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Abstract

Cardiac pathologies are among the most frequent causes of death 
worldwide. Regarding cardiovascular deaths, it is estimated that 5 
million cases are caused by sudden cardiac death (SCD) annually. 
The primary cause of SCD is ventricular arrhythmias. Genomic stud-
ies have provided pathogenic, likely pathogenic, and variants of un-
certain significance that may predispose individuals to cardiac causes 
of sudden death. In this study, we describe the case of a 43-year-old 
individual who experienced an episode of aborted SCD. An implant-
able cardioverter defibrillator was placed to prevent further SCD 
episodes. The diagnosis was ventricular fibrillation. Genomic analy-
sis revealed some variants in the MYPN (pathogenic), GCKR (likely 
pathogenic), TTN (variant of uncertain significance), SCN5A (variant 
of uncertain significance), MYO6 (variant of uncertain significance), 
and ELN (variant of uncertain significance) genes, which could be 
associated with SCD episodes. In addition, a protein-protein interac-
tion network was obtained, with proteins related to ventricular ar-
rhythmia and the biological processes involved. Therefore, this study 
identified genetic variants that may be associated with and trigger 

SCD in the individual. Moreover, genetic variants of uncertain sig-
nificance, which have not been reported, could contribute to the ge-
netic basis of the disease.
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Introduction

Sudden cardiac death (SCD) refers to the unexpected death of 
an individual not attributable to an extracardiac cause. SCD 
usually happens within the first hour from the onset of symp-
toms or within 24 h from the last time the individual was seen in 
good health [1, 2]. It is estimated that approximately 5 million 
cases of SCD occur worldwide each year [3]. Furthermore, the 
survival rate is between 27% and 40%, and this percentage has 
increased due to factors such as cardiopulmonary resuscitation 
capabilities and external defibrillators. Various causes could 
trigger SCD, including coronary artery anomalies, structural 
cardiac anomalies, primary arrhythmias, and coronary artery 
disease, among others [4].

Cardiac arrhythmias lead to more than one million cases 
of syncope yearly and are associated with congenital, meta-
bolic, structural, physiological, immunological, and infectious 
disorders [5, 6]. Among these arrhythmias, ventricular fibril-
lation (VF) is responsible for the highest number of cases of 
sudden cardiac arrest (SCA) [7]. VF is a disturbance in the 
electrical activity of the heart’s lower chambers that results in 
the absence of an effective heartbeat [8].

Diagnosing arrhythmogenic abnormalities could be com-
plex, as they may manifest as minimal findings in a morpho-
logically normal heart [9]. Moreover, the identification of sub-
strates and triggers of arrhythmias has provided insights into 
the molecular basis of different pathophysiological pathways 
[10]. Arrhythmias are diseases with genetic heterogeneity, and 
as a result, genomic analysis has played a crucial role in the di-
agnosis of primary arrhythmic disorders by uncovering muta-
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tions in different genes correlated with the same disorder [11].
This study describes the case of a man who suffered an 

aborted SCD, and through genomic analysis, our research 
group identified variants in genes associated with this cardiac 
condition.

Case Report

Investigations

A 43-year-old Ecuadorian healthy man, with no history of 
heart disease, suffered an SCD at his workplace 7 years ago. 
Emergency services resuscitated him, and he was hospitalized. 
In the hospital, electrocardiogram and echocardiogram were 
performed, but no structural cardiac cause was found to be as-
sociated with the SCD event. The cardiac condition diagnosed 
was primary VF. Unfortunately, the patient did not respond to 
medications satisfactorily; thus, an implantable cardioverter 
defibrillator (ICD) was placed to prevent another sudden death 
episode. The implanted ICD detected several sudden death 
events; however, the evolution of the individual’s cardiac con-
dition was favorable. Furthermore, the patient was prescribed 
an antiarrhythmic drug, amiodarone 200 mg, as a regular med-
ication.

