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Hypertension is caused by polygenic inheritance and the interaction of various

environmental factors. Abnormal function of the renin-angiotensin-aldosterone system

(RAAS) is closely associated with changes in blood pressure. As an essential factor in the

RAAS, angiotensin II (Ang II) contributes to vasoconstriction and inflammatory responses.

However, the effects of overproduction of Ang II on the whole body-metabolism have

been unclear. In this study, we established a hypertensivemousemodel bymicro-osmotic

pump perfusion of Ang II, and the maximum systolic blood pressure reached 140 mmHg

after 2 weeks. By ultra-performance liquid chromatography-quadrupole time-of-flight

mass spectrometry, the metabolites in the serum of hypertensive model and control

mice were analyzed. Partial least squares discriminant analysis (PLS-DA) in both positive

and negative ionization modes showed clear separation of the two groups. Perfusion

of Ang II induced perturbations of multiple metabolic pathways in mice, such as steroid

hormone biosynthesis and galactose metabolism. Tandem mass spectrometry revealed

40 metabolite markers with potential diagnostic value for hypertension. Our data indicate

that non-targeted metabolomics can reveal biochemical pathways associated with Ang

II-induced hypertension. Although researches about the clinical use of these metabolites

as potential biomarkers in hypertension is still needed, the current study improves

the understanding of systemic metabolic response to sustained release of Ang II in

hypertensive mice, providing a new panel of biomarkers that may be used to predict

blood pressure fluctuations in the early stages of hypertension.
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INTRODUCTION

Hypertension is a common cardiovascular disease and the leading risk factor for both
cardiovascular and cerebrovascular events. It can cause functional or organic lesions of the heart,
brain, blood vessels, kidneys, and other organs, contributing to a significant cause of disability
and death (1). The incidence and development of hypertension are affected by both genetic and
environmental factors (2). In recent studies, 60% of the main factors leading to hypertension have
been associated with metabolic abnormalities, while 80% of hypertensive patients have various
forms of metabolic disorder (3).
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Ang II increases systemic blood pressure and glomerular
capillary pressure. It is directly involved in renal arteriosclerosis
and causes kidney damage (4). It also increases the pressure in the
glomeruli and contracts mesangial cells, leading to an increase
in the selective permeability to urine proteins. Clinical and
experimental studies have shown that it regulates the processes
of inflammation and fibrosis contributing to kidney pathogenesis
through activating growth factors associated with fibrosis (5).
The clinical manifestations of hypertension and kidney damage
are persistent hypertension accompanied by persistent trace or
mild-to-moderate proteinuria, and impaired renal function (i.e.,
increased creatinine and urea nitrogen) (6). Ang II-induced
hypertension leads to the hypertrophy of smoothmuscle cells and
to increases in the expression of their specific markers, eventually
leading to thickening of the arterial media and increasing
vascular resistance (7).

A study revealed that Ang II induction increases thromboxane
production in mice (8), and another indicated that prolonged
Ang II-induced hypertension and massive blood-brain barrier
leakage, microglia activation, myelin loss, and memory
dysfunction are associated with stroke compared with control
mice (9).

High-throughput full-spectrum analysis of metabolites
provides an opportunity to assess disease severity, restored
metabolic pathways, and homeostasis (10, 11). Identifying the
disturbed biochemical pathways helps to understand changes
in body components during the development of hypertension.
Therefore, we aimed to find the endogenous molecular
metabolites regulating the blood vessels of mice during the
induction by Ang II by analyzing the metabolic spectrum that
can be used as a marker for early blood pressure fluctuations.

Metabolomics based on liquid chromatography-mass
spectrometry (LC-MS) is an effective method for the metabolic
profiling of biological systems (12). LC-MS analysis has higher
sensitivity and a more comprehensive polarity range than
NMR spectroscopy (13, 14). In the current study, the UPLC-Q-
TOF/MS (ultra-performance liquid chromatography-quadrupole
time-of-flight mass spectrometry) platform was used to analyze
serum samples from control and Ang II-induced hypertensive
mice to explore the differential metabolites of hypertension
induced by slow-release Ang II. We identified >40 different
metabolites involved in >20 metabolic pathways in the Ang
II mice.

METHODS AND MATERIALS

Animals and Sample Collection
All animal experiments were performed in accordance with
the laboratory animal guidelines and with the approval of the

Abbreviations: RAAS, renin-angiotensin-aldosterone system; Ang II, angiotensin
II; UPLC-Q-TOF/MS, ultra-performance liquid chromatography-quadrupole
time-of-flight mass spectrometry; LC-MS, liquid chromatography-mass
spectrometry; QC, quality control; ESI+, electrospray ionization positive ion
mode; ESI–, electrospray ionization negative ion mode; RSD, relative standard
deviation; PCA, principal component analysis; PLS-DA, partial least squares-
discriminant analysis; ABC, ATP binding cassette membrane transporter; PPAR,
peroxisome proliferators-activated receptor.

