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Abstract: BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the
metabolism of iron, heme and reactive oxygen species and promotes metastasis of various cancers
including pancreatic ductal adenocarcinoma (PDAC). However, it is not clear how BACH1 is regulated
in PDAC cells. Knockdown of Tank binding kinase 1 (TBK1) led to reductions of BACH1 mRNA
and protein amounts in AsPC−1 human PDAC cells. Gene expression analysis of PDAC cells with
knockdown of TBK1 or BACH1 suggested the involvement of TBK1 and BACH1 in the regulation
of iron homeostasis. Ferritin mRNA and proteins were both increased upon BACH1 knockdown
in AsPC−1 cells. Flow cytometry analysis showed that AsPC−1 cells with BACH1 knockout or
knockdown contained lower labile iron than control cells, suggesting that BACH1 increased labile
iron by repressing the expression of ferritin genes. We further found that the expression of E-cadherin
was upregulated upon the chelation of intracellular iron content. These results suggest that the
TBK1-BACH1 pathway promotes cancer cell metastasis by increasing labile iron within cells.

Keywords: BACH1; TBK1; iron; ferritin; pancreatic cancer

1. Introduction

Iron is essential for various cellular processes, including cell proliferation and growth [1,2].
It plays a crucial role in DNA synthesis as a cofactor of DNA polymerase and ribonucleotide
reductase [3–6]. Many of the enzymes for oxidation-reduction reactions, including those
in the electron transfer chain in the mitochondria and demethylases of DNA, RNA and
histone, are dependent on iron, i.e., as iron-sulfur clusters or heme [7–13]. Iron is also
involved in the regulation of diverse proteins including tumor suppressor p53 [14,15].
However, labile ferrous iron, which is not tightly bound to proteins, is toxic to cells, tissues
and the body through the generation of reactive oxygen species (ROS) via the Fenton
reaction [16,17]. Iron-dependent accumulation of phospholipid hydroperoxide also can
cause ferroptosis, an iron-driven cell death [18,19]. To balance the essential and detrimen-
tal roles of iron, cellular iron availability is tightly regulated by a network of genes that
maintain cellular iron acquisition, storage, utilization and export. Among these, ferritin
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protects cells from iron-induced oxidative stress and allows for rapid adaptation to chang-
ing intracellular concentrations and demand for iron [20,21]. Importantly, cancer cells are
known to be more dependent on iron than normal cells [22–25]. Transferrin receptor 1
is required for iron import by endocytosis, and lipocalin 2 is involved in an alternative
pathway of iron uptake; both are highly expressed in many cancers [26–29], including
pancreatic cancer [30,31]. The decrease of ferritin increases the labile iron pool on cells
expressing the HRAS oncogene [32,33]. Ferroportin, as the only known iron efflux pump in
vertebrates, is downregulated in breast cancer cell lines and prostate cancer and associated
with increased levels of the labile iron pool [34,35].

The transcription repressor BACH1 [36] regulates the expression of genes involved in
the metabolism of iron, heme and ROS. For example, BACH1 represses the expression of
ferritin heavy (FTH1), light chain genes (FTL) and the iron exporter ferroportin (SLC40A1)
to increase intracellular labile iron [37–39]. BACH1 also represses the expression of heme
oxygenase-1 gene (HMOX1), which degrades heme and recycles iron [40–42]. The repressor
activity of BACH1 is negated by the direct binding of heme to BACH1 [43]. Therefore,
one of the key functions of BACH1 is the regulation of iron homeostasis by sensing heme.
BACH1 also promotes the malignant properties of cancer cells [43], including metastasis
in breast cancer [44,45], pancreatic ductal adenocarcinoma (PDAC) [46] and lung can-
cer [47,48]. BACH1 inhibits the expression of genes involved in epithelial cell adhesion,
including E-cadherin (CDH1), claudin (CLDN3 and CLDN4) and occludin (OCLN), to pro-
mote epithelial-mesenchymal transition (EMT) and metastasis of PDAC cells [46]. While
CLDN3 and CLDN4 genes are directly repressed by BACH1, CDH1 is not a direct target
gene of BACH1. It remains unclear how BACH1 inhibits the expression of the E-cadherin
gene [46]. Exploring the regulation of the E-cadherin gene by BACH1 may be beneficial to
elucidating the pathological roles of BACH1 in cancer proliferation and metastasis, as well
as in the search for new therapeutic approaches.

