even during visual fixation. This fixational eye movement is needed because it
helps keep the target objects within the range of human vision and prevents sensory adaptation in
the visual path by refreshing the retinal image [18]. Conventional static pixelization methods based
on retinal implants with a head-fixed camera, such as Argus II, have not reflected these kinds of real
human eye movements.

The aim of this study was to propose a new spatiotemporal pixelization method to improve the
performance of visual information transmission. The spatiotemporal pixelization method mimics
fixational eye movements by combining spatial and temporal information. The experiments were
performed to evaluate the character recognition score of the proposed spatiotemporal pixelization
method compared with the conventional static pixelization method. The results showed a higher
recognition score using the proposed method. We also discovered that an optimal stimulus frame rate
exists for which the score of recognition of characters is maximum.

2. Materials and Methods

2.1. Image-Processing Methods for Character Pixelization

To generate pixelized character images for our experiments, we used English letters as well as
Korean characters. Prior to beginning the pixelization procedure, we generated input character images
for pixelization using commercially available software (Matlab 7.0.1, The Math Works, Inc., Natick, MA,
USA). Figure 1 shows stimulating-image-generation procedures for two different pixelization methods.
For each image, one English letter or one Korean character in a white Helvetica font was superimposed
on a black background and converted to a pixelized image through an algorithm developed using
Visual Studio 2005 (Microsoft, Redmond, WA, USA).

• Static pixelization: The original character image was sampled with the same resolution as that of
the stimulating array using the block-averaging algorithm, which reduced the resolution of the
original image by dividing it into n × n blocks and replacing the pixel values of each block with
the mean gray-scale levels of the corresponding block. The phosphene image was generated by
convolving the two-dimensional Gaussian function with the block-averaged image; see Figure 1a.

• Spatiotemporal pixelization: By using the block-averaging algorithm described above, the original
image was sampled at a spatial resolution that was four times higher than that of the static
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pixelization. This block-averaged image was subsampled into four different lower resolution
images using the following relationship:

Iij(x, y) = B(2x− i, 2y− j)i, j = {0, 1} (1)

where Iij(x, y) is the subsampled image and B(2x− i, 2y− j) is the block-averaged image.
Four different phosphene images were generated by convolving a two-dimensional Gaussian
function to each of the subsampled images. These four phosphene images were seen through
the head-mounted display (HMD) with varying stimulus frame rates in the sequence shown
in Figure 1b,c. We changed the presented phosphene images at every 1/N second in the
abovementioned sequence if the frame rate was N Hz. For example, each phosphene image
is presented during six frames if the stimulus frame rate is 10 Hz.
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Figure 1. The stimulating image generation procedures. (a) The static pixelization method: the image
is sampled with the same spatial resolution of the stimulating electrodes for static stimulation;
(b) The spatiotemporal pixelization method: the original image was sampled at a spatial resolution
that was four times higher than that of the static pixelization and sub-sampled into four different lower
resolution images; (c) The presenting way of the spatiotemporal pixelization method.

2.2. Experimental Designs

All experiments were performed with subjects wearing an HMD (Z800 3DVisor, 800 × 600
resolution, 40◦ diagonal total field of view, refresh rate 60 Hz, eMagin Co., Bellevue, WA, USA).
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The pixelized image was shown to the subject through the HMD. Because the HMD substantially
reduced the field of view, we reduced the influence of peripheral vision and also made the subjects
focus more on the pixelized image during the presentation. Experiments were divided into two
sessions based on target character types, English and Korean. Because Korean characters have more
complex configurations and require higher spatial resolution for appropriate imaging than English
letters, we expected that the character recognition score would be enhanced more significantly for
Korean characters using the spatiotemporal pixelization methods.

Before each experimental session, the HMD was fitted to the participant and subjects were
told which character type (English or Korean) to expect. The angular substance of the pixelized
image was fixed at a visual field of 6.2◦ × 6.2◦ on the HMD. The pixelized images of 26 English
letters and 40 Korean characters were shown to the subject in random order and displayed for 3 s.
Korean characters were selected based on the frequency of their use in words as reported by the
National Institute of the Korean Language.

