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on Modeling ensemble transport of 
Metal Reducing Motile Bacteria
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Dehong Hu  3 & Ryan t. Kelly4

Many metal reducing bacteria are motile with their run-and-tumble behavior exhibiting series of 
flights and waiting-time spanning multiple orders of magnitude. While several models of bacterial 
processes do not consider their ensemble motion, some models treat motility using an advection 
diffusion equation (ADE). In this study, Geobacter and Pelosinus, two metal reducing species, are used 
in micromodel experiments for study of their motility characteristics. trajectories of individual cells 
on the order of several seconds to few minutes in duration are analyzed to provide information on (1) 
the length of runs, and (2) time needed to complete a run (waiting or residence time). A Continuous 
Time Random Walk (CTRW) model to predict ensemble breakthrough plots is developed based on 
the motility statistics. The results of the CTRW model and an ADE model are compared with the real 
breakthrough plots obtained directly from the trajectories. The ADE model is shown to be insufficient, 
whereas a coupled CTRW model is found to be good at predicting breakthroughs at short distances and 
at early times, but not at late time and long distances. The inadequacies of the simple CTRW model can 
possibly be improved by accounting for correlation in run length and waiting time.

The complex and interacting processes of bacterial transport impart a self-propelling character to many species1. 
The motility pattern is often seen to exhibit an enhanced diffusion2–8 with mean-square displacement growing 
faster than linear in time. In systems with background flow, while immotile cells follow Gaussian-like distribu-
tions for velocity and orientations, motile cells have been observed to follow anomalous non-Gaussian devia-
tions9. Nevertheless, many models used to study the ensemble behavior of bacterial transport are based on the 
use of advection-diffusion equation (ADE)10–15. The ADE is a manifestation of Fick’s law, valid for uncorrelated 
velocity fields and characterized by plumes that spread in proportion to t1/2. Gaussian-like distributions of motion 
increments is a key assumption of ADE models and hence their use in modeling movement of motile cells may 
not fully capture the features and trends of bacterial transport. In some cases, use of an ADE-based model to fit 
the experimental observations of bacterial motion has resulted in inexplicable values of fitting parameters, such as 
values of retardation coefficient of less than 111,12. This study aims to: (a) help gain more insight into applicability 
and potential inadequacies of ADE-based models to study bacterial transport, (b) demonstrate construction of 
simple models for study of ensemble transport by honoring the bacterial species specific motility dynamics, and 
(c) provide guidance for making further improvement in these modeling techniques.

One of the application areas requiring accurate modeling of motility dynamics is the microbially-mediated 
reduction of metals and radionuclides. Oxidized forms of many of these contaminants are highly soluble, but 
form precipitates with lower solubility upon reduction, leading to minimal mobility in the environment16. Most 
numerical models of metal bioremediation treat bacterial biomass as an immobile constituent17,18. Field exper-
iments have however observed a strong correlation between the rate of metal reduction and the abundance of 
planktonic (free-swimming) cells19,20, suggesting that microbial transport could impact spatial patterns of metal 
reduction. As a first step in an effort to develop improved simulators for metal bioremediation, we studied 
motility characteristics and construct simple micro-scale transport models for two microorganisms: the model 
metal-reducing bacterium Geobacter sulfurreducens (strain PCA, the type strain of the species) and Pelosinus 
strain JHL-11, an organism isolated from the uranium- and nitrate-contaminated groundwater of the 300 Area, 
and chromium contaminated groundwater of the 100 Area, of the U.S. Department of Energy’s (DOE’s) Hanford 
Site, in southeastern Washington State21. Geobacter species have been extensively studied and characterized in 
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relation to uranium bioremediation, in particular at the DOE’s Rifle, CO, field research site22,23. Metal and radio-
nuclide reduction by Geobacter is usually associated with reduction of natural iron oxide minerals, which being 
much more abundant than the contaminants serve as the primary electron acceptor for Geobacter metabolism24,25. 
Zhao et al.26 developed a numerical model of uranium bioremediation that includes terms describing the bulk 
movement (passive advection) of planktonic bacteria as well as their attachment to solid surfaces (transition from 
planktonic to attached phase), and demonstrated through sensitivity analyses that these processes play a signifi-
cant role in determining the overall rate of contaminant reduction. Pelosinus species have been seen to have ura-
nium and chromium reducing capabilities21,27,28 and their strains isolated from chlorinated solvent-contaminated 
groundwater have been observed to express flagellar motility29.