Tank binding kinase 1 (TBK1) is a serine/threonine kinase with an important role in
multiple signaling pathways [49,50]. The majority of research on TBK1 has focused on
its role in innate immunity. cGAS-STING pathway activates TBK1, which then activates
transcription factors IRF3 and NF-κB, resulting in the production of antiviral and proinflam-
matory cytokines, including type I interferons [51–56]. Recently, the role of TBK1 has been
expanded into cancers and autophagy [57–65]. TBK1 has also been reported to promote
autophagy-mediated degradation of ferritin to increase intracellular iron [66]. However,
it remains unclear whether TBK1 regulates iron homeostasis via additional mechanisms.
Prompted by this finding, here, the relationship between TBK1 and BACH1 in the regulation
of iron metabolism and E-cadherin gene expression in PDAC cells is studied.

2. Methods
2.1. Reagents

Deferasirox (DFX) was transferred as raw material from Novartis Pharma (Basel,
Switzerland). Dimethyl sulfoxide (DMSO) was purchased from Sigma-Aldrich (St. Louis,
MO, USA).

2.2. Cells and Cell Culture

Human embryonic kidney 293T (HEK293T) cells were maintained in DMEM-low
glucose supplemented with 10% heat-inactivated FBS (Sigma Aldrich, St. Louis, MO, USA),
100 unit/mL penicillin and 100 µg/mL streptomycin (Gibco, Carlsbad, CA, USA). Human
pancreatic cancer cell lines AsPC−1 were obtained from ATCC. AsPC−1 was cultured in
RPMI-1640 medium supplemented with 20% heat-inactivated FBS, 100 unit/mL penicillin
and 100 µg/mL streptomycin (Gibco). SW1990 was cultured in DMEM (Sigma Aldrich),
with 10% heat-inactivated FBS, 100 unit/mL penicillin, 100 µg/mL streptomycin (Gibco)
and 10 mM HEPES (Gibco, Carlsbad, CA, USA). The cells used were limited to less than
20 passages. BACH1 knockout AsPC−1 cells were reported previously [46].
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2.3. Western Blotting

Cells were washed with PBS and harvested. They were then centrifuged at 2300× g for
1 min and the supernatant was discarded. The cells were lysed using RIPA buffer (150 mM
NaCl, 50 mM Tris-HCl, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS) for 30 min on
ice. Precipitated proteins were removed by centrifugation at 20,400× g for 30 min. Protein
concentrations were measured using the Pierce 660 nm protein assay (Thermo Fisher
Scientific, San Jose, CA, USA) and adjusted.

The supernatant containing the proteins was mixed with SDS sample buffer (62.5 mM
Tris-HCl pH 6.8, 1% SDS, 10% glycerol, 1% 2-mercaptoethanol and 0.02% bromophenol
blue) containing protease inhibitors (0469315900, cOmplete® Mini EDTA-free Protease
Inhibitor Cocktail Tablets, Roche, Mannheim, Germany) and fractionated on slab gels (7.5%
or 10% acrylamide separating gel; 4% stacking gel). The gels were run at 100 V for about
2 h and wet-transferred onto polyvinylidene difluoride (PVDF) at 300 mA for 1.5 h at 4 ◦C.
The blots were washed with TBS-T (25 mm Tris, 137 mm NaCl, 3 mm KCl, 0.05% Tween-20,
pH 7.4) and incubated for 1 h in TBS-T/5% skimmed milk. The blots were incubated
overnight at 4 ◦C with the primary antibodies diluted in TBS-T containing 5% skimmed
milk. On the next day, the blots were washed 3 times for 10 min in TBS-T and incubated for
1 h at room temperature with horseradish peroxidase (HRP)-labeled secondary antibodies
diluted in TBS-T containing 5% skimmed milk. The bands were detected using a Clarity
Western ECL substrate (Bio-Rad, Hercules, CA, USA) in the ChemiDoc Touch imaging
system (Bio-Rad, Hercules, CA, USA) after washing three times for 10 min with TBS-T.

2.4. Antibodies

Anti-BACH1 mAb (1:500, clone 9D11, generated in-house) and anti-BACH1 antiserum
(1:1000, A1–6, generated in-house) were reported previously [46,67]. Other antibodies
were ACTB (1:1000, GTX109639, GeneTeX, Irvine, CA, USA), E-cadherin (1:1000, ab1416,
Abcam, Cambridge, MA, USA), ferritin light chain (1:100, sc-74513, Santa Cruz Biotechnol-
ogy, Cambridge, CA, USA), ferritin heavy chain (1:100, sc-376594, Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), TBK1 (1:1000, D1B4, Cell Signaling, Boston, MA, USA) and
FBXO22 (1:1000, 13606-1-AP, Proteintech, Rosemont, IL, USA). Anti-rabbit IgG-HRP (1:2500,
NA934V, GE Healthcare, Fairfield, CT, USA) and anti-mouse IgG-HRP (1:2500, NA931V,
GE Healthcare, Fairfield, CT, USA) were used as secondary antibodies.