For all subjects, the spatiotemporal method was tested prior to the static pixelization method.
Three different image resolutions of images, 6 × 6, 8 × 8 and 10 × 10, were used in both character
types. The spatial sizes of the shift were 31.2 arcmin, 23.4 arcmin and 18.6 arcmin, which corresponded
to 6 × 6, 8 × 8, and 10 × 10 pixel arrays, respectively. For each session, five different stimulus frame
rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz) were tested for spatiotemporal pixelization to find the
optimal stimulating frame rates.

While the image was presented on the HMD, subjects were instructed to read the displayed letter
or character loudly and as quickly as possible, and the instructor scored correctness of the answer.
Skipping a task, as well as incorrect answers, were regarded as misrecognition. After the experiments,
the number of correct answers was divided by the total number of suggested images, and the
recognition score was calculated based on the percentage of correct answers. Then, experimental
results were compared on two different pixelization methods and as a function of spatiotemporal
stimulus frame rates. One-way analysis of variance with post hoc comparisons of the Tukey’s test was
used to obtain statistical significance.

Five volunteers who had normal or corrected-to-normal visual acuity participated in this study.
Their level of Snellen visual acuity was at least 20/20, and none of them had history of ophthalmic
diseases. The subjects were 23–30 years old, and they were all native Korean speakers who also spoke
good English and had at least six years of English instruction in schools. Before the experiments,
each subject was informed about the experimental procedures as well as the purpose of the study and
all of them consented to the experiments.

3. Results

3.1. Experiment I: Recognition of Pixelized English Letters

Five normal subjects were asked to read letters to compare the proposed spatiotemporal
pixelization method with the conventional static pixelization method. Figure 2 shows that the
recognition score of letters was significantly increased by using the spatiotemporal pixelization
method as compared with the conventional static pixelization method in all spatiotemporal stimulus
frequencies at the 6 × 6 pixel array (p < 0.05). The maximum recognition score was presented at
the stimulus frame rate of 20 Hz. However, the recognition scores of 15 Hz, 20 Hz and 30 Hz were
only significantly higher than that of 60 Hz. This finding suggests that the stimulus frame rates had
affected the recognition process of the visual system. With an 8 × 8 pixel array, we found no significant
statistical difference in recognition score between the spatiotemporal and static pixelization methods.
With a 10 × 10 pixel array, both methods achieved a recognition score of 100%. No differences between
the recognition scores of the two methods were found with an 8 × 8 and 10 × 10 pixel array because
the English letters were sufficiently recognizable with the 8 × 8 pixel array.
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images. Error bars indicate SEM. One-way ANOVA and Tukey post-hoc test, * p < 0.05, ** p < 0.01. 
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the example of original and phosphene images. The spatiotemporal pixelization method (blue) was
compared with the static pixelization method (red). The result of the recognition score with the (a) 6 × 6;
(b) 8 × 8; and (c) 10 × 10 pixel arrays are presented; (d) The example of original and phosphene images.
Error bars indicate SEM. One-way ANOVA and Tukey post-hoc test, * p < 0.05, ** p < 0.01.