Though many metal reducing bacteria are motile with their run-lengths (jump length) and waiting-time span-
ning a wide range of values, existing models of contaminant bioreduction do not account for the movement of 
microorganisms, either passive movement with flowing groundwater or active movement by motile (and some-
times chemotactic) bacteria. Accurate numerical models of bioremediation are needed to support design and 
evaluation of field implementations. We present here experiments and models using motile strains of Geobacter 
and Pelosinus to quantify their motion properties and ensemble transport in unobstructed medium, as a prelude 
to development and testing of new models of bacterial transport during bioremediation.

Methods
A sequence of experiments was conducted to quantify the two-dimensional movement patterns of individual 
cells in micro-models in the absence of flow. Geobacter sulfurreducens strain PCA30 was cultured anaerobically 
in Geobacter Medium (ATCC medium 1957), with sodium acetate at 10 mM and sodium fumarate at 50 mM. 
Cells were used either without dilution or after diluting in anoxic phosphate-buffered saline (PBS) containing 
10 mM sodium fumarate. Although expressing flagellar motility when originally isolated, including chemotaxis 
proteins31, the Geobacter sulfurreducens type strain used here (PCA) has lost flagellar motility over time in labo-
ratory incubation. However, the strain retains type IV pili32, which can give rise to twitching or gliding motility33. 
Although pili-enabled twitching motility in this strain has not been documented or quantified, to our knowledge, 
the results of Spears et al.32 suggest that the pili of Geobacter sulfurreducens (strain PCA) may be involved in 
twitching motility in addition to electron transfer and biofilm formation. Pelosinus strain JHL-11, isolated under 
nitrate-reducing conditions from sands incubated from Hanford Site 300 Area groundwater was cultured anaer-
obically in tryptic soy broth (TSB), without dextrose, with 5 mM potassium nitrate added as electron acceptor, at 
either 30 °C or room temperature. Transmission electron microscopy imaging (see Supplementary Fig. 1) suggests 
that strain JHL-11 contains peritrichous flagella consistent with observations of its close relatives29. Such extracel-
lular structures should give rise to swimming motility34.

experimental setup. Tracks of cells on the order of several seconds to a few minutes in duration were 
recorded to provide information on motility in two dimensions. The approach is similar to some other studies 
where the relatively small value of vertical dimension compared to the extent of horizontal plane allows for pro-
jecting the bacterial motion onto two-dimensional planes13,35–37. Micro-model chambers for easy injection and 
viewing of the cells were constructed as shown in Fig. 1.

The non-flowing chambers, made out of polydimethylsiloxane (PDMS) for easy design adaptation, were 20 µm 
deep in the vertical direction and about 2 mm in the transverse direction. The chamber was divided into an 
open unobstructed area, and an area designed with staggered cylinders to model a simple pore network. This 
paper only presents results obtained from the open zone. The chambers were viewed by microscopes in verti-
cally downward direction, limiting the recorded trajectory information to a 2D plane. To limit oxygen exposure 
to the bacteria, the micro-models were stored in an anaerobic chamber and then kept in anaerobic jars until 
immediately before use, at which point the anaerobic bacterial suspensions were injected into the micro-model 
via N2-sparged needle and syringe. After injection of the bacterial solution, the inlet and outlet were sealed to 
eliminate the possibility of any flow affecting active bacterial swimming. The circuitous path leading from the 
inlet/outlet point to the micro-model chamber was designed to minimize the chances of any small perturbation 
in pressure gradient to cause flow in the chamber. Bacterial motion was viewed under various magnifications, and 
videos were recorded using a camera with a sensor pixel size of 13 µm × 13 µm. Each recorded frame was of the 
size of 1024-pixels × 1024-pixels. The physical size of each pixel on the video file is easily determined by dividing 
the sensor size by the magnification. For example, with a microscope magnification of 20X, each pixel on the 
video file has a size of 13/20 = 0.65 µm. The total size of the viewing window then becomes 1024 × 0.65 = 665 µm.