2.5. siRNAs

Target-specific siRNAs (Stealth RNAi siRNA Duplex Oligoribonucleotides, Invitrogen)
were transfected using Lipofectamine RNAiMAX (Thermo Fisher Scientific, Waltham, MA,
USA). Stealth RNAi siRNA Negative Control, Low GC (Thermo Fisher Scientific, Waltham,
MA, USA) was used as a control siRNA. All siRNA nucleotide sequences are listed in
Table 1.

Table 1. Sequences of siRNAs.

siRNA Name Accession Name Sequence (5′-3′)

siBACH1-1 NCBI Gene ID 571 GGUCAAAGGACUUUCACAACAUUAA

siBACH1-2 NCBI Gene ID 571 GGGCACCAGGGAAGAUAGUAGUGUU

siTBK1-1 NCBI Gene ID 29110 GGACUACCAGAAUCUGAAUUCUUAA

siTBK1-2 NCBI Gene ID 29110 GCGAGAUGUGGUGGGUGGAAUGAAU

siTBK1-3 NCBI Gene ID 29110 GGGAACCUCUGAAUACCAUAGGAUU

2.6. Quantitative Real-Time PCR

RNA was isolated via RNeasy Plus Mini Kit (Qiagen, Valencia, CA, USA) and 500 ng of
total RNA was reverse transcribed to single-stranded cDNA using the High-Capacity cDNA
Archive Kit (Applied Biosystems, Foster City, CA, USA). Quantitative PCR has performed
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with LightCycler Fast Start DNA Master SYBR Green I (Roche, Basel, Switzerland) in
LightCycler 96 instrument (Roche, Basel, Switzerland). Compared to ACTB, we found that
the expression of RPL13A was more stable when DFX was used. After referring to other
papers [68,69], we chose RPL13A as the housekeeper gene. All primer sequences are listed
in Table 2.

Table 2. Sequences of qPCR primers.

Gene Name Accession Name Forward Primer (5′-3′) Reverse Primer (5′-3′)

BACH1 NCBI Gene ID 571 GTTACTTCCACTCAAGAATCGT ACATTTGCACACTTCATCCA

CDH1 NCBI Gene ID 999 TCCTGGCCTCAGAAGACAGA CCTTGGCCAGTGATGCTGTA

FBXO22 NCBI Gene ID 26263 ATTGCTTGGTTCGCGTGGTA GCTCTCTTATGGCCACGACA

FTH1 NCBI Gene ID 2495 TGAAGCTGCAGAACCAACGAGG GCACACTCCATTGCATTCAGCC

FTL NCBI Gene ID 2512 TACGAGCGTCTCCTGAAGATGC GGTTCAGCTTTTTCTCCAGGGC

HMOX1 NCBI Gene ID 3162 TTTCAGAAGGGCCAGGTGAC AGTAGACAGGGGCGAAGACT

IRP1 NCBI Gene ID 48 TGCTTCCTCAGGTGATTGGCTACA TAGCTCGGTCAGCAATGGACAACT

IRP2 NCBI Gene ID 3658 ACCAGAGGTGGTTGGATGTGAGTT ACTCCTACTTGCCTGAGGTGCTTT

MMP7 NCBI Gene ID 4316 ATCATGATTGGCTTTGCGCG CCAGCGTTCATCCTCATCGA

RPL13A NCBI Gene ID 23521 TCGTACGCTGTGAAGGCATC GTGGGGCAGCATACCTCG

SLC40A1 NCBI Gene ID 30061 GATCCTTGGCCGACTACCTG CACATCCGATCTCCCCAAGT

SNAI2 NCBI Gene ID 6591 CAACGCCTCCAAAAAGCCAA ACAGTGATGGGGCTGTATGC

TBK1 NCBI Gene ID 29110 AGCGGCAGAGTTAGGTGAAA CCAGTGATCCACCTGGAGAT

VIM NCBI Gene ID 7431 GGACCAGCTAACCAACGACA GGGTGTTTTCGGCTTCCTCT

2.7. Immunofluorescent Staining

Cells were fixed in 4% formaldehyde/PBS. After incubation with anti-BACH1 (1:200,
9D11) antibodies for 1 h at 37 ◦C, the antigen-antibody complexes were detected by an anti-
mouse IgG FITC-conjugated secondary antibody (1:1000, F3008, Sigma Aldrich, Darmstadt,
Germany). Hoechst 33258 (Thermo Fisher, Waltham, MA, USA) was used at 20 µg/mL to
stain the nuclei.

