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The explosion of microbiome analyses has helped identify individual microorganisms and
microbial communities driving human health and disease, but how these communities
function is still an open question. For example, the role for the incredibly complex metabolic
interactions among microbial species cannot easily be resolved by current experimental
approaches such as 16S rRNA gene sequencing, metagenomics and/or metabolomics.
Resolving such metabolic interactions is particularly challenging in the context of
polymicrobial communities where metabolite exchange has been reported to impact
key bacterial traits such as virulence and antibiotic treatment efficacy. As novel approaches
are needed to pinpoint microbial determinants responsible for impacting community
function in the context of human health and to facilitate the development of novel anti-
infective and antimicrobial drugs, here we review, from the viewpoint of experimentalists,
the latest advances in metabolic modeling, a computational method capable of predicting
metabolic capabilities and interactions from individual microorganisms to complex
ecological systems. We use selected examples from the literature to illustrate how
metabolic modeling has been utilized, in combination with experiments, to better
understand microbial community function. Finally, we propose how such combined,
cross-disciplinary efforts can be utilized to drive laboratory work and drug discovery
moving forward.
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INTRODUCTION

Bacteria possess an incredible arsenal of tools allowing them to thrive in diverse environments. Such
an adaptive capacity partly stems from their ability to metabolize nutrients that are present in their
surroundings thus allowing them to sustain microbial growth in complex environments (Görke and
Stülke, 2008). Multiple reports have revealed how metabolic features are important for bacterial
persistence, virulence and drug tolerance during the infection process (Eisenreich et al., 2015; Peng
et al., 2015; Eisenreich et al., 2017; Adamowicz et al., 2018; Herrero-Fresno and Olsen, 2018; Sprenger
et al., 2018; Crabbé et al., 2019; Perinbam et al., 2020). However, obtaining a complete portrait of how
metabolism and metabolic interactions can impact these diverse bacterial phenotypes is still a matter
of active research (Zuniga et al., 2017).

Observations dating from as early as the 17th century examining dental plaque support the idea
that microorganisms often live as polymicrobial, biofilm-like communities and not as single-species
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in a planktonic environment (Leewenhoeck, 1684; O’Toole,
2016). Such complex biofilm communities are composed of
microbial species that have the potential to interact through
exchange of metabolites, ultimately shaping the microbial
ecosystem (Zuniga et al., 2017; Antoniewicz, 2020).

Culture-based methods have helped us understand
phenotypes associated with specific microorganisms. In
contrast, the presence of complex microbial community
diversity and spatiotemporal organization existing in some
environments, such as in the oral cavity or the human gut,
makes it inherently difficult to obtain a clear picture of how
metabolic interactions among community members influence,
and are being influenced by, their local environment (Peters et al.,
2012; Miller et al., 2019). The advent of culture-independent
techniques have paved the way to a new golden age in the
understanding of microbial biology and ecology, revealing the
complexity existing within complex microbial communities and
their impact on human health, agriculture and the environment
(Kinross et al., 2011; Chaparro et al., 2012). Indeed, it has been
shown that diseases such as colorectal cancer and inflammatory
bowel disease can be associated with imbalances in the
microbiome, also known as dysbiosis (Gilbert et al., 2016).
While the use of next-generation sequencing technologies now
make it clear that many human niches are colonized by multiple
microbial species and taxonomic/functional features can be
associated with healthy and disease states, knowing only “who
is there” and keeping a “gene catalogue” is not sufficient to probe
functional metabolic roles of each member present in a
community (Frioux et al., 2020). Furthermore, it is likely that
there are instances when communities, classified as “different”
based on sequencing data share common metabolic features. For
instance, a study published by Jorth and colleagues looking at
microbial communities associated to periodontal disease reported
that no clear polymicrobial community structure could be
associated with disease due to high interpatient variability
(Jorth et al., 2014). However, assessing the metabolic capacities
of these communities revealed that disease-associated microbial
clusters maintained a conserved functional profile (Jorth et al.,
2014).

Although metagenomics can alleviate some of the
shortcomings of 16S-based rRNA gene amplicon studies by
providing an overview of metabolic potential and
metabolomics can identify the abundant, accumulated
metabolites in a community, these approaches alone are still
not sufficient to probe essential metabolic functions and
metabolite-based interactions among microbes in a community
(Quince et al., 2017; Frioux et al., 2020). The importance of
developing novel strategies to understand how metabolic
interactions drive community structure and function is further
highlighted by recent reports indicating that such microbial or
host-driven metabolic interactions can modulate drug resistance
and tolerance (Peters et al., 2012; Crabbé et al., 2019; Crabbé et al.,
2019; Orazi and O’Toole, 2019).

