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ABSTRACT Quantitative comparison among microbiomes can link microbial beta-
diversity to environmental features, thus enabling prediction of ecosystem properties
or dissection of host-microbiome interaction. However, to compute beta-diversity,
current methods mainly employ the entire community profiles of taxa or functions,
which can miss the subtle differences caused by low-abundance community mem-
bers that may play crucial roles in the properties of interest. In this work, I review
the distance metrics and search engines that we developed to match microbiomes
at a large scale based on whole-community-level similarities, as well as their limita-
tions in tackling the microbiome changes caused by less abundant community fea-
tures. Then I propose the concept of microbiome “local alignment,” including an
algorithm to measure microbiome similarity on specific fractions of biodiversity and
an indexing strategy for rapidly fetching microbiome local-alignment matches from
the data repository.
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Beta-diversity analysis quantifies the similarity or distance between microbiome
pairs; on the basis of beta-diversity analysis, we can link the overall taxonomic or

functional diversity pattern to environmental features (1) and then predict the ecosys-
tem properties or host healthy states (2–4). Here, I summarize the algorithms and tools
that we have developed for analyzing and unitizing the whole-community-level (i.e.,
“global”) similarities on large-scale microbiome data sets and deliver our perspective
on the “local alignment” strategy that matches microbiomes by a specific subset of
taxa that contribute to the properties of interest.

SIMILARITY MEASUREMENT FOR MICROBIOMES

An accurate and reliable similarity or distance metric among microbiomes is the ba-
sis for deducing the microbial beta-diversity. Statistical or geometry approaches like
Bray-Curtis, Jaccard, and Jensen-Shannon divergence calculate such distances mainly
by counting the overlapped components. However, omission of the inherent relation-
ships among community members (e.g., operational taxonomic units for 16S rRNA
amplicons or species for shotgun metagenomes) can lead to unexpected, erroneous
beta-diversity patterns. To tackle this issue, we introduced the Meta-Storms scoring
algorithm that parses the similarity of two microbiomes by considering the evolution-
ary hierarchy of microbes based on a weighted reference phylogeny tree (5). It not
only improves the comprehensiveness of comparison by integrating additional biologi-
cal contexts but also reduces the inaccuracy caused by the sparse distribution of
microbes (e.g., microbiomes collected from distinct ecosystems may lack adequate
common components for comparison) (6).
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On the other hand, a phylogeny-based algorithm such as Meta-Storms requires all
community members are mapped to definite leaf nodes in a reference tree; however,
profiles inferred from metagenomic shotgun sequences always carry unidentified or
unclassified annotations. To solve this problem, we then proposed the Dynamic Meta-
Storms algorithm (7), by locating the unclassified species to the virtual nodes in the
phylogeny tree via their higher-level taxonomy. Usually, the tree-like algorithm is well
defined by a recursive posttraversal process of a binary tree. However, since the micro-
bial phylogeny tree has been greatly expanded by newly sequenced and annotated
species, the overall computing time for the pairwise distance matrix becomes unac-
ceptable, especially for studies with thousands of samples. Hence, optimizations
including nonrecursive transformation and memory recycling were performed in Meta-
Storms and Dynamic Meta-Storms to improve the efficiency of computing and memory
resource (8). Coupled with parallel computing on a multicore CPU (central processing
unit) or a GPU (graphics processing unit), our implementations accomplished the pair-
wise comparison of 100,000 metagenomes within a few hours on a single desktop
computer, enabling beta-diversity analysis on a much broader scale.

MICROBIOME SEARCH ENGINE ENABLES THE GLOBAL MATCH IN MICROBIOME
DATA SPACE

Over the past years, the number of sequenced microbiomes has grown exponen-
tially. While big data introduces a plethora of opportunities to uncover biological prin-
ciples hidden under biodiversity surveys, new challenges have emerged, such as the
extremely high data volume (9). One key demand and bottleneck has been relating
newly sampled microbiomes to existing data. Thus, we developed a Microbiome
Search Engine (MSE) for rapid search of query microbiomes against a database of
microbiomes, on the whole-community level (10). Basically, with a given query com-
munity, MSE compares it against a data repository and returns top hits with highest
Meta-Storms similarity in real time (e.g., ,0.5 s per query in 1 million samples). This
allows interpreting the property of the query based on meta-data of the matches.
Moreover, by placing each individual sample under the context of the numerous
microbiomes produced so far, MSE provides a bird’s-eye view on the historical devel-
opment of global microbiome surveying efforts. For example, tracking the 8-year dy-
namics of search-based microbiome novelty score (MNS) (which evaluates the overall
compositional uniqueness of a microbiome compared to its top hits in a database) for
more than 100,000 samples from various habitats, we were able to define the “search
boundary effect” of human microbiomes (11). Specifically, the structural novelty of
human microbiomes, but not environmental ones, is approaching saturation and likely
bounded. More importantly, exploring the ability to quantitatively assess microbiome
“novelty” or “uniqueness” via MNS, we introduced a search-based strategy for multiple
disease detection and classification (12). In this method, MSE detects unhealthy sam-
ples via their outlier novelty versus a database of samples from healthy subjects and
then identifies the specific disease type by comparing these to samples from patients.
We showed that accuracy and efficiency of such MSE-based disease diagnosis outper-
form traditional machine learning approaches. These findings highlight the promise of
microbiome big-data-based diagnosis as well as “data-driven” research strategies in
microbiome science.