2.8. Detection of Labile Iron and Cell Death

The level of Fe2+ was measured using 5 µM Mito-FerroGreen (Dojindo Molecular
Technologies, Tokyo, Japan) according to the manufacturer’s protocol. 4′,6-diamidino-2-
phenylindole (DAPI) was used for the assessment of cell death. AsPC−1 cells were sorted
with a FACS Verse (BD) and analyzed by FlowJo software (Tree Star). The gating strategy
for living cells is shown in Supplementary Figure S4.

2.9. RNA Sequence

First, 4 µg of the total RNA was purified using an RNeasy Plus Mini Kit. Host cell
rRNA contamination was removed using the GeneRead rRNA Depletion Kit (QIAGEN,
Hilden, Germany) and RNA was purified using an RNeasy MiniElute Cleanup Kit (QI-
AGEN, Hilden, Germany). Next, 100 ng rRNA-depleted RNA was randomly sheared at
95 ◦C for 10 min. The sample was purified by a Magnetic Beads Cleanup Module (Thermo
Fisher Scientific, Carlsbad, CA, USA). The genomic libraries were constructed using an
RNA-seq library kit ver. 2 (Thermo Fisher Scientific) in the AB Library Builder system
(Thermo Fisher Scientific). Each library was barcoded with Ion Xpress RNA Seq-Barcode
01-16 Kit (Thermo Fisher) to enable multiplex sequencing. Amplified segments were then
size-selected (100–200 bp) using Agencourt AMPure XP magnetic beads (Beckman Coul-
ter, Brea, CA, USA). Sequencing templates were prepared on an Ion Chef System using
the Ion PI Hi-Q Chef Kit (Thermo Fisher Scientific). Samples were sequenced on the Ion
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Proton System using the Ion PI™ Hi-Q™ Sequencing 200 Kit and Ion PI™ v3 chip. Raw
data were obtained as fastq files. The sequence data were aligned to reference hg19 by
the Ion Torrent RNASeqAnalysis plugin (Thermo Fisher Scientific). Mapped reads were
counted using htseq-count v 0.9.1 and performed likelihood ratio test by using the edgeR
package v 3.16.5 after the removal of low-read-count genes (count per million <5). RNA-seq
data of siTBK1 from this study have been deposited in GEO under SuperSeries accession
number GSE201307.

2.10. The Analysis and the Visualization of Public Data

The dataset used comprised mRNA-seq data from TCGA tumors (see TCGA Data Por-
tal at https://tcga-data.nci.nih.gov/tcga/, accessed on 17 October 2021). The two-gene cor-
relation map is realized by the R software package ggstatsplot (3.3.3). We used Spearman’s
correlation analysis to describe the correlation between quantitative variables without
normal distribution. A p-value of less than 0.05 was considered statistically significant.

Data from GSE124408 in Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo, accessed on 9 December 2021) was used as the ChIP-seq data of BACH1 in
AsPC−1 and SW1990. DNA sequences of genes are listed in Table 3. PDF files were made
‘igvtools ver. 2.3.93′ and visualized using Integrative Genomics Viewer [70,71].

Table 3. DNA sequences of genes analyzed.

Gene NCBI Reference Sequence

BACH1 NG_029658.2

CDH1 NG_008021.1

FTH1 NG_008346.1

FTL NG_008152.1

SLC40A1 NG_009027.1

TBK1 NG_046906.1

2.11. Statistics

Statistical analyses were performed by GraphPad Prism 8. For all experiments, dif-
ferences in data sets were considered statistically significant when p-values were lower
than 0.05. When comparing only two groups, an unpaired Student’s t-test was performed.
To compare multiple groups, one-way ANOVA was used. *, p < 0.05; **, p < 0.01, ns (not
significant) p > 0.05.

3. Results
3.1. TBK1 Promotes BACH1 Expression and Accumulation

We analyzed the mRNA expression data from TCGA using the GEPIA database (Gene
Expression Profiling Interactive Analysis) [72] and found that the expression of BACH1 and
TBK1 are positively correlated in pancreatic cancer (Figure 1A). Since pancreatic cancer is
a cancer of the digestive system, we also analyzed several other cancers of the digestive
system and found similar results in bowel cancer, hepatocellular carcinoma and gastric
cancer (Supplementary Figure S1A–C). To determine the roles of TBK1-mediated regulation
of BACH1 in PDAC cells, we knocked down TBK1 by siRNA in human AsPC−1 PDAC cells.
TBK1 knockdown led to the reduction of BACH1 protein and mRNA levels (Figure 1B).
Because the change of the mRNA was smaller than that of the protein, a major regulatory
mechanism of BACH1 by TBK1 may be at the protein level rather than the transcription level
in AsPC−1 cells. Phosphorylation of BACH1 by TBK1 (L.L. et al., submitted) also suggested
this possibility. In contrast, when TBK1 was knocked down in HEK293T cells, endogenous
BACH1 protein and mRNA levels did not decrease (Supplementary Figure S2A). To test if
TBK1 affects the subcellular distribution of BACH1, immunostaining was carried out. TBK1
knockdown resulted in a decrease of the endogenous BACH1 protein in AsPC−1 cells, but