Five years after the SCD incident, the individual was hos-
pitalized due to new syncope events, palpitations, precordial 
pain, and dyspnea in functional class II/IV. Subsequently, elec-
trocardiogram and echocardiogram were performed, revealing 
the need for an elective ICD replacement. The discharge di-

agnoses included New York Heart Association (NYHA) class 
III heart failure, hemodynamic profile B, and congestive heart 
failure stage C due to tachycardiomyopathy. A timeline of the 
relevant episodes of care is depicted in Figure 1.

Diagnosis

Next-generation sequencing (NGS)

A peripheral blood sample was taken, and DNA was extracted 
using the PureLink™ genomic DNA mini kit. DNA concen-
trations were quantified using the 1X dsDNA high-sensitivity 
(HS) and broad range (BR) assay kits on the Qubit™ 4 fluo-
rometer. NGS was performed at the Centro de Investigacion 
Genetica y Genomica (CIGG) using the TruSight™ cardio 
(TSC) sequencing panel on the Illumina MiSeq platform. The 
TSC sequencing panel includes 174 genes with known asso-
ciations with 17 inherited cardiovascular conditions. For the 
bioinformatics analyses, DRAGEN Enrichment v3.9.5, An-
notation Engine v3.15, PolyPhen, Sift, and Variant Interpreter 
v2.16.1.300 platforms were used.

Ancestral components determination

Forty-six ancestry-informative INDEL markers (AIMs) were 
amplified in a multiplex PCR reaction, according to Zambrano 
et al (2019). Fragment detection was performed on the 3500 
genetic analyzer. The results were collected and analyzed on 

Figure 1. Subject’s episodes of care. The relevant data are displayed in the timeline.
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the Data Collection v3.3 and Gene Mapper v.5 platforms. The 
ancestral analysis was performed using STRUCTURE v.2.3.4 
[12].

Outcomes

The coverage was ≥ 50 X on 98.19% of the target regions of 
the TSC sequencing panel. Variants were classified into five 
categories (benign, likely benign, variants of uncertain signifi-
cance (VUS), likely pathogenic, and pathogenic) following the 
2015 American College of Medical Genetics and Genomics - 
Association for Molecular Pathology guidelines [13]. All path-
ogenic, likely pathogenic, and VUS variants were considered 
in the analysis (Table 1).

To investigate the cellular processes involving the mutated 
proteins, protein-protein interaction networks were created us-
ing the STRING database [14], with a confidence level of 0.7 
(P < 1.0 × 10-16). The network was generated using 34 genes 
related to the individual’s phenotype and found in the arrhyth-
mia sequencing panel [15] (Supplementary Material 1, www.
cardiologyres.org). Notably, the TSC sequencing panel and the 
arrhythmia sequencing panel share 24 genes. Subsequently, it 
was determined that of the six genes that presented mutation, 
five were related to arrhythmias. Among these five genes, only 
the TTN and SCN5A were present in both sequencing panels.

Furthermore, it has been established that the MYPN pro-
tein physically interacts with the TTN protein. Moreover, both 
the TTN and the SCN5A proteins interact with the CALM1 
protein. All these proteins have a physical interaction with 
other arrhythmia-causing proteins and are involved in the actin 
filament-based processes (Fig. 2).

Moreover, an ancestral composition analysis was per-
formed, and the results showed 2% African, 32.8% European, 
and 65.2% Native American components.

Discussion

In this case report, genomic analyses of a 43-year-old Ecuado-
rian male with primary VF and subsequent episodes of aborted 
sudden death were performed. The objective was to determine 
the association between genetic variants and the individual’s 
phenotype. Our study identified five mutated genes related to 
arrhythmias, as well as an unrelated gene. The genomic screen-
ing revealed variants in the MYPN, TTN, SCN5A, MYO6, and 
ELN genes. These variants could show an association between 
genetic factors, arrhythmias disorders and the increased risk 
of SCD.