Therefore, we propose thatmetabolic modeling is one such tool
that exploits existing amplicon, metagenomics and metabolomics
data to generate hypotheses that can complement and help drive
experimental studies, thereby validating the computational

interrogations of these existing datasets. Metabolic modeling is
an in silico predictive mathematical modeling approach that
leverages genome-scale metabolic model (GEM)
reconstructions of cellular metabolism derived from genomic
annotations (Biggs et al., 2015; Zomorrodi and Segre, 2016;
Zampieri et al., 2019). Since the in silico reconstruction of the
first GEM of Haemophilus influenzae in 1999 (Edwards and
Palsson, 1999) hundreds of novel GEMs have been generated
(through automatic, semi-automatic or manual means) as new
genomes are being sequenced (Gu et al., 2019). This approach has
been used to drive biochemical knowledge of biological systems
by 1) translating functional annotation information into
metabolic predictions, 2) probing metabolic features involved
in metabolite production, and 3) advancing the understanding of
metabolic interactions among microbial species with their host
(Thiele et al., 2013; Simeonidis and Price, 2015; Kumar et al.,
2019). As a growing number of high-quality GEMs are available
through several databases (Gu et al., 2019; Noronha et al., 2019;
Seaver et al., 2020) and can be used to generate predictions of
community biological functions through various modeling tools
such as SteadyCOM, CASINO, COMET and BacArena
(Harcombe et al., 2014; Shoaie et al., 2015; Bauer et al., 2017;
Chan et al., 2017; Altamirano et al., 2020), metabolic modeling
represents a powerful approach to interrogate complex
community metabolic interactions involved in health and
disease (Gu et al., 2019; Kumar et al., 2019). Furthermore,
metabolic modeling methods have the capacity to guide
laboratory work by integrating and making predictions based
on 16S rRNA gene, metagenomics, and metabolomics datasets
(Rai and Saito, 2016).

With recent evidence pointing towards the impact of
polymicrobial metabolic interactions shaping human health,
we review here some of the latest research leveraging
metabolic modeling and genome-scale metabolic
reconstructions used to interrogate metabolic interactions
among the members of complex microbial communities in
health and disease. We first start by surveying studies in the
context of the human gut microbiome for which metabolic
modeling has been mainly applied, and then transition to the
case of cystic fibrosis (CF), a genetic disease where persons with
CF (pwCF) accumulate thick secretions (mucus) in their airways,
which creates an ideal nutrient-rich environment wherein
pathogens can thrive, ultimately leading to high morbidity and
mortality (Boucher, 2007; O’Sullivan and Freedman, 2009;
Surette, 2014). We also present findings indicating how
metabolic modeling could be used to develop new
antimicrobial drugs. We review this literature through the lens
of experimentalists who can integrate suchmodeling data to focus
their efforts on understanding the role of metabolic interactions
in driving microbial community structure and function.

Metabolic Modeling to Probe Microbial
Interactions and Understand Disease
Human health can be profoundly impacted by the presence of
microbial communities, which must include taking into account
how the individual microbes in these communities interact with
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each other (Peters et al., 2012; Miller et al., 2019; Orazi and
O’Toole, 2019). Although some of these metabolic interactions
among microbes in a community can be beneficial to maintain
health, for example the presence of microbial communities
capable of digesting complex molecules in the gut (Backhed
et al., 2005), some chronic infectious diseases, such as
periodontitis, CF and diabetic foot ulcers, have been shown to
be driven by polymicrobial communities (Dowd et al., 2008;
Lebeaux et al., 2014; O’Toole, 2018; Miller et al., 2019). We start
here with a discussion of findings using metabolic modeling to
study microbial community function, largely with a focus on
communities relevant to disease, especially in the case of the
human gut (Figure 1). Many of these studies validate the
modeling findings by using in vitro experimental models.