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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its subcellular distribution did not change (Supplementary Figure S2B). The cell counts
did not change under the reduction of TBK1 (Supplementary Figure S2C). These results
indicated that TBK1 is required for the accumulation of BACH1 protein and to promote
BACH1 function in PDAC cells.
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Figure 1. TBK1 promotes BACH1 expression and accumulation. (A) Spearman correlation analysis
of BACH1 and TBK1 gene expression in 178 pairs pancreatic cancer samples. The horizontal and
ordinate axes in the figure represent the expression distribution of BACH1 and TBK1, respectively,
with density curves representing their distributions. p represents correlation p values, Spearman
means Spearman’s rank correlation coefficient, CI95% shows 95% confidence limits. (B) Effects of
TBK1 knockdown on BACH1. At 48 h after TBK1 knockdown in AsPC−1 cells, cell lysates were used
for anti-BACH1, anti-TBK1 and anti-actin Western blotting (left) or measurement of BACH1 mRNA
levels (right). Scrambled siRNA was used as a negative control. One-way ANOVA, n = 3 biologic
replicates for each experiment. **, p < 0.01.

3.2. TBK1-BACH1 Pathway Regulates Iron Homeostasis and Cell Migration

To further investigate the regulatory relationship between TBK1 and BACH1, we
knocked down TBK1 in AsPC−1 cells and carried out an RNA-seq analysis. Using our
previously published data of RNA-seq in AsPC−1 cells with or without BACH1 knock-
down [46], there were 102 common upregulated genes and 181 common downregulated
genes in TBK1-silenced and BACH1-silenced AsPC−1 cells (Figure 2A,B). A GO pathway
enrichment analysis of these genes showed that terms related to oxidation-reduction pro-
cess, regulation of transcription from RNA polymerase II promoter in response to iron,
positive regulation of sequence-specific DNA binding transcription factor activity and cellu-
lar iron ion homeostasis were enriched in genes upregulated in response to TBK1 or BACH1
knockdown (Figure 2C). Considering that TBK1 is involved in iron metabolism [66], these
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results suggested the involvement of TBK1 in the regulation of BACH1 to tune iron home-
ostasis in AsPC−1 cells. Consistent with the reduction of BACH1 protein, its known target
genes were increased in their expression, including HMOX1 and SLC40A1. On the other
hand, the enrichment of terms related to positive regulation of endothelial cell proliferation,
wound healing and positive regulation of cell migration in the genes whose expression was
decreased (Figure 2D). The expression of mesenchymal genes, such as MMP7, SNAI2, and
VIM, were decreased upon TBK1 knockdown (Supplementary Figure S3A). The expression
of these genes is also reduced upon BACH1 knockdown in these cells [46], suggesting that
TBK1 promotes metastatic process including cell migration via enhancing the function
of BACH1.

Antioxidants 2022, 11, x FOR PEER REVIEW 7 of 17 
 

positive regulation of sequence-specific DNA binding transcription factor activity and cel-
lular iron ion homeostasis were enriched in genes upregulated in response to TBK1 or 
BACH1 knockdown (Figure 2C). Considering that TBK1 is involved in iron metabolism 
[66], these results suggested the involvement of TBK1 in the regulation of BACH1 to tune 
iron homeostasis in AsPC−1 cells. Consistent with the reduction of BACH1 protein, its 
known target genes were increased in their expression, including HMOX1 and SLC40A1. 
On the other hand, the enrichment of terms related to positive regulation of endothelial 
cell proliferation, wound healing and positive regulation of cell migration in the genes 
whose expression was decreased (Figure 2D). The expression of mesenchymal genes, such 
as MMP7, SNAI2, and VIM, were decreased upon TBK1 knockdown (Supplementary Fig-
ure S3A). The expression of these genes is also reduced upon BACH1 knockdown in these 
cells [46], suggesting that TBK1 promotes metastatic process including cell migration via 
enhancing the function of BACH1. 

 

Antioxidants 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 
Figure 2. TBK1 and BACH1 regulate genes for iron homeostasis and cell migration. (A,B), AsPC−1 
cells with TBK1 siRNA or control siRNA were analyzed with RNA-sequence, resulting in upregu-
lated (A) or downregulated (B) genes with TBK1 knockdown. These genes were compared with 
those affected with BACH1 knockdown, pointing to 102 common upregulated genes and 181 com-
mon downregulated genes in TBK1-silenced and BACH1-silenced AsPC−1 cells. (C,D), Top 10 Gene 
Ontology (GO) biological process terms enriched in the upregulated genes (C) or downregulated 
genes (D) using DAVID for each considered group. 