LOCAL ALIGNMENT FOR MICROBIOME FRACTIONS

Usually, beta-diversity is measured by end-to-end comparison of microbiome pairs
(Fig. 1A) using distance metrics like Meta-Storms, UniFrac (13), Bray-Curtis, etc. The beta-di-
versity-based status identification and classification relies on an assumption that most mem-
bers of the community, or at least the highly abundant members, are associated with the
status of interest, e.g., samples in disease group exhibit a significant compositional distinc-
tion to healthy controls (e.g., permutational multivariate analysis of variance [PERMANOVA]
or analysis of similarity [ANOSIM] test P value of,0.01 on pairwise distances). Although
previous studies have shown such beta-diversity patterns exist in many diseases such as
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inflammatory bowel disease (14) and colorectal cancer (15), in other cases like type 1 diabe-
tes (16) and autism spectrum disorder (17), only a small part of signature taxa play crucial
roles that can be determined by statistical tests (18) or supervised machine learning (19) but
are missed by the end-to-end comparison at the whole-community level. Thus, there is an
intensive need to match only the “biomarker” fractions of interest (denoted as “target”)
against whole microbiomes (denoted as “reference”; Fig. 1B), just like a “local alignment” of
amplified DNA fragments to the reference full-length 16S rRNA genes. Intuitively, such sub-
community-level similarity can be derived by extracting the identical features as the target
from the reference and then compared it to the target. However, several issues should be
appropriately covered in algorithm design and implementation. Since microbiome profiles
are highly diverse and sparse across habitats (20) or cohorts (21), it is possible that a refer-
ence microbiome shares few exactly identical fractions with a target. Here, the similarity can-
not be simply set as zero, and taxa with very close taxonomy or metabolic functions to the
target or belong to the same guild (22) that work consistently and coherently with the tar-
get, can be considered “approximate members.” Notably, contributions of such “approxi-
mate members” should be weighted by their phylogenetic or functional distances to the
“exact members.” On the other hand, however, once the “approximate members” are added
for comparison, relative abundance of “exact members” will be diluted, leading to a reduc-
tion of similarity between reference and target. Therefore, for microbiome local alignment,
selecting and extracting the fraction of community members from the reference micro-
biomes for the comparison to the target is of utmost importance.

INDEXING STRATEGY FOR FAST FETCH OF LOCAL-ALIGNMENT HITS

Once the microbiome “local alignment” algorithm is clearly defined, suspected
unhealthy microbiomes can be detected from a repository by matching with specific
disease biomarkers. An exhaustive screening that compares the target fractions to all
samples is a straightforward way, but it is time-consuming when the database is huge.

FIG 1 Two scenarios of microbiome comparison. (A) The end-to-end comparison of sample pairs
employs whole-community-level information (i.e., “global alignment”). (B) The “local alignment” of
microbiomes matches only a partial fraction of taxa that are of interest.
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Currently, there are two types of indexing strategies available for accelerating the
microbiome search, (i) a static partitions index that groups database into subcategories
sorted by structural features, e.g., Microbiome Search Engine v1.0 (5) or Meta-Prism
(23); (ii) a dynamic index based on the dimension reduction of microbial profiles
employed by Microbiome Search Engine 2 (10). Both of the approaches depend on the
preprocessing of the entire collection of reference samples in the database construc-
tion step in order to rapidly fetch the candidate hits in the subsequent query step.
Nevertheless, as the “local alignment” only takes partial community from the reference,
and the range of community members relies on the specific query target (e.g., bio-
markers for diseases), unified and universal indices designed for end-to-end match are
not suitable for the “local alignment” scenario. A potential indexing solution to pro-
mote the speed of microbiome local-alignment can learn from the FM-index of Bowtie
2 (24) or the USEARCH algorithm (25) that were originally designed for nucleotide
sequence mapping in which the target community fraction serves as a short query
DNA read and the microbiomes are treated as the reference long genome sequences.

CONCLUSION

Beta-diversity is a fundamental property of microbiomes. Highly efficient micro-
biome comparison, not just at the “global” level but at the “local” level, can elucidate
microbial beta-diversity with higher precision and flexibility, thus contributing to in-
depth comprehension and efficient utilization of microbiomes.
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