MYPN

Mutations in the sarcomeric myopalladin (MYPN) protein play 
a significant role in the pathogenesis of cardiac disease. MYPN 
interacts with several molecules, including α-actinin, located 
along the stress fibers and in the Z-line of cardiac muscles. 
Furthermore, the MYPN protein functions as a cytoskeleton Ta
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support and signaling mediator [16]. Mutations in this protein 
can affect both contractile (myosin, actin) and non-contractile 
(titin, Z-disc proteins) proteins of the sarcomere [17].

According to the literature, mutations in the MYPN pro-
tein are associated with different types of cardiomyopathies, 
such as hypertrophic, dilated, and restrictive. In addition, 
some studies suggest that the MYPN gene network is involved 
in specific arrhythmia disorders or overlapping phenotypes of 
inherited cardiomyopathies [18, 19]. However, these types of 
mutations are rare, accounting for less than 5% [20]. In this 
genomic screening, a p.(Pro1112Leu) missense MYPN patho-
genic variant was described. Although the replacement of the 
amino acid proline by leucine in this mutation may not be 
pathogenic, it is essential to consider that the coexistence of 
other mutations could impact the phenotype [16]. Importantly, 
the Ecuadorian mestizo individual in this study has not been 
diagnosed with any of the previously mentioned cardiomyo-
pathies.

SCN5A

The NGS results showed a mutation of uncertain significance 
at position c.2302A>G (p.Ile768Val) in exon 15 of the SCN5A 
gene. The SCN5A gene encodes the sodium channel-forming 
alpha subunit that regulates sodium influx and is involved in 
the rapid upward depolarization of the action potential. The 
SCN5A protein, with a molecular weight of 227 kDa, con-

sists of four homologous domains (DI-DIV), and each one is 
composed of six segments (S1-S6) [21]. Mutations in SCN5A 
have been associated with various cardiac diseases, such as 
ventricular arrhythmias, sudden death syndrome, and cardiac 
conduction disturbances [22].

ELN

The human elastin gene, ELN, is part of the extracellular ma-
trix and is involved in the elasticity and strength of tissues such 
as arterial vessels, lungs, and others [23]. Elasticity allows 
blood vessels to perform the process of diastole and systole 
for optimal heart function. In addition, in arteries, elasticity 
maintains tone and regulates blood pressure [24].

Mutations in the ELN gene are associated with diseases 
such as supravalvar aortic stenosis (SVAS), characterized 
by significant narrowing of the large arteries [25, 26]. In the 
genomic analysis performed in the individual, a mutation of 
uncertain significance was identified at position c.2142_2156 
of (p.Gly715_Val719del), resulting in an in-frame deletion in 
exon 30 of the ELN gene. Mutations in the ELN gene may 
be associated with a sporadic or inherited autosomal dominant 
SVAS.

In 2016, Latham et al mentioned that the SCD risk in 
patients with SVAS is increased compared to non-syndromic 
SVAS patients [27]. Therefore, it is essential to understand this 
type of mutation in patients diagnosed with SVAS, particularly 

Figure 2. Protein-protein interaction network between the arrhythmia panel genes and the mutated genes on the TSC sequenc-
ing panel. The purple circle nodes represent the actin filament-based process. The yellow circle nodes represent cell communi-
cation involved in cardiac conduction. The solid lines indicate the physical interaction between proteins, whereas the red circle 
shows the genes analyzed in the genomic screening. TSC: TruSight™ cardio.



Articles © The authors   |   Journal compilation © Cardiol Res and Elmer Press Inc™   |   www.cardiologyres.org 413

Paz-Cruz et al Cardiol Res. 2023;14(5):409-415

for medical examinations or surgeries that require sedation, 
since there have been cases of SCD leading to the fatal out-
comes [23].

MYO6

MYO6 gene encodes a protein that moves toward the minus 
end of actin filaments. The protein has a motor domain with 
ATP and actin-binding sites and a globular tail that interacts 
with other proteins. Mutations in the motor domain of myosin 
could cause cardiac problems, such as dilated and hypertrophic 
cardiomyopathies [28], as well as different forms of congenital 
heart defects [29]. However, our patient does not present any 
of these alterations.