3.3. BACH1 Increases the Iron Content by Reducing the Expression of Ferritin 
A reanalysis of ChIP-seq data of BACH1 in AsPC−1 cells [46] showed direct binding 

of BACH1 to FTL and FTH1 encoding ferritin subunits (Figure 3A). Ferritin mRNAs were 
increased upon knockout (Figure 3B) or knockdown (Supplementary Figure S3B) of 
BACH1 in AsPC−1 cells. Correspondingly, ferritin heavy and light chain proteins were 
increased in AsPC−1 cells with the knockout of BACH1 (Figure 3C). While BACH1 also 
directly binds with SLC40A1 encoding ferroportin, its mRNA was not increased (Supple-
mentary Figure S3C,D). Two cytoplasmic iron regulatory proteins (IRP1 and IRP2) post-
transcriptionally regulate cellular iron metabolism, including translational inhibition of 
ferritin mRNAs when the iron is reduced [20,73,74]. IRP2, but not IRP1, was also de-
creased under the situation of BACH1 knockdown and knockout (Supplementary Figure 
S3B,E), suggesting a direct or indirect regulation of IRP2 expression by BACH1. 

To examine whether these alterations led to changes in iron within cells, we meas-
ured labile iron, which is not bound tightly to proteins, in mitochondria by using Mito-
FerroGreen and flow cytometry (FACS) with a gating strategy shown in Supplementary 
Figure S4. FACS analysis showed that AsPC−1 cells with BACH1 knockout and knock-
down were lower in the mean intensity of the Mito-FerroGreen signal and less in the mean 
numbers of Mito-FerroGreen positive cells than respective control cells (Figure 3D; Sup-
plementary Figure S5). These results suggested that BACH1 increases mitochondrial la-
bile iron in AsPC−1 cells by repressing the expression of ferritin genes. 

Figure 2. TBK1 and BACH1 regulate genes for iron homeostasis and cell migration. (A,B), AsPC−1
cells with TBK1 siRNA or control siRNA were analyzed with RNA-sequence, resulting in upregulated
(A) or downregulated (B) genes with TBK1 knockdown. These genes were compared with those
affected with BACH1 knockdown, pointing to 102 common upregulated genes and 181 common
downregulated genes in TBK1-silenced and BACH1-silenced AsPC−1 cells. (C,D), Top 10 Gene
Ontology (GO) biological process terms enriched in the upregulated genes (C) or downregulated
genes (D) using DAVID for each considered group.
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3.3. BACH1 Increases the Iron Content by Reducing the Expression of Ferritin

A reanalysis of ChIP-seq data of BACH1 in AsPC−1 cells [46] showed direct binding
of BACH1 to FTL and FTH1 encoding ferritin subunits (Figure 3A). Ferritin mRNAs were
increased upon knockout (Figure 3B) or knockdown (Supplementary Figure S3B) of BACH1
in AsPC−1 cells. Correspondingly, ferritin heavy and light chain proteins were increased in
AsPC−1 cells with the knockout of BACH1 (Figure 3C). While BACH1 also directly binds with
SLC40A1 encoding ferroportin, its mRNA was not increased (Supplementary Figure S3C,D).
Two cytoplasmic iron regulatory proteins (IRP1 and IRP2) post-transcriptionally regulate
cellular iron metabolism, including translational inhibition of ferritin mRNAs when the iron
is reduced [20,73,74]. IRP2, but not IRP1, was also decreased under the situation of BACH1
knockdown and knockout (Supplementary Figure S3B,E), suggesting a direct or indirect
regulation of IRP2 expression by BACH1.
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Figure 3. BACH1 increases the iron content by repressing the expression of ferritin. (A), ChIP-
seq analysis of the binding of BACH1 to FTL and FTH1 genes in AsPC−1 cells and SW1990 cells.
(B), Relative mRNA levels of FTL and FTH1 in BACH1 knockout and control AsPC−1 cells. All
data are presented as mean ± SD, with p values from the Student’s t-test, n = 3 biologic replicates
for each experiment. **, p < 0.01. (C), Western blotting of BACH1 and ferritin proteins as in (B).
Cell lysates were used for anti-BACH1, anti-ferritin heavy, anti-ferritin light and anti-actin Western
blotting. (D), Flow cytometry analysis for detecting mitochondrial Fe2+ with Mito-FerroGreen in
BACH1 knockout and control AsPC−1 cells. Distribution (left), mean fluorescence intensity (middle)
and the fraction of positive cells (right) are shown. GMFI, geometric mean fluorescent intensity. All
data are presented as mean ± SD, with P values from the Student’s t-test. n = 3 biologic replicates for
each experiment. **, p < 0.01.
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To examine whether these alterations led to changes in iron within cells, we mea-
sured labile iron, which is not bound tightly to proteins, in mitochondria by using Mito-
FerroGreen and flow cytometry (FACS) with a gating strategy shown in Supplementary
Figure S4. FACS analysis showed that AsPC−1 cells with BACH1 knockout and knock-
down were lower in the mean intensity of the Mito-FerroGreen signal and less in the
mean numbers of Mito-FerroGreen positive cells than respective control cells (Figure 3D;
Supplementary Figure S5). These results suggested that BACH1 increases mitochondrial
labile iron in AsPC−1 cells by repressing the expression of ferritin genes.