Animal Experimentation Ethics Committee, Jiangnan University
(License No: JN. No 20190930c1000120[232]). The male
C57BL/6J mice used in the experiments were provided by the
Institute of Model Animal Research of Nanjing University, and
were reared in a specific pathogen-free environment. The average
body weight was ∼23 g. The mice were divided into two groups
(Ang II and control groups) of 10 mice each. Mice were infused
subcutaneously with Ang-II (Sigma, 600 ng/kg/min), or vehicle
(0.9% saline) for 19 days using osmotic pumps (Alzet) (15).
Venous blood was collected from the retro-orbital venous plexus
using a blood collection capillary.

Measurement of Blood Pressure
We used a non-invasive blood pressure meter (IITC Life Science)
to measure the blood pressure of the mice.

Sample Preparation
Two hundred microliters of each sample was placed in a new
Eppendorf tube, to which was added 800 µL of methanol/water
(v/v= 8:1) pre-cooled at−20◦C for >0.5 h; then iron beads were
added and the samples were lysed at 60Hz for 5min. After each
sample is mixed in equal volume, it is used as a quality control
(QC) sample.

Metabolomic Analysis Based on
LC-MS/MS
An ACQUITY UPLC BEH C18 column (100 × 2.1mm, 1.7µm,
Waters Corp., UK) was used for chromatographic separation.
The column temperature was 50◦C and the flow rate was 0.4
ml/min, where mobile phase A was water and 0.1% formic acid,
and mobile phase B was methanol and 0.1% formic acid. The
sample was eluted with the following gradient: 0–2min, 100%
A; 2–11min, 0–100% B; 11–13min, 100% B; 13–15min 0–100%
A. For the small molecules eluted from the column, the high-
resolution tandem mass spectrometry using Xevo G2-XS QTOF
(Waters, UK) was used to collect positive and negative ions. In
electrospray ionization positive ion mode (ESI+), the capillary
voltage was 3 kV and the cone voltage 40V; in ESI negative ion
mode (ESI–), the capillary and cone voltages were 1 kV and 40V.
The mass spectrometry data were acquired in Centroid MSE
mode. The TOF mass range was from 50 to 1,200 Da and the
scan time was 0.2 s. For the MS/MS detection, all precursors were
fragmented using 20–40 eV, and the scan time was 0.2 s. During
the acquisition, the LE signal was acquired every 3 s to calibrate
the mass accuracy. Meanwhile, the quality control (QC) samples
were collected every 10 samples to evaluate the stability of the
instrument during the sample collection process.

Data Processing, Mass Spectrometric
Identification, and Statistical Analysis
Peak extraction was mainly achieved using the software
Progenesis QI (version 2.2), including peak alignment, peak
extraction, normalization, deconvolution, and compound
identification. See the previous report for details (16). The results
show the mean ± SEM. Comparisons among groups were made
using ANOVA or unpaired Student’s t-test, with P < 0.05 as the
threshold for a significant difference.
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FIGURE 1 | Sustained rise of systolic blood pressure (A) and diastolic blood pressure (B) in mice induced by the continuous release of Ang II (data are the mean ±

SEM, n = 10, ***P < 0.001 vs. Control, two-way ANOVA).

Metabolite Annotation and Pathway
Analysis
Metabolites were identified by matching the exact molecular
mass data (m/z) of the samples against METLIN (http://
metlin.scripps.edu/) and the Human Metabolome Database
(http://www.hmdb.ca/) with 10-ppm accuracy (17, 18).
We quantitatively mapped the different metabolites to the
reference paths in the online Kyoto Encyclopedia of Genes and
Genomes database (https://www.kegg.jp/kegg/pathway.html).
Statistically significant enrichment pathways were evaluated
by the hypergeometric test adjusted by the false discovery rate
(P < 0.05).

RESULTS

Mouse Model of Ang II-Induced
Hypertension
Blood pressure recorded in the Ang II model significantly and
continuously rose from day 5 (Figure 1). On day 17, the systolic
blood pressure in the Ang II group was 140 mmHg while the
controls remained at ∼89 mmHg. Therefore, this model of
hypertension induced by slow-release Ang II was successful.