Figure 1. Sketch of the micro-models. The black dots at left-end and right-end are the inlet and outlet which 
were used for solution injection but were sealed afterwards to ensure no flow. The main body of chamber was 
divided in an open unobstructed area (black zone in the diagram) and an area with staggered cylinders.
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In contrast to study of motility near surfaces which allows for careful examination of single-cell motility mech-
anisms38, viewing and recording bacterial motion in open medium are mainly suited for collecting single-cell 
trajectory data and also involves more careful adjustments of microscope magnifications. Selection of the micro-
scope magnification was mainly guided by the average body length of the cells being studied. Each individual cell 
should ideally occupy at least 2–3 pixels on the video frames in order to minimize the numerical issues associated 
with tracking. For example, a good choice of magnification to observe bacteria with an average body length of 
0.5 µm is at least 50X (each pixel on the video file is then 13/50 = 0.26 µm). However, increasing the magnification 
also results in reduction of the size of viewing window as well as reduction in depth of field, causing the cells to 
frequently go in and out of the focal plane. Microscope magnification of 20X, 32X, 40X and 64X were used in this 
study for the two species of bacteria. The small body size of Geobacter warrants larger magnification of 40X or 
64X, whereas videos of Pelosinus were recorded under bright light with 32X and 20X magnification factor. The 
sampling rates, which have been shown to be an important factor in determination of statistical properties of 
motility39, were varied only within a small range. Videos of the two species were recorded at frequencies (frame 
capturing speed) ranging from about 4 Hz to 8 Hz to produce files which were sufficiently long and at the same 
time avoided dramatic changes in location of individual cells from one frame to the next. A large number of video 
files were collected for both species by repeating the experiments under identical conditions.

Video processing. A series of video file extraction and processing codes were written in MATLAB to ana-
lyze the recorded files created by the ImageJ processing program. Each video file consisted of 1000 frames with 
every frame being 1024-pixel × 1024-pixel in size. A frame capturing frequency of 8 Hz for example generates 
a total video duration of 1000/8 = 125 seconds. Pixels appear as a shade of black, white, or gray and are associ-
ated with an intensity value. The data of pixel intensity were recorded and read in MATLAB and treated as a 
1024 × 1024 × 1000 matrix. Generally, the bacteria are darker than their surroundings under bright light, thus 
giving the cells a pixel intensity value distinct from their surroundings. The background pixels tend to have sim-
ilar intensity values in time while the pixels occupied by bacteria change their intensity over time. The method 
used here is similar to the recently applied image analysis techniques by Liang et al.37 where individual cell loca-
tions were determined by finding the maxima of local intensity in an analyzed image.

Processing of video files to determine trajectories of individual bacteria presents several challenges because of 
file processing complexities related to shifts in pixel intensity, changes in bacterial swimming speed, and possible 
intersection of two trajectories. A “moving bacterium” is recognized as an assembly of points, where (1) the inten-
sity of these points is significantly different (darker or lighter) from surroundings in a frame, and (2) the center 
of these points are changing through time. The x- and y-coordinates were found by locating the centroid of all 
occupied pixels by a cell. To accurately determine the positions of bacteria and create trajectories, spatial and tem-
poral filters were introduced to eliminate the noise of background. A radius around each path end was defined, 
outside of which a detected bacterium was considered to be ‘new’. In addition, an appropriate searching radius 
was created and applied for finding the new location of bacteria after a run (also called jump). Alternative meth-
ods for extracting trajectories have been reported in recent literature by finding an optimal association between 
points in subsequent frames based on maximization of total likelihood of all trajectories37. Though comparing the 
results from different trajectory generation algorithms is a useful exercise, we focus here on statistical analysis of 
trajectory data and using it to construct ensemble transport models. A movie showing identification and tracking 
of Pelosinus cells in shown in the Supplementary Materials.