3.4. Iron Availability Regulates BACH1 and E-Cadherin Expression

Since iron and heme play key roles in the regulation of BACH1 [43,75–77], the changes
in BACH1 protein and mRNA in response to fluctuations of iron in AsPC−1 and SW1990
derived from PDAC patients was examined with ferrous sulfate (FeSO4) or iron chelator
deferasirox (DFX). BACH1 protein was increased with DFX and decreased with FeSO4
(Figure 4A,B; Supplementary Figure S6A). Consistent with the protein amount, BACH1
mRNA increased in response to DFX after 12 or 48 h. Among downstream target genes
of BACH1, HMOX1 mRNA decreased with DFX (Figure 4C; Supplementary Figure S6B).
Taken together with the enhanced BACH1 protein degradation by heme [77], these results
demonstrated that iron deficiency, which leads to a decrease in heme, induces the expression
of BACH1 at both transcriptional and post-translational steps.

BACH1 is polyubiquitinated by the E3 ligase adaptor proteins F-box protein 22
(FBXO22) [47]. The mRNA of FBXO22 decreased with DFX (Figure 4C; Supplementary
Figure S6B), which suggested that FBXO22-dependent BACH1 degradation was decreased
under this condition, contributing to the accumulation of BACH1 protein. The next question
is how TBK1 responds to a reduction of iron. TBK1 mRNA and protein were decreased
when AsPC−1 cells were treated with DFX (Figure 4C,D; Supplementary Figure S6B). This
observation led to the question of whether TBK1 is involved in the accumulation of BACH1
protein upon iron chelation. DFX still increased BACH1 protein even when TBK1 was
reduced by siRNA (Figure 4D). However, the accumulation of BACH1 was reduced com-
pared with DFX alone. FBXO22 protein was also reduced by DFX, which was not affected
by TBK1 knockdown (Figure 4D). When taken together, these observations suggested that
TBK1 and iron constitute two independent, parallel pathways to control BACH1 expression
in PDAC cells. TBK1 promotes the accumulation of BACH1 protein whereas iron inhibits
its accumulation.
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Figure 4. The increases of BACH1 mRNA and protein under iron deficiency. (A), Western blotting of
BACH1 protein. AsPC−1 cells were treated with DFX (100 µM) or FeSO4 (200µM) for 24 h or 48 h and
cell lysates were used for Western blotting with anti-BACH1 and anti-actin antibodies. DMSO served
as a negative control. (B), Western blotting of BACH1 protein. AsPC−1 cells were incubated with
indicated concentrations of DFX for 6, 12, 24 or 48 h. Proteins were detected as in (A). (C), Relative
mRNA levels of indicated genes. AsPC−1 cells were incubated with DFX (50 µM) or DMSO for
12 h. mRNA amounts were normalized using actin mRNA and presented as mean ± SD, with p
values from the Student’s t-test. n = 3 biologic replicates for each experiment, *, p < 0.05; **, p < 0.01.
(D), Western blotting of BACH1, TBK1 and FBXO22 proteins. At 24 h after TBK1 knockdown, cells
were incubated with DFX (50µM) or DMSO for 48 h and were used for Western blotting. DMSO
served as a negative control.

While BACH1 reduces the expression of CDH1 encoding E-cadherin in PDAC cells to
promote metastasis [46], the specific mechanism remains unclear. A recent report pointed
to the role of iron in promoting EMT in HepG2 cells [78]. When taken with this report, the
above observations raise the possibility that the regulation of CDH1 expression involves
iron. Indeed, E-cadherin mRNA and protein were both increased by the DFX treatment
(Figure 5A). The increased expression of E-cadherin upon BACH1 knockdown may involve
iron reduction caused by increased expression of ferritin (Figure 5B).
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All data are presented as mean ± SD, with p values from the Student’s t-test. n = 3 biologic replicates
for each experiment. **, p < 0.01. (B), Proposed model for the regulation of iron and BACH1 and their
connection to the regulation of E-cadherin in pancreatic cancer cells.