Metabolites Differ Between Control and
Ang II-Induced Hypertensive Mice
None of the QC sample chromatograms showed significant
retention time drift. We measured 5,904 ions in ESI+ mode
and 6,937 in ESI– mode (Figures 2A,B). After elimination
and filling in, 4,557 and 5,773 ions were finally obtained.
The QC samples were tightly clustered, and were significantly
separate from the test samples, indicating that the LC-MS/MS
analysis platform had high stability and reproducibility (16)
(Figures 2C,D). We further used three-dimensional principal
component analysis (PCA) scatter plots to evaluate changes

in the metabolite profile of mice during the development
of Ang II-induced hypertension. The ordinary “unsupervised”
analysis was unable to distinguish between the Ang II and
control groups (Figures 2E,F). However, the use of partial
least-squares discriminant analysis built an excellent regression
model. The three-dimensional scatter diagram showed that
the Ang II and control groups were significantly separated
(Figures 3A,B), showing different metabolic phenotypes. This
indicated that the sustained release of Ang II leads to metabolic
disorders in mice. We selected the top 20 serum metabolites
that met the variable importance in the projection threshold
(VIP > 1) and Student’s t-test (P < 0.05) criteria in the
ESI+ and ESI– modes. Volcano maps based on P-values
and one-dimensional test multiple changes (Figures 3C,D) and
heat maps based on differences in metabolite abundance also
showed clear separation of the Ang II and control groups
(Figures 3E,F).

In ESI+mode, contents of 4-Hydroxy-6-methylpretetramide,
6-Phospho-D-gluconate and Aminopentol considerably
increased, and Ephedroxane and Bellendine obviously decreased
in Ang II-induced hypertensive mice (Table 1). Likewise,
variance in the production of N(omega)-Nitro-L-arginine,
Deoxypeganine and Hinokitiol glucoside was also observed
between Ang II and control groups in ESI- mode (Table 2).

Metabolic Pathway Disorders
The serum metabolites of the mice made hypertensive by
Ang II were significantly different from the control group.
Compared with control mice, 581 differential metabolites
were obtained under ESI+ mode and 530 under ESI–
mode (Supplementary Materials). Search of a mass-based
metabolomics database showed that metabolite ions detected
under the ESI+ and ESI– modes included disaccharides,
glycerophospholipids, amino-acids, sphingolipids, fatty acyl
groups, acylcarnitines, and other organic compounds. Here, the
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FIGURE 2 | (A,B) Total ion chromatograms of QC samples in Control (A) and Ang II groups (B) in ESI+ and ESI– mode. (C,D) Plots of PCA scores for serum samples

from test mice and QC samples showing metabolites obtained in ESI+ mode (C) and ESI– mode (D). (E,F) Scatter plots of PCA scores of metabolites from the

LC-MS/MS fingerprints in ESI+ mode (E) and ESI– mode (F).
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FIGURE 3 | (A,B) 3-D plots of scores from partial least-squares discriminant analysis based on the metabolic profiling data from the plasma of Ang II-induced

hypertensive mice and healthy (control) mice in ESI+ (A) and ESI– mode (B) (black triangles, Ang II-induced hypertensive mice; blue circles, control mice). (C,D)

Volcano plots based on P-values and fold-changes of single-dimensional tests in ESI+ mode (C) and ESI– mode (D). (E,F) Heatmaps of the differential metabolites for

Ang II vs. control in ESI+ mode (E) and ESI– mode (F).
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TABLE 1 | Top 20 differential serum metabolites between Ang II-induced hypertension mice and control mice in ESI+ mode.

Compound P-value Regulation Fold change Retention time/min

(10S)-Juvenile hormone III acid diol 0.009 Up 2.001 5.587

3beta,21-Dihydroxy-4,4,14-trimethyl-5alpha-pregn-8-en-20-one 0.020 Up 2.249 7.477

4-Coumarate 0.043 Down 0.527 4.582

4-Hydroxy-6-methylpretetramide 0.004 Up 16.918 6.664

6-Phospho-D-gluconate 0.007 Up 2.917 4.511

Aminopentol 0.009 Up 2.648 6.807

Bellendine 0.012 Down 0.293 4.262

Blasticidin S 0.0001 Up 1.839 3.827

D-Gal alpha 1->6D-Gal alpha 1->6D-Glucose 0.030 Down 0.362 0.633

Ephedroxane 0.030 Down 0.237 4.262

Esmolol 0.016 Up 2.027 3.691

Finaconitine 0.008 Up 2.084 4.055

GW 409544 0.003 Up 1.957 4.739

alpha-Lipomycin 0.039 Up 1.828 4.041

Methyl selenac 0.006 Up 1.960 4.668

Myristoleic acid 0.005 Up 2.324 8.555

Podocarpic acid 0.015 Down 0.331 3.563

Pseudoaconitine 0.011 Up 2.184 4.725

Pyrazosulfuron 0.008 Up 2.202 4.860

trans-Crocetin (beta-D-glucosyl) (beta-D-gentibiosyl) ester 0.0002 Up 2.410 4.668

TABLE 2 | Top 20 differential serum metabolites between Ang II-induced hypertension mice and control mice in ESI- mode.