3.2. Experiment II: Recognition of Pixelized Korean Characters

The same subjects who participated in experiment I also participated in experiment II,
which involved reading pixelized Korean character images. Recognition scores for experiment II are
presented in Figure 3. Although the overall recognition score was lower than the score for experiment
I due to the increased complexity, the increase in the recognition score of the spatiotemporal method
from the static pixelization method was greater than the increase in experiment I. In other words,
the recognition score improved much more by employing the spatiotemporal pixelization method in
the reading of Korean characters. Because Korean characters have more complex shapes than English
letters, the increased recognition score in experiment II suggests that the spatiotemporal pixelization
is even more effective for complex images. No statistical differences were observed between the
recognition scores of the frame rates with the 6 × 6 pixel array. Meanwhile, the frame rate with 20 Hz
scored significantly higher than the frame rate of 60 Hz (p < 0.01) with the 8 × 8 pixel array. As regards
the 10 × 10 pixel array, the frame rates with 15 Hz, 20 Hz and 30 Hz scored significantly higher than
the frame rate with 10 Hz (p < 0.05). No significant differences were found between the unexplained
frame rates. The stimulus frame rates also affected the recognition score, and the maximum recognition
score stayed between 15 Hz and 20 Hz at all three pixel arrays.
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Figure 3. The recognition scores of Korean characters for 6 × 6, 8 × 8 and 10 × 10 pixel arrays and
the example of original and phosphene images. The spatiotemporal pixelization method (blue) was
compared with the static pixelization method (red). The result of recognition score with (a) 6 × 6 pixel
array; (b) 8 × 8 pixel array and (c) 10 × 10 pixel array; (d) The example of original and phosphene
images. Error bars indicate SEM. One-way ANOVA and Tukey post-hoc test, * p < 0.05, ** p < 0.01.
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4. Discussion

4.1. Stimulus Frame Rates of the Spatiotemporal Pixelization Method

The most important finding of this study was that the spatiotemporal pixelization method with a
specific stimulus frame rate increased the recognition score. The overall results indicate that recognition
scores were highest around a specific stimulus frame rate of 20 Hz. When the stimulus frame rate was
decreased or increased from 20 Hz, recognition scores decreased in both cases. Low stimulating frame
rates seemed insufficient to effectively integrate the four different subsampled images because of the
very low presentation cycles, while the high stimulating frame rates seemed to mix four different
subsampled images into an almost static image that was difficult to recognize. The recognition
scores were presumed to be the highest at an optimal stimulus frame rate that was neither high
nor low. We conclude, therefore, that a stimulus frame rate of approximately 20 Hz is optimal for
sequentially stimulating four subsampled images to improve the practical recognition resolution under
the limitation of microelectrodes pixel numbers.

4.2. The Limitations of the Proposed Method

Despite a significant improvement in recognition score demonstrated with the proposed
pixelization method compared to the conventional method, there are some limitations to overcome
in future studies. First, we experimented with the ideal visual perception case and did not simulate
cases of perceptual distortions because of the interplay between the stimulating technology and the
underlying neurophysiology of the retina. Second, the performance was evaluated only for single
letter images. We have not yet verified the effectiveness of the proposed pixelization method when it
is applied to a word or sentence for reading. The simulation also was not performed under real-time
reading preparation. Fornos et al. studied reading performance of offline static pixelization compared
with real-time static pixelization [19]. They showed that real-time static pixelization leads to better
text recognition than offline static pixelization. If individuals can move eyes freely, they can optimize
the position of the viewing window for best recognizable pixelized image. However, we believe
that applying the spatiotemporal pixelization method to a real-time experiment will also improve
the reading performance, because Hafed et al. reported that fixational eye movement can enhance
the quality of visual perception [17]. Their scale of microsaccades was approximately 20 arcmin,
and the spatial sizes of the shift of the proposed method were less than 32 arcmin within the
range of microsaccades, which is similar to that in Hafed et al.’s study. Therefore, the effect of
mimicking fixational eye movement can be applied to real-time pixelization based on head-fixed
retinal implant systems.

In a future study, we will investigate real-time reading ability using the spatiotemporal pixelization
method by adding more subjects, words and sentences to the reading experiments. In addition,
we will investigate the effectiveness of our method compared to other visual tasks, such as eye–hand
coordination. For example, Li et al. proposed a real-time image-processing method based on global
saliency detection and showed significant advantages in eye–hand coordination visual tasks [20].

5. Conclusions

We have proposed a new spatiotemporal pixelization method that improves the equivalent
spatial resolution in character recognition. The results show improved performance for character
recognition compared to the static stimulating method. Recognition scores are also dependent on the
stimulus frame rate, which is optimized approximately 20 Hz. By using the proposed spatiotemporal
pixelization method, equivalent resolutions of images can be increased over restricted stimulation
resolutions of microelectrodes for retinal prostheses.
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