Statistical analysis. After path lines for each bacterium were created, data were further filtered to only 
include those paths that have meaningful duration (10 frames or more) and at least one jump during the duration 
of its total recorded time (i.e., bacteria that were completely idle were excluded from further analysis). A cell was 
assumed to be in “waiting state” if it moved less than the average body length for its species. Continuous motion of 
a cell in a certain direction was treated as “long” jump unless the direction of motion at some instance changed by 
more than 5°. A new jump is registered when at least one of two conditions is met: (1) the bacterium moves from 
a waiting state; or (2) the change in turn angle in the direction of motion is larger than ±5° (about 1 pixel change 
in perpendicular direction over 10 pixels of displacement in the direction of travel).

As individual trajectories were assumed to be independent of each other, the initial location (i.e., start point of 
a trajectory) can be arbitrarily shifted in post-processing to make all trajectories start from a common point (for 
example, the origin of the coordinate system). This is to say that the exact start point and end point of a trajectory 
within the viewing window doesn’t matter; what matters is the change in pixel location and the time elapsed for 
those changes to happen. After transferring the time and distance from units of frame and pixels to units of sec-
onds and µm by equations:

= ×
= ×µ µm m

Time (sec) Number of Frames (1/Frequency)
Distance ( ) Number of Pixels (13 /Magnification Factor)

Each individual trajectory of a species was merged into one master file which contains information for all 
jumps including x-increment, y-increment, and amount of waiting time. This master file was then used to analyze 
distributional properties of waiting time and jump length for each species.

In addition to recording the statistics of jump length and waiting time, the number of cells in the system, the 
mean travel distance, and the mean-centered standard deviation of cell locations as a function of time were also 
continuously monitored. The master file containing information of all trajectories (longer than or equal to 10 
frames) progressively becomes sparse as only a few trajectories were continuously recorded for a long duration 
(e.g., more than 100 frames). This is because a majority of the trajectories go in and out of the viewing window, 
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turning them into discontinuous pieces of data. Mean and variance were computed only up to the time where the 
master file contained at least 50 unique trajectories.

Model development. Considering the ‘run-and-tumble’ nature of microbe movement40, the Continuous 
Time Random Walk (CTRW) approach is a promising mathematical framework to model and predict the motion 
of microbes41. The CTRW approach assumes the number of jumps (n) and their magnitude during any given 
time interval (0, t) to be random. Individual trajectories were considered to comprise single displacements whose 
length is a random variable and are also separated in time by random waiting periods. A bacterium starting from 
location r0 jumps to r1, and then waits for time τ1 before the next jump. Particles are tracked through a series of 
jumps and waiting periods to express the n + 1 step displacement as:

ε= ++r r (1)n n n1

where εn is the displacement increment at step n + 1. The n + 1 step time can be expressed as:

= + τ+t t (2)n 1 n n

where τn is the time increment at step n + 1. In this study, displacement (ri) and waiting time (τi) are modeled 
as both coupled and uncoupled, by treating waiting time as dependent variable (i.e., waiting time increment is 
computed by first conditioning the random walk process on the jump length) or as an independent variable (i.e., 
waiting time and jump length are treated as unrelated quantities) respectively. The displacement increment εn and 
the time increment τn are directly derived from the empirical probability density functions of jump length and 
waiting time formed by extracting those data from trajectories of individual cells. For the coupled model, specific 
waiting time values that correspond to known jump lengths are used in the random walk process. For the uncou-
pled model, all possible values of waiting time are treated as equally likely regardless of the magnitude of jump 
length. Let P (t; n) be the probability for n jump events in time t. P (r, t), the probability of finding the particles at 
r at time t, can be expressed as42:

∑= =
∞r rP( , t) P(t; n)P ( ) (3)n 0 n

where Pn(r) is the probability of finding the particle at r after n jumps. The computation of mean travel distance 
and mean centered variance from recorded trajectory data allows for construction of an advection diffusion 
equation (ADE) based model, which has been used by several researchers to study bacterial transport7,11,12,43–45. 
The general form of ADE can be expressed as:

∂
∂

= −∇ ⋅ + ∇ ⋅ ∇vC
t

( C) (D C) (4)

where C is concentration of particles, v is flow velocity, and D is diffusion tensor. At the foundation of the ADE 
lies the assumption that the variance of migrating particles grows linearly with time, a characteristic of Fickian 
diffusion. In many circumstances however the dynamics of the migrating particles can either suppress or enhance 
the rate of diffusion to give rise to sub-Fickian or super-Fickian phenomenon. This can be accounted for in the 
ADE model by allowing the diffusion coefficient, D, to vary in time and is computed as:

σ
= ×

∂
∂

D
t

1
2 (5)

2

where σ is standard deviation of distance traveled. With the self-propelling nature of their motion, it is intuitive to 
expect motile bacteria to exhibit non-Fickian behavior. All bacterial species are however not alike in their motion 
characteristics and it is possible that the growth of variance with respect to time may span a wide spectrum of 
behaviors for various species.

The raw trajectory data can be replicated to reproduce the real observed ensemble transport. This establishes 
the “true” breakthrough profile that ideally should be reproduced by a robust model. The goal of the model 
development here is to compare the predicted breakthrough plots obtained from the CTRW (both coupled and 
uncoupled) and ADE model with that of the observed transport and analyze the successes and shortcomings. All 
recorded trajectories were translated such that they start from the origin and diffuse radially to concentric rings 
of control planes located at fixed radial distance (see Fig. 2). The breakthrough plots, which in essence are the first 
passage time densities, as bacteria can move back and forth multiple times across a control plane, are computed 
and compared.

The duration of the longest recorded video was about 250 seconds (1000 frames recorded at a low frequency 
of approximately 4 Hz), hence the breakthroughs are limited in time by that value. The modeled breakthrough 
plots obtained using CTRW and ADE models can however continue up to any desired value in time. For the 
CTRW model, random values were generated for each step for magnitude of jump length and waiting time from 
pre-determined probability density functions. For the coupled model, the jump length and waiting time are 
dependent. For the uncoupled model, jump length and waiting time are selected independently of each other. 
Breakthrough plots at L= 10, 20, 30, 40, 50, and 60 µm were obtained by both coupled and uncoupled model for 
Pelosinus, and only at the first four control planes for Geobacter. To obtain breakthrough plots using the ADE 
model, solution to the 1-D ADE equation was considered46:
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erfc L V t
2 D t (6)0

where C is the number of bacteria reaching distance L in time t, C0 is the initial number of bacteria, L is distance 
to the control plane, V is the average velocity, which is obtained from slope of mean displacement over time, and 
D is the diffusion coefficient, obtained using Eq. (5). Note that the value of D changes with time as the rate of 
growth of variance is not uniform. For time periods exceeding the maximum duration of recorded trajectories, 
the diffusion coefficient is assumed to be a constant (equal to the value of D computed for the longest recorded 
trajectories).

Results
Jump length and waiting time. The empirical probability density functions (PDF) of jump length and 
waiting time for the two species are shown in Fig. 3. The probability densities of the jump length show the same 
trend for the two species: the probability increases until it reaches the peak (5–6 µm), after which it decreases 
with a maximum recorded jump value of about 100 µm. The longest jump of 100 µm is about 20 to 50 times 
of bacteria body length. For Geobacter, with pili enabled twitching motility, the PDF of jump lengths spans a 
shorter range and shows a higher probability associated with longer jumps compared to that of Pelosinus. In con-
trast, for Pelosinus, with flagella driven swimming motility (see Supplementary Fig. 1), the PDF of jump lengths 
spans a wider range and shows a lower probability associated with longer jumps when compared to Geobacter. 
The waiting time PDF for Geobacter has a high and nearly-constant probability for low values of waiting time 
(<10 seconds), after which the probability gradually declines. The waiting time PDF for Pelosinus continuously 
declines and shows a higher probability associated with shorter waiting periods and lower probability associated 
with longer waiting period compared to Geobacter. Looking at Fig. 3, one can say that Pelosinus is more likely to 