Compound P-value Regulation Fold change Retention time/min

(4S)-4,6-Dihydroxy-2,5-dioxohexanoate 0.050 Down 0.427 0.633

12-OPDA 0.0002 Up 2.077 8.090

13,16,19-Docosatrienoic acid 0.036 Down 0.378 9.841

4-Hydroxyphenylpyruvate 0.022 Down 0.488 3.414

4-Sulfobenzyl alcohol 0.009 Up 2.436 4.497

Callystatin A 0.021 Up 1.963 8.047

cyclo-Dopa 5-O-glucoside 0.036 Down 0.484 0.633

Deoxypeganine 0.0001 Up 5.391 6.108

Gibberellin A53 aldehyde 0.019 Down 0.397 7.156

Hinokitiol glucoside 0.006 Up 3.668 5.865

Hydrocortisone caproate 0.037 Up 2.686 7.477

Methyldopa anhydrous 0.034 Down 0.524 7.202

N(omega)-Nitro-L-arginine 0.00003 Up 42.991 0.633

Neurokinin A 0.048 Down 0.480 8.603

Pentobarbital sodium 0.025 Up 2.242 4.682

Plakinamine A 0.018 Up 3.526 7.583

Radium-224 0.030 Down 0.414 4.041

Sudan II 0.009 Up 2.287 8.339

Taxa-4(20),11(12)-dien-5alpha-acetoxy-10beta-ol 0.0008 Up 1.794 8.746

Voriconazole 0.009 Down 0.306 4.262

top 20 metabolites and their regulatory changes under the two
ion modes were identified as potential biomarkers in developing
hypertension (Tables 1, 2). In addition, these metabolites
mapped to >20 metabolic pathways, mainly sugar and linoleic

acid metabolism, carbohydrate digestion and absorption, ATP
binding cassette (ABC) membrane transporter transport protein,
peroxisome proliferator-activated receptor (PPAR), and hypoxia-
inducible factor-1 signaling pathways (Figure 4).
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FIGURE 4 | Metabolic pathway enrichment analysis in ESI+ mode (A) and ESI– mode (B). The size of each circle represents the number of metabolites enriched in

the pathway.

DISCUSSION

The renin-angiotensin-aldosterone system (RAAS) is one of
the systems closely related to vasomotor and sodium-water
metabolism in vivo, which plays crucial roles in cardiovascular
physiology and pathophysiology (19, 20). In the RAAS, the
angiotensin converting enzyme (ACE) generates Ang II, which
has high bioactivity and powerful vasoconstrictor effect. It is well-
known that a variety of cardiovascular risk factors are closely
associated with Ang II (21–23). The ability of Ang II to elevate
blood pressure is 10∼40 times powerful than adrenaline (24).
Ang II raises blood pressure through multiple factors, mainly
through stimulating zona glomerulosa of the adrenal gland,
promoting aldosterone secretion and sodium-water retention
(20, 25–27). Besides, it enhances noradrenaline release from
sympathetic nerve endings (28). Meanwhile, elevation of Ang II
content promotes oxidative stress and endothelial dysfunction,
and plays a crucial role in atherosclerosis (29, 30). Vascular
damage, regulated with Ang II, is also dependent on the
gut microbiome (31). It is noticed that a significant positive
correlation between Ang II level and left ventricular hypertrophy
in the hypertensive patients diagnosed without any treatment
(32, 33). Plasma Ang II level is significantly correlated to the end
diastolic interventricular septal diameter (IVSDd) in essential
hypertension (34). Taken together, due to the multifactorial roles
played by Ang II in the course of hypertension, it has been
used in many studies to construction of hypertensive models in
mice (35, 36).

In this study, we analyzed the serum metabolites of Ang
II-induced hypertensive mice based on an LC-MS/MS platform.
Our results showed that the slow release of Ang II induces
metabolomics changes in mice, promoting the development of

hypertension. According to previous research reports on Ang
II-induced hypertension (37), the body weight of mice will
decrease significantly during the sustained release of Ang II,
which may be related to metabolic disorders in the body.