4. Discussion

This study has shown that TBK1 is required to maintain the expression of BACH1 in
PDAC cells. Since TBK1 phosphorylates BACH1 (LL et al., unpublished observation), this
modification may increase the stability thereof. In addition, TBK1 was found to increase
BACH1 mRNA. Since TBK1 is known to activate transcription factors for immune responses
such as IRF3 and NF-κB [51–56], these factors may transactivate BACH1 gene expression.
As iron metabolism is dynamically altered during infection [79–81], TBK1 and BACH1 may
contribute to immune responses as well as EMT by altering iron metabolism. The links
between iron and E-cadherin expression remain unclear. It has been reported that in colon
cancer cells, iron chelators antagonize the reduction of E-cadherin expression in response to
transforming growth factor-β, and that their effect is dependent on the induction of N-myc
downstream-regulated gene 1 (NDRG1) upon iron chelation [82]. Therefore, it will be
important to examine whether NDRG1 expression is altered in response to TBK1 or BACH1.
TBK1 is known to promote EMT, including the reduction of E-cadherin expression, by
altering the activities of downstream protein kinases such as AKT, ERK and GSK3β [83,84].
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However, it was also reported that TBK1 inhibits EMT in breast cancer cells via increasing
the expression of estrogen receptors [85]. Taken together with these reports, our findings
suggested that TBK1 may promote EMT and metastasis of cancer cells via both BACH1-
independent and BACH1-dependent mechanisms. Consistent with this hypothesis, it has
been reported that TBK1 enhances the invasive and metastatic capacity of pancreatic cancer
cells [86].

The expression of BACH1 in PDAC cells is strictly regulated in response to the amount
of intracellular iron. As a continuously high level of BACH1 is expected to increase cellu-
lar iron levels, which may cause ferroptosis [87], an alternative mechanism to suppress
overshooting of BACH1 appears to be necessary. Our results suggest that this may be
achieved by the decrease of BACH1 by iron, leading to the re-expression of ferritin genes.
When iron is limited, cells increase the amount of BACH1 by two distinct mechanisms. One
is the increased transcription of BACH1 mRNA in response to a reduction in iron. Since
BACH1 is known to be induced by the hypoxic response [88], hypoxia-inducible factors may
be involved in the increased transcription of BACH1 gene in response to iron deficiency.
The mechanism of the increased expression of BACH1 mRNA awaits further clarification.
The other mechanism involves a decrease in the expression of FBXO22, which leads to a
cessation of BACH1 degradation. As heme is a complex of iron and protoporphyrin IX,
the supply of iron via the transferrin-receptor pathway limits, and thus controls, the heme
synthesis rate [89]. Hence, it is also possible that DFX enhances BACH1 accumulation by
reducing heme-regulated degradation of BACH1 [77]. The presence of multiple pathways
to increase BACH1 in response to iron reduction probably leads to a rapid increase in
BACH1 protein level, resulting in prompt changes in target gene expression.

The present observations suggest that BACH1 and iron form a negative feedback
loop (Figure 5B). When it is active, BACH1 increases intracellular labile iron by repressing
the expression of ferritin genes, and TBK1 is required to maintain the amount of BACH1.
Ensuring an increase in mobile iron and heme then decreases the amount of BACH1
protein in part by increasing the expression of FBXO22 and promoting heme-dependent
degradation of BACH1. Therefore, iron and BACH1 regulate each other by a network
of multiple regulatory interactions including TBK1 and FBXO22. It will be important to
investigate the universality and cell type-specific modulation of this network in various
cell types including cancer cells.

5. Conclusions

We determined that BACH1 protein and mRNA levels were reduced by TBK1 knock-
down in PDAC cells. A GO pathway enrichment analysis of PDAC cells with knockdown of
TBK1 or BACH1 suggested that TBK1 and BACH1 both regulate cellular iron ion homeosta-
sis and cell migration. Consistent with this, BACH1 represses the transcription of ferritin
and thus, brings about an increase in cellular iron levels in these cells. In addition, iron
reduces the expression of E-cadherin. These observations suggest that TBK1 and BACH1
promote metastasis of PDAC cells, in part by controlling iron metabolism.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11081460/s1, Figure S1: Spearman correlation analysis of
BACH1 gene expression and TBK1 gene expression in cancer tissues; Figure S2: BACH1 subcellular
distribution did not change upon TBK1 knockdown; Figure S3: BACH1 inhibits the expression
of ferritin genes; Figure S4: Additional data demonstrating flow cytometry gating of dead cells;
Figure S5: BACH1 increases the iron content; Figure S6: The increases of BACH1 mRNA and protein
under iron deficiency.
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