As mentioned above, one of the research areas benefiting from
metabolic modeling is the study of the human gut microbiome
(Shoaie and Nielsen, 2014; Ji and Nielsen, 2015; Kumar et al.,
2019; Sen and Oresic, 2019). The human gut is composed of
trillions of microbial cells of diverse species that have an
important impact on human health as they can perform a
number tasks, including but not limited to, metabolizing
complex molecules that cannot be degraded by the eukaryotic
cells in the intestine to provide energy to colonic cells and playing
a role in immune function (Bull and Plummer, 2014; Shoaie and
Nielsen, 2014). Short chain fatty acids (SCFAs) produced by the
gut microbiota are absorbed by the intestinal epithelial cells and
impact several aspect of human health, from energy regulation to
the immune programming (Comalada et al., 2006). The
concentration of the SCFAs acetate, butyrate and propionate
in the human body can vary depending on the diet (den Besten

et al., 2013). While acetate is the SCFA mainly found in the blood
and contributes to several metabolic functions such as lipogenesis
and glyconeogenesis (Comalada et al., 2006), butyrate is preferred
by human colonocytes for high energy production (Hamer et al.,
2008; Dumas, 2011). Imbalances in the metabolism of SCFAs
characterized by low butyrate production have been associated
with human diseases such as inflammatory bowel disease, type 2
diabetes, obesity and other pathologies (Kumar et al., 2019).

SCFAs have also been found to be important players in the
maintenance of a healthy gut microbiome through microbial
interactions (Shoaie and Nielsen, 2014). For example, the
presence of enzymatic degradation activity of dietary fibers
into SCFAs by microbial communities in the human gut is
critical to maintain health (Koh et al., 2016). To better
understand how microbial interactions impact human and
microbial metabolism, key human gut bacteria, that is,
Bacteroides thetaiotamicron, Eubacterium rectale and
Methanobrevibacter smithii (part of the Bacteroides, Firmicute
and Euryarchaeota phyla, respectively) previously identified to be
SCFA producers (Holmes et al., 2012) have been studied through
metabolic modeling. Shoaie and colleagues reconstructed GEMs
of these three bacteria by coalescing multiple biochemical
reaction databases with manual curation of metabolic
pathways (Shoaie and Nielsen, 2014). This work resulted in
the creation of three GEMs that were used to 1) predict the
metabolic landscape of metabolites that are produced and
consumed within that community and 2) infer microbial
biomass abundance based on known metabolites present in
the environment. This analysis predicted microbe-microbe and
host-microbe interactions via metabolites using a

FIGURE 1 |Metabolic modeling to understand health and disease. Microbial interactions observed in the human gut and in the context of chronic lung disease such
as in pwCF can be predicted through metabolic modeling to pinpoint metabolic cross-feeding interactions (denoted by letters) driving community structure and
associated with healthy or diseased states. These predictions are facilitated by the capacity of this in silico approach to integrate in vivo-like nutritional and
physico-chemical parameters, and ultimately help guide experimentation. Figure designed using BioRender
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compartmentalization metabolic framework, that is, all the
predicted metabolic reactions occurring within an organism
were modeled and the produced metabolites allowed to be
exchanged freely through a shared compartment (Biggs et al.,
2015). The authors observed that acetate was the main metabolite
predicted to be cross-fed between E. rectale and B.
thetaiotamicron when modeled in silico in the germ-free gut
extracellular space. Also, the B. thetaiotamicron-derived acetate
was predicted to be driving the production of butyrate by E.
rectale; butyrate was in turn consumed by the gut epithelial cells.
These predictions are in agreement with published experimental
data whereby germ-free mice co-infected with both species
resulted in changing concentrations of these metabolites
(Mahowald et al., 2009; Sen and Oresic, 2019). The inclusion
of transcriptomic data from infected mice in the model also
allowed the investigation of E. rectale and B. thetaiotamicron gene
expression changes in the presence of each other (vs.
monospecies), and could serve to validate the modeling data.
In silicomodeling indicated that E. rectale increases the utilization
of the amino acid glutamine, whereas pathways for
polysaccharide utilization in B. thetaiotamicron were
hypothesized to increase when E. rectale is present; predictions
that are agreement with previously published transcriptomic data
(Mahowald et al., 2009). Therefore, in this instance, metabolic
modeling represents a useful approach to understand how
microbial interactions can impact SCFAs production and
ultimately gut health.