Figure 2. Illustration of computed trajectories (set of 20) and control plane settings. The concentric circles 
represent control planes located at 10, 20, 30, 40, 50, and 60 µm away from point source (0, 0). The starting 
points of all trajectories are moved to the origin and their first passage times (breakthrough plots) are recorded 
for different control planes.

Figure 3. Jump length and waiting time probability densities for (a) Geobacter and (b) Pelosinus.
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make fast jumps and less likely to make slow jumps when compared with Geobacter. The longest waiting time can 
be over 200 seconds for both species.

trajectory analysis. The first-arrival-time curves of Geobacter and Pelosinus are shown in Fig. 4. These 
were computed by tracking the real trajectories, repositioned to begin at the origin, until the control planes were 
reached. These are the “true” trajectories that models are expected to match. For Geobacter, only about 10% of 
bacteria reached the first control plane (L = 10 µm) within the available maximum duration of recorded videos. In 
the case of Pelosinus, more than 30% of the bacteria reached the first control plane. The recovery rates of Pelosinus 
reaching every control plane are higher than that number of Geobacter, which indicates that Pelosinus is generally 
more “active”. For L = 50 and 60 µm, the recovery of the Geobacter was lower than 2% and it does not display a 
clear profile of breakthrough. For this reason, the breakthrough plots for Geobacter were not computed for L = 50 
or 60 µm. As control planes become farther, the peak time of curves migrate to higher values and the magnitude 
of peak concentration decreases. For Pelosinus, the curves have a larger spread and a longer rising limb, while 
Geobacter has narrower spread and a steeper rising limb.

Figure 5 shows the plots of variance (mean-centered second moment) in location of the two species over time 
providing valuable insight into the possibility of non-Fickian transport behavior. On the log-log plots of Fig. 5, 
variance exhibits a linearly increasing relationship with respect to time for Geobacter, and for Pelosinus the var-
iance increases at a much faster rate (i.e., super-Fickian behavior) at early times. The rate of growth in spreading 
increases with time for Geobacter while it reduces with time for Pelosinus. For Geobacter, the approximate Fickian 
behavior of transport, at least at early times, raises the possibility that an ADE based model might perform better 
in comparison to Pelosinus.

Though experiments were performed carefully to prohibit any movement of fluid inside the micro-model 
chambers (by designing circuitous inlet and outlet paths for added back pressure and by sealing the chamber 
after injection) our analysis showed that the mean position of the ensemble of particles did move at a very gradual 

Figure 4. Normalized first-arrival –time curves (breakthrough plots) at various control planes for (a) Geobacter 
and (b) Pelosinus.
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Figure 5. Growth in spreading of location of cells as a function of time.
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pace (see Supplementary Fig. 2), This could be caused by an improper sealing of the chamber or by a minute tilt 
or vibration of the experimental apparatus. In our experiments, the mean displacement of Geobacter moved at 
a speed of 0.22 µm/s and that of Pelosinus moves at a speed of 0.15 µm/s. These values, though very small, were 
included in the ADE model computations.

