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Simple Summary: We presented a machine learning approach for accurate quantification of nuclear
morphometrics and differential diagnosis of primary intestinal T-cell lymphomas. The human
interpretable machine learning approach can be easily applied to other lymphomas and potentially