The growing number of studies using germ-free mice models
in combination with metabolomics and next generation
sequencing constitute rich data sets that can feed metabolic
predictions and ultimately better probe metabolic features
impacting human health (Ji and Nielsen, 2015; Franzosa et al.,
2019; Lavelle and Sokol, 2020). Thus, understanding how diet can
impact gut health and microbial community structure through
modeling approaches constitute a powerful approach that can
drive experimentalist to build models to validate testable
hypotheses and perhaps better understand chronic gut disease.
As more GEMs are constructed and becoming available
(Magnúsdóttir et al., 2017) a growing number of studies are
building more complex community metabolic models to
understand the interactions occurring among microbes and
the host in the gut (Kumar et al., 2019).

In one of the most extensive studies modeling multiple
microbial interactions in the human intestine, Henson &
Phalak leveraged semi-curated genome-scale metabolic
reconstructions (described above as GEMs) of 28 bacterial
species detected in the human intestine (Henson and Phalak,
2018) available through the Virtual Metabolic Human database
(Noronha et al., 2019). This model included a total of 22,203
genes, 26,867 metabolites and 35,031 reactions and revealed that
optimal metabolic community growth rate resulted in decreased
gut microbial diversity and the enrichment of just a few bacterial
genera such as Escherichia, Enterobacter and Citrobacter (part of
the Enterobacteriaceae family), all known to be detected in high
numbers in the gut from clinical studies of patients with
inflammatory bowel disease (IBD) (Rhodes, 2007; Saleh and
Elson, 2011; Kaakoush et al., 2012). Furthermore, optimal

community growth rate predictions resulted in different SCFA
production levels (acetate overproduction and no butyrate
production) compared to published experimental data (den
Besten et al., 2013) suggesting that in vivo optimal community
growth objectives might be kept in check to ensure appropriate
SCFA production and healthy gut homeostasis. For example, the
authors observed that reduced community growth rate, (i.e. not at
its maximal value) increased microbial diversity and produced
SCFA synthesis rates more consistent with those observed in vivo
(den Besten et al., 2013). Interestingly, a recent report examining
the changes in microbial community composition in healthy and
IBD individuals by 16S rRNA gene amplicon sequencing
observed a decrease in microbial diversity and an increase in
Enterobacteriaceae abundance in the gut of diseased vs. healthy
individuals (Alam et al., 2020). This approach of using sub-
optimal growth rates in the context of communities is a
fundamentally different approach compared to traditional,
single-species metabolic modeling approaches that assume
maximal growth rates (Biggs et al., 2015); thus, in this case
experimental data helped to fine-tune the modeling approach.
Moreover, metabolic modeling represents a complementary tool
to experimental observations to better understand the metabolic
perturbations that might be associated with imbalances in
microbial diversity and abundance.

While metabolic modeling can be used to probe interactions
hypothesized to drive gut health and microbial community
structure, this approach can also be used to understand gut
microbial imbalances in the context of infection. The presence
of a healthy gut microbiome has been reported to be important
for protection against pathogenic species such as the
Proteobacterium Clostridioides difficile (Lagier, 2016; Leslie
et al., 2019). Furthermore, other risk factors such as
antimicrobial treatment have been implicated in the
emergence of C. difficile infections (CDIs) (Lagier, 2016). As
CDIs have been reported to cause between 15,000 and 30,000
deaths annually in the US (Lessa et al., 2015) and many healthy
individuals are asymptomatic carriers of C. difficile (Furuya-
Kanamori et al., 2015), it is important to understand how gut
metabolic interactions can impact colonization resistance against
C. difficile. By modeling microbial interactions in multispecies
biofilms through the use of GEMs of B. thetaiotaomicron
(Bacteroidetes), Faecalibacterium prausnitzii (Firmicute),
Escherichia coli (Proteobacteria) and C. difficile, Phalak and
Henson observed that among the metabolites that were
predicted to be produced and cross-fed, that is, acetate,
ethanol, formate and succinate, only formate produced by
both F. prausnitzii and E. coli as well as B. thetaiotaomicron-
derived succinate were hypothesized to be positively driving C.
difficile abundance. Moreover, in silico removal of both organic
acids would block this pathogenic microbe’s expansion (Phalak
and Henson, 2019). Interestingly using a co-colonization
gnobiotic mouse model, Ferreyra and colleagues observed that
B. thetaiotaomicron-derived succinate can be utilized by C.
difficile to allow this pathogen to thrive in the gut (Ferreyra
et al., 2014), a finding consistent with the metabolic modeling
data. Phalak & Henson also observed that acetate produced by C.
difficile was hypothesized to be the only metabolite cross-fed to
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F. prausnitzii in a mixed community. However, the hypothesized
cross-feeding of metabolites remain to be experimentally
validated, perhaps through the development of a four-species
community or using a simplified community in a mouse model.