Model comparison. Figure 6 shows breakthrough results obtained from real path, ADE model, coupled 
CTRW model, and uncoupled CTRW model for Geobacter at L = 10, 20, 30, and 40 µm. The uncoupled CTRW 
results do not show clear peaks, have very wide spread, and predict a high concentration for very small values 
of time. The coupled CTRW model and the ADE model performed relatively better than uncoupled CTRW in 
approximating the “real breakthrough”. The modeled results generally perform poorly for all control planes in the 
case of Geobacter. The breakthrough plots of real path show a reduced spread and rapid rising and falling limb 
when compared to the modeled results. Coupled CTRW performs better at predicting early transport and match-
ing the time to peak. However, when it comes to late time, coupled and uncoupled CTRW models yield similar 
curves, which decline significantly slower than real path breakthrough plots. The ADE results for Geobacter in fact 
show a closer match with the real path breakthrough at late times. The better performance for ADE (at least for 
late time) is not totally unexpected as the plot of variance with respect to time for Geobacter shows a closer trend 
to a linear relationship (Fig. 5).

Figure 7 shows comparisons of breakthrough plots obtained from different models and real path for Pelosinus 
at L = 10, 20, 30, and 40 µm. The recovery rates for L = 50 and 60 µm were very small (~3%) and hence those plots 
are omitted from Fig. 7. The ADE performed very poorly on all aspects of breakthrough attributes (i.e., shape, 
spread, peak magnitude, or rate of rise and decline). Coupled CTRW model performs well in matching the real 
path breakthrough plots at shorter distance control plane. The performance of the CTRW models becomes poorer 
for longer control plane distances. The uncoupled CTRW model agrees with the coupled CTRW fairly well at late 
times.

Tables 1 and 2 list the mean values and standard deviations of real path breakthroughs and modeled break-
throughs for Geobacter and Pelosinus, respectively. The mean values of all three models (coupled and uncoupled 
CTRW, and ADE) for Geobacter are 3 to 5 times larger than the mean values of real path. The mean-centered 
standard deviations of ADE models are significantly lower than CTRW models for Geobacter, pointing to relative 
suitability of an ADE-based model (compared to CTRW models) for studying this species’ ensemble transport 
behavior. For Pelosinus, the ADE-based model performs very poorly. Both the coupled CTRW and uncoupled 
CTRW models better approximates the real path mean and standard deviation for Pelosinus than in the case of 

Figure 6. Comparison of real breakthrough plot and modeled breakthroughs for Geobacter at (a) L = 10, (b) 
L = 20, (c) L = 30, and (d) L = 40 µm.
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Geobacter. The performance of CTRW models gets weaker with increasing distance of the control planes. This 
may imply that successive space and time steps for individual bacterium are not independent from one another. 
The reduction in performance of CTRW models is more pronounced in predicted values of mean; the predicted 

Figure 7. Comparison of real breakthrough plot and modeled breakthroughs for Pelosinus at (a) L = 10, (b) 
L = 20, (c) L = 30, and (d) L = 40 µm.

Real Path ADE Coupled CTRW Uncoupled CTRW

Meana STDb Mean STD Mean STD Mean STD

L = 10 µm 23.03 21.57 69.67 47.69 84.45 86.36 95.15 100.05

L = 20 µm 41.43 25.68 115.13 58.09 187.80 161.99 199.53 177.21

L = 30 µm 58.59 29.91 160.58 66.90 279.87 209.28 291.75 223.56

L = 40 µm 72.44 29.44 206.04 74.68 353.97 233.85 363.17 247.06

Table 1. Mean and Standard Deviations (STD) of each modeled breakthrough plot for Geobacter. aIn unit of 
sec, bIn unit of sec.

Real Path ADE Coupled CTRW Uncoupled CTRW

Meana STDb Mean STD Mean STD Mean STD

L = 10 µm 22.33 17.81 286.18 318.03 24.95 26.17 30.10 38.47

L = 20 µm 45.90 31.15 350.90 336.62 69.67 51.21 69.80 59.30

L = 30 µm 68.17 41.57 412.66 354.01 109.37 58.87 100.94 66.10

L = 40 µm 88.32 47.72 476.74 370.32 137.34 57.37 122.44 66.73

L = 50 µm 105.48 54.57 541.68 385.20 157.41 54.24 137.47 65.45

L = 60 µm 104.85 51.76 606.50 398.72 173.20 49.00 148.60 63.64

Table 2. Mean and Standard Deviations (STD) of each modeled breakthrough plot for Pelosinus. aIn unit of sec, 
bIn unit of sec.
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values of mean-centered standard deviation in fact improves (i.e., becomes closer to the computed values using 
real path) with increasing distance of the control planes.