TTN

The TTN gene encodes a large and abundant protein found in 
striated muscle. This protein is divided into two regions: the 
N-terminal I-band, which is the elastic part, and the C-terminal 
A-band that acts as a regulatory protein. The N-terminal region 
of the Z-disk and the C-terminal region of the M-line bind to 
the Z-line and the M-line of the sarcomere, respectively. Ad-
ditionally, TTN contains binding sites for muscle-associated 
proteins, contributing to the assembly of the contractile ma-
chinery in muscle cells [30].

TTN variants are the leading cause of dilated and familial 
hypertrophic cardiomyopathies and have also been associated 
with an increased risk of ventricular arrhythmias [31]. Howev-
er, it is important to highlight that our patient does not present 
any of these cardiomyopathies.

GCKR

The heterozygous mutation p.(Val103Met) of the glucokinase 
regulatory gene (GCKR) is another variant found in this study 
as likely pathogenic. The GCKR gene encodes the glucokinase 
regulatory protein (GCK), which acts as a glucose regulator in 
hepatocytes and β cells of the pancreas [32, 33].

According to a kinetic assay characterization of the 
p.Val103Met variant, it was classified as a severe loss-of-func-
tion variant due to its ability to inhibit GCK protein activity 
[32]. This mutation, p.Val103Met, was found in non-Hispanic 
individuals of mixed European ancestry, according to the study 
by Rees et al (2012). While some research describes the as-
sociation of GCK function with coronary artery disease and 
ischemic stroke [34], there is no evidence of an association 
with arrhythmias in the literature.

Protein-protein interaction network

The protein-protein interaction network of physical protein 
interactions and biological processes can provide valuable in-
formation about the relationship with arrhythmia processes. 

For instance, the actin filament-based biological process, as 
shown in Figure 2, has been described by Camors et al (2022). 
The authors mention that changes in actin protein expression 
are related to the progressive reduction of the right ventricu-
lar contraction and development of arrhythmias in a premature 
phase of arrhythmogenic cardiomyopathy [35].

In some genetic cardiomyopathies, clinical variability is 
observed even among patients with similar genotypes, ranging 
from asymptomatic cases to heart failure. This heterogeneity 
suggests that other factors play a significant role in modifying 
the clinical phenotype, potentially influencing disease poten-
tiation or protection. These factors include modulatory genes, 
polymorphism, other unknown genes, as well as environmen-
tal and endogenous factors (age, sex, physical exercise, drugs, 
hormones, viral infections, and emotional stress) [36].

Furthermore, studies suggest that the combination of ge-
netic variants and the additive effect of mutations in different 
genes could potentially trigger a more aggressive phenotype in 
the context of cardiac arrhythmias [37].

Conclusion

SCD is often caused by cardiac disorders that can remain 
asymptomatic and difficult to diagnose. Genomic screening is 
a valuable tool that could reveal pathogenic, likely pathogenic, 
and VUS genetic variants related to a phenotype. The genetic 
variants identified in the Ecuadorian individual, particularly in 
the MYPN, GCKR, TTN, SCN5A, MYO6, and ELN genes, may 
be related to cardiac diseases that could be associated with pri-
mary VF and SCD. It is also possible that the genetic variants 
found could have an additive effect on the development of ar-
rhythmia diseases.

Therefore, the identification of these variants could sig-
nificantly contribute to the comprehension of the genetic basis 
of arrhythmias and, by extension, SCD. In addition, it would 
be important to expand the study to encompass other individu-
als afflicted with the same cardiac condition, to ascertain any 
potential association with the genetic variants examined in this 
research article.

Supplementary Material

Suppl 1. Genes and phenotypes associated of the arrhythmia 
and TruSight™ Cardio sequencing panels.
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