Metabolic modeling has also been used to understand other
human diseases such as CF where the lung environment
constitutes an ideal locale for disease-causing pathogens to
colonize, resulting in chronic infections and promoting
negative clinical outcomes (Lipuma, 2010; Surette, 2014). The
chronic nature of these infections is due to the presence of
polymicrobial biofilm-like communities that exhibit both
resistance and tolerance (collectively called recalcitrance) to
front-line drugs targeted at these infections (O’Toole, 2018;
Orazi and O’Toole, 2019; Vandeplassche et al., 2019). While
the development of novel antimicrobials has resulted in the
increase in life expectancy for pwCF, these individuals are still
burdened with significant clinical symptoms (Limoli et al.,
2016; O’Toole, 2018; Bevivino et al., 2019; Limoli and
Hoffman, 2019). Several groups have attempted to identify
the etiology of chronic CF lung disease, but this remains a topic
of active research (O’Toole, 2018). Multiple groups have
experimentally reported metabolic interactions among
bacterial species that are prevalent and abundant in the CF
airway (Crabbé et al., 2014; Orazi and O’Toole, 2017;
Tavernier et al., 2017; Tavernier et al., 2018; Crabbé et al.,
2019; Orazi and O’Toole, 2019; Orazi et al., 2019;
Vandeplassche et al., 2019; Camus et al., 2020; Orazi et al.,
2020). Based on these observations, Henson et al. tested the
hypothesis that it would be possible to infer microbial
abundance and map key metabolic interactions that
potentially drive CF lung disease by modeling 17 of the
most abundant species that encompass most of the 16S
rRNA gene reads from three published microbiome studies
(Henson et al., 2019). Interestingly, they reported that
metabolic simulations performed using different in silico
lung environments could reproduce experimentally observed
16S rRNA gene normalized reads detected in the CF airway
including the infrequent microbial species Achromobacter,
Escherichia and Burkholderia. Metabolic modeling
approaches also allowed for the observation of interpatient
community composition heterogeneity (β-diversity) that is
common in pwCF (Filkins et al., 2012; Price et al., 2013;
Carmody et al., 2018). The model accurately predicted that
Prevotella, Pseudomonas and Streptococcus would dominate
the polymicrobial community, an observation that is strong
agreement with multiple experimental studies highlighting the
impact of these pathogens on the CF airway (Lipuma, 2010;
Scott and O’Toole, 2019; Thornton and Surette, 2020).
Furthermore, Henson et al., reported that predicted
metabolic interactions in some communities were mainly
driven by Pseudomonas and/or Streptococcus, which are
highly abundant microbes capable of metabolizing nutrients
such as organic acids, amino acids and secreted alcohols. For
instance, the presence of rare pathogens was hypothesized to
be driven by 1) acetate, formate and L-lactate produced by
Streptococcus and consumed by Escherichia, 2) acetate, alanine
and formate cross-fed from Pseudomonas and Streptococcus to

Burkholderia, and to a lesser extent 3) alanine, threonine and
L-lactate metabolite consumption by Achromobacter.

While some studies have focused on the metabolic interactions
of microbes found in the CF airway, most of them have included
two microbial species due to complex experimental methods
required to culture multiple microbes in a mixed community
in vitro (Filkins et al., 2015; Flynn et al., 2016; Scott et al., 2019;
Camus et al., 2020; Li et al., 2020). However, metabolic modeling
represents a useful tool to interrogate metabolic dependencies of
more complex multispecies communities detected in pwCF.
Furthermore, recent reports indicate that defects in the cystic
fibrosis transmembrane regulator impacts mitochondrial
metabolism and results in an imbalance of metabolites
produced by immune cells, with possible impacts on microbial
species such as P. aeruginosa and S. aureus (Gabryszewski et al.,
2019; Riquelme et al., 2019; Riquelme et al., 2020a; Riquelme
et al., 2020b).

The findings presented here further support the idea that
metabolic modeling represents an effective approach to better
understand how metabolic interactions among microorganisms
can impact human health and disease such as in the gut and the
CF airway. That is, by integrating experimental data from these

FIGURE 2 | Iterative workflow between clinical observations, metabolic
modeling and experimental work. (i) Several recalcitrant biofilm-based chronic
infectious diseases are polymicrobial in nature and next-generation tools have
allowed us to (ii) identify “who is there”. (iii) Metabolic modeling can
leverage sequencing information by reconstructing metabolic networks and
predicting key metabolites responsible of driving community structure and
function. (iv) Metabolic predictions can then be experimentally tested and the
model fine-tuned with the integration of this new experimental data. (v)
Through modeling predictions, novel drugs can then be designed or
repurposed to negatively impact polymicrobial communities. Figure designed
using BioRender.
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studies, metabolic modeling can generate predictions about how
polymicrobial communities might interact and a serve as a tool to
develop hypotheses to be tested in the laboratory and unlock
insight as to which metabolites might drive changes from healthy
to diseased states.

Metabolic Modeling as a Tool to Identify
Novel Antimicrobial Targets
Targeting pathways implicated in the metabolism of essential
nutrients utilized during infection might represent a novel
approach for the identification and or development of
antimicrobials that can interfere with microbial growth in the
context of human disease (Figure 2) (Flynn et al., 2016; Flynn
et al., 2020). The studies below use a combination of metabolic
modeling and experimentation with a focus on individual
microbes to better understand responses to antimicrobial
therapy. This in silico method has also proven to be useful to
understand how metabolic reprogramming can impact gene
essentiality in microorganisms exposed to various
antimicrobials, and thus may also help in the identification of
novel drug targets.

Several groups have successfully applied metabolic modeling
approaches to understand the global metabolic changes
associated with microbial drug exposure, including for P.
aeruginosa and polymixin (Zhu et al., 2018) and Acinetobacter
baumanii exposed to colistin (Presta et al., 2017). While
remaining to be experimentally validated, these in silico
predictions revealed that exposure to antimicrobials resulted in
known non-essential genes becoming essential in the presence of
the drug, a phenomenon sometimes referred to as conditional or
synthetic lethality. Although experimental approaches can be
used to identify genes and/or synthetic lethal relationships that
could represent novel drug targets (Côté et al., 2016), metabolic
modeling has the advantage of facilitating the identification of
such pathways and/or metabolic interactions by computationally
inactivating the pathways, thus potentially helping to guide
laboratory work to facilitate antimicrobial development
(Raman et al., 2018).

Cesur and colleagues investigated predicted drugs targeted
against Klebsiella pneumoniae, part of the Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter species
(ESKAPE) multidrug resistant group, for which cephalosporin
and carbapenem resistance have been identified in part due to
widespread acquisition β-lactamase-coding and carbapenemase-
coding genes (Cesur et al., 2020; De Oliveira et al., 2020).
Klebsiella species are capable of causing pneumonia and are
associated with increased morbidity and mortality (Bengoechea
and Sa Pessoa, 2019). By leveraging GEM of K. pneumoniae in
host-like conditions in combination with in silico structure-based
drug screening, these investigators identified several candidate
molecules potentially targeting 2-dehydro-3-
deoxyphosphooctonate aldolase activity; the gene coding for
this enzyme, kdsA, is present in 100% of pathogenic K.
pneumoniae strains and also considered an essential gene
(Ramos et al., 2018). However, these predictions remain to be

validated experimentally by using in vitro and/or in vivo models
where the essentiality of the kdsA gene is tested by inactivating
this locus (if possible) and also by verifying the impact of the
identified molecules on the viability (or virulence traits) of K.
pneumoniae species.

Similar approaches have also been used to study fungi.
Candida albicans is a fungal opportunistic pathogen that is
cause of increased mortality in patients suffering of candidiasis
(Perlroth et al., 2007). As there are only a few classes of antifungal
drugs that are used to treat Candida infections and an increase in
strains presenting multi-drug resistant phenotypes have been
observed (Arendrup and Patterson, 2017), new approaches
must be developed to identify compounds that can be used as
fungicidal agents vs. Candida species. Viana and colleagues
reconstructed and validated a GEM of C. albicans (Viana
et al., 2020) and they tested the in silico model for its capacity
to predict essential genes in C. albicans that had been previously
experimentally identified (O’Meara et al., 2015). The model was
capable of accurately predicting 78% of the published essential
genes and validated the already-known drug target gene ERG11
(Lupetti et al., 2002). Interestingly, the C. albicans protein Ura9 (a
quinone-containing protein) was identified to be essential
through modeling predictions; drugs such as Atovaquone,
used to treat malarial infections caused by Plasmodium
falciparum, could potentially be used to target Ura9. While
not experimentally validated and the in silico predictions
performed using Roswell Park Memorial Institute (RPMI)
medium, which likely does not reflect the infection
microenvironment in the host, the multiple targets identified
through the GEM of C. albicansmight represent novel targets for
drug development or repurposing.

Metabolic modeling has also been used to find potential drug
targets for parasites causing diseases in humans (Curran et al.,
2020). The parasitic worm Brugia malayi is one of the causes of
lymphatic filariasis (also known as elephantiasis) and is
transmitted through blood-sucking mosquitoes; infection with
this parasite can result in the swelling of limbs via chronic leakage
of lymph into tissues (Chandy et al., 2011). Current effective anti-
parasite drug treatment is limited as these therapies do not
target all the life-stages of B. malayi, and to be effective, the
drug regimen must be performed during the whole lifespan of the
adult worm, which has previously been reported to last as long as
15 years (Molyneux et al., 2014). Recent studies have indicated
that targeting Wolbachia, an endosymbiotic microorganism
implicated in B. malayi fitness and its reproduction cycle,
might represent an new therapeutic avenue (Taylor et al.,
2013). In an attempt to identify potential drugs aimed at
Wolbachia that would result in its elimination of B. malayi,
Curran and colleagues reconstructed a GEM of the worm and
identified 102 essential metabolic reactions predicted to be
essential for the survival of the worm (Curran et al., 2020). By
filtering out metabolic reactions for which no experimental
expression data are available as well as the pathways with
homology to human metabolic reactions, in silico modeling
predicted that the enzymes 1-deoxy-D-xylulose 5-phosphate
reductoisomerase, fructose biphosphatase and an adenylate
kinase represent potential Wolbachia enzymes to be targeted.
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Interestingly, the drugs Fosmidomycin and tenofovir (both
clinically approved) specifically target those enzymes and were
experimentally confirmed to reduce the abundance ofWolbachia
in B. malayi, negatively impacting the worm (Curran et al., 2020).

Taken together, the studies presented in this section support
the notion that the integration of experimental expression data in
combination with metabolic modeling and in silico drug
screening might represent a powerful tool to identify drugs
that might already be clinically available for other indications
and repurposed for new diseases. Future research integrating in
vivo-like conditions with metabolic modeling will certainly allow
for the expansion of the complex metabolic interactions
occurring between the host and microbe for the identification
of novel antimicrobials with increased activity. Such efforts will
surely be facilitated by the construction of integrated microbe-
host GEMs to better understand such interactions in the context
of human health and disease (Bordbar et al., 2010; Thiele et al.,
2020).

CONCLUDING REMARKS

The microbial complexity existing in various ecological niches,
including in the context of human infections or microbiomes,
necessitates the utilization of novel approaches to probe key
metabolic features governing the interactions among microbes
and/or the host. We argue that metabolic modeling represents
such a tool as it has proven its usefulness in conditions where
experimental methods alone were not sufficiently efficient, as for
assessing the production of complex mixtures of microbial-
derived metabolites (Simeonidis and Price, 2015). Starting with
single species and more recently expanding to complex
polymicrobial interactions, metabolic modeling has been
employed to tackle increasingly complex questions by
combining GEMs with nutritional information reflecting the
infection environment to pinpoint metabolic pathways driving
community structure and metabolite cross-feeding (Bordbar
et al., 2010; Thiele et al., 2020).

Perhaps one of the most compelling ecological niches wherein
metabolic modeling is currently employed and for which themost
data is available is the human gut. Metabolic interactions are
likely critical to maintain homeostasis between polymicrobial
communities and the host in the gut (Shoaie and Nielsen, 2014;
Kumar et al., 2019). Metabolic modeling has also proven to be
useful in the context of microbial-based human diseases such as
CDI and CF, where key metabolic features have been predicted to
drive the abundance of pathogens (Henson et al., 2019; Phalak
and Henson, 2019). Obtaining such detailed metabolic
understanding of biochemical interactions driving microbial
community structure, especially in the context of complex
polymicrobial diseases or human microbial communities,
could help efforts focused at the identification of new drug
targets or probiotic interventions. Furthermore, the
development of spatiotemporal metabolic models capable of
integrating additional variables such as nutrient and oxygen
diffusion/availability (Phalak et al., 2016; Chan et al., 2019;
Altamirano et al., 2020) will further improve the

computational predictions regarding how microbial
community structure and function is impacted in complex
polymicrobial diseases.

Given that multiple chronic diseases such as periodontitis, CF
and diabetic foot ulcers are driven by the presence of
polymicrobial communities that exhibit recalcitrance to
antimicrobials (Rams et al., 2014; O’Toole, 2018; Orazi and
O’Toole, 2019; Heravi et al., 2020), the field is poised to apply
combined modeling and experimental approaches to better
understand how to effectively treat such polymicrobial
infections. To date however, little or no efforts have been
directed towards modeling these complicated, often chronic
polymicrobial infections and their predicted responses to
antibiotic treatment.

One limitation of the approaches discussed here is the lack of a
systematic evaluation of multiple GEMs existing for a same
organism. That is, several GEMs with variations in model
annotation, reaction stoichiometry, or the presence/absence of
cofactors, can exist for a given organism but no unanimously
standardized approach for the construction of a GEM has been
adopted to date (Lieven et al., 2020). This lack of standardization
can in turn lead to inconsistent predictions and a lack of
reproducibility among models and laboratories. For instance,
in an attempt to identify the best performing GEM for
Mycobacterium tuberculosis among eight such recently
published models, Lopez and colleagues observed that only
two of the GEMs were able to generate robust predictions
when using parameters such as the number of reaction gaps in
the metabolic network, thermodynamically infeasible reactions,
dead-end metabolites and gene essentiality predictions using
previously published experimental data (Lopez-Agudelo et al.,
2020). To remedy such potential shortcomings in the future
utilization of GEMs, MEMOTE (MEtabolic MOdel TEsts) an
open-source software driven by a community effort, has been
published by Lieven and colleagues (Lieven et al., 2020).
MEMOTE helps in improving GEM reproducibility and reuse
among studies by advocating the utilization of a standardized
GEM data format exchange, that is, the Systems Biology Markup
Language level 3 flux balance constraints (SBML3FBC) which
include defined parameters such as metabolite chemical formulas,
charge and annotations, etc. (Lieven et al., 2020). Furthermore, by
examining factors including biomass reaction, stoichiometry
inconsistencies, annotation validation and basic tests,
MEMOTE has the capacity to benchmark GEMs that are
currently available throughout several databases, thus helping
in the selection and continuous improvement of metabolic
models.

Ultimately, we argue that metabolic modeling will prove quite
valuable assisting experimentalists to focus their research efforts
on a specific sets of questions originating from clinical
observations by helping in the identification of key metabolic
pathways likely responsible for driving disease. To validate the
data from metabolic modeling studies examining complex
microbial communities in the context of microbiomes or
mixed-species infections, the development of more complex
in vitro/in vivo communities composed of abundant and
prevalent species will be necessary to better probe how
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microbe-microbe and polymicrobial community-host metabolic
interactions are impacting community structure and function,
including the capability of these communities to drive negative
clinical outcomes.We also envision that the integration of various
in vivo-like environmental factors such as oxygen and nutrient
diffusion/availability, pH, viscosity, etc. will be critical
components to be integrated in experimental models to help
in our understanding of how metabolic interactions drive
community structure and function. For instance, the
development of a an artificial sputum medium developed by
the Whiteley group, which was formulated based on nutrients
available in the CF airway, (e.g. lactate, amino acids, dextrose,
etc.) and mimicking the viscosity observed in the lung
environment has allowed for significant breakthroughs in CF
research (Palmer et al., 2005; Palmer et al., 2007; Turner et al.,
2015; Darch et al., 2018; Cornforth et al., 2020). One could argue
that the creation of disease-like growth media for the gut will also
result in the discovery of novel findings impacting human health.

In summary, we believe that multi-omics data, (i.e. amplicon,
metagenomic, metabolomic, transcriptomic) represent critical

information regarding the infection environment that will
drive the construction of robust laboratory models, which in
combination with metabolic modeling, will trigger an iterative
process between computational predictions and laboratory
validation to improve our understanding of community
structure and function and to facilitate the identification of
novel therapeutics.
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