Discussion
Geobacter and Pelosinus are commonly known metal reducing microorganisms with pili enabled and flagella 
driven swimming motility respectively. It has been reported that pili are important for both motility and metal 
reduction capacity of Geobacter47 and the motility has been observed to be an important factor for Geobacter in 
bioremediation48. Similarly, Pelosinus isolated from heavy metal contaminated areas of the Hanford Site21, has 
been reported to prefer a planktonic state rather than sediment-attached state in studies of reductive chromium 
immobilization in flow-through column experiments49.

The jump length and waiting time probability density functions of Geobacter and Pelosinus reveal the nature 
of transport of these two species. Both the jump length and waiting time probability densities have heavy tails, 
which suggests that these two species of bacteria depart significantly from the Brownian motion type random 
walk processes. The jump length was found to exceed 100 µm, which is 20–50 times of the body length of these 
two species of bacteria30,50. The zeroth moment (recovery rates) of breakthrough plots suggests that Pelosinus is 
more active than Geobacter.

Data were collected in the form of video files, with each file consisting of information on multiple independ-
ent trajectories. MATLAB analysis of the video files resulted in 6827 independent Geobacter trajectories and 
20226 independent Pelosinus trajectories. For Geobacter, the real path data consisted of trajectory runs ranging 
from 0.4 s to 4.8 s, and for Pelosinus, the real path data consisted of trajectory runs ranging from 0.4 s to 37.6 s. 
Geobacter exhibited a linear relationship between variance and time in the initial phase (t < 10 sec) whereas 
Pelosinus showed a strong super-Fickian behavior at early times.

First-arrival time plots (breakthrough plots) of real path have relatively sharp peaks and narrower spread 
than ADE and CTRW modeled results. The ADE results show that the model may come close to approximating 
Geobacter ensemble transport but is not adequate to capture the features of Pelosinus transport. Breakthroughs 
resulting from the coupled CTRW model perform well at early time and for short control plane distances, espe-
cially for Pelosinus. However, it fails to match long distance travel and late time concentration. The coupled and 
the uncoupled CTRW model tend to resemble each other for late-times. In summary, for Geobacter which has a 
pili (twitching) guided motility, none of the three models perform well in matching the real path breakthrough 
data; and for Pelosinus which has a flagella (swimming) guided motility, the coupled CTRW model match real 
path breakthrough plots well for short control plane distances (i.e., when L is 10 or 20 microns in our study). The 
fact that none of the models used in this study was able to predict the real breakthrough plots well points to the 
need of developing more sophisticated modeling tools for studying ensemble transport of bacteria, possibly by 
constructing random walk processes that also takes correlation structures of jump length and waiting time into 
consideration.

Only about 10% of Geobacter and 30% of Pelosinus passed the first control plane (located at 10 µm from the 
origin) within 250 seconds. A longer imaging time is required to record more trajectories. The transport features 
of bacterial transport may not be constant over a time period (as evidenced by Fig. 5 showing varying rates of 
growth in spread at different times). CTRW and ADE models assume that every bacterium has a finite probability 
to carry long and short jumps and that each jump is independent from each other. This may, however, not be true. 
Figure 8 shows correlations of jump length and waiting time increments at step n and step n + 1 for Pelosinus. 
The correlation data was very sparse for Geobacter and hence is not presented here. For Pelosinus, there are signs 
of positive correlation in jump lengths and negative correlation in waiting times (a longer waiting time leads to 
a shorter waiting time in the next step, and vice versa). These correlation structures in jump length and waiting 
time were not considered in the models presented in this paper, but including them in a more sophisticated future 
model will likely yield better match with the real breakthrough plots.

Figure 8. Correlations at step n and step n + 1 for Pelosinus for (a) jump length and (b) waiting time.
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Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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