Ang II is a critical factor in hypertension, diabetes, and aging,
and it induces many metabolic pathway disorders. Hypertension
and diabetes are considered to be the main components of
metabolic syndrome, sharing a common pathogenesis according
to a large number of basic and clinical studies (38–40). About 60–
70% of diabetic patients have hypertension (41), and hypertensive
patients have abnormal glucose metabolism. Consistent with this,
our results showed that Ang II-induced hypertension in mice
was accompanied by evident glucose metabolism disorder. A
significant increase in 6-phosphate-d-gluconate and decreases
in maltose, lactose, and other disaccharides was found in the
Ang II group. The analysis of metabolite pathway enrichment
showed a disturbed glucagon signal pathway, consistent with the
phenomenon of hyperinsulinemia in hypertensive patients.

In recent years, PPARs have been closely associated with
energy metabolism, cell differentiation, proliferation, apoptosis,
and the inflammatory response (42–44). Ang II increases
the permeability of cerebral vascular endothelium via type
1 receptors, disrupts the membrane distribution of zonula
occludens-1 and vascular endothelial-cadherin on cerebral
vascular endothelium, decreases the total levels of junctional
adhesion molecule-A and major facilitator superfamily domain-
containing protein 2a, and increases caveolin 1 accompanied by
the de-phosphorylation of PPARα. PPARα agonists improve the
endothelial permeability caused by Ang II (45). Interestingly, in
ESI– mode, we found that the levels of three metabolites [9-cis-
retinoic acid, 9(S)-hydroxyoctadecadienoic acid (HODE), and
13(S)-HODE] are closely associated with the PPAR signaling
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pathway. After 2 weeks of Ang II induction in mice, the
content of 9-cis-retinoic acid, an active metabolite of vitamin
A, increases significantly. The content of 9-cis-retinoic acid
in the serum of Ang II-induced hypertensive mice was 1.42
times compared to control mice (P = 0.03; VIP = 1.66). 9-
cis-Retinoic acid is an active retinoid that regulates expression
of retinoid responsive genes (46). 9-cis-Retinoic mediates gene
transcription acting through the retinoic acid receptors (RARs)
and the retinoid X receptors (RXRs) in cells (47). In addition
to PPARs, RXRs are also an essential heterodimeric partner
for other subclass I nuclear receptors, such as the farnesoid
X receptor (FXR), thyroid hormone receptors, the vitamin D
receptor and the liver X receptor (LXR) (48–51). However, the
transcriptional complex formed by RXRs and PPARs plays a
critical role in energy balance, such as glucose homeostasis, fatty
acid handling and triglyceride metabolism (52). The PPAR-RXR
transcriptional complex also participates in inflammatory and
vascular responses in endothelial and vascular smooth muscle
cells directly (52–54). It has been suggested that RXR regulates
the growth and differentiation of normal andmalignant cells, and
inhibits the prostaglandin expression of endoperoxide-2 (55).
However, retinoic acid is a toxin that can bring about fracture,
skin injury and swelling, serum calcium elevation, limited
dose hyperlipidemia (cholesterol and triglyceride elevation), and
hypothyroidism (56). Ang II contributes to an increase in the
content of two HODEs that have been used as biomarkers for
assessing oxidative status (57).

The ABC is an outflow promoter of phospholipid and
cholesterol, playing an essential role in the development of
atherosclerosis and arterial hypertension. ABCA1 mediates the
first step of reverse cholesterol transport by transporting excess
cholesterol in peripheral tissues to the liver for excretion (58).
Recent evidence has shown that the expression of ABCA1 is
significantly decreased in patients with hypertension, and the
outflow of cholesterol to apo-A1 leads to increased carotid
intima-media thickness, and promotes arterial hypertension (59).
Interestingly, in ESI+/ESI– modes, we identified 19 differential
metabolites that were enriched in the metabolic pathway of the
ABC transporter. These substances may affect lipid metabolism
and increase blood vessel wall pressure by interfering with the
flow of cholesterol from monocytes, macrophages, and the liver.

In this study, we found changes in the serum metabolome
treated with Ang II in mice, providing new clues for the further
study of the pathophysiological mechanisms in hypertension.
Our non-targeted metabolomics research identified specific
differences related to carbohydrate, lipid, and carbohydrate
metabolism in hypertension. These results improve the

understanding of systemic metabolic response to sustained
release of Ang II in hypertensive mice, providing a new panel
of biomarkers that may be used to predict blood pressure
fluctuations in the early stages of hypertension, although
researches about the clinical use of these metabolites as potential
biomarkers in hypertension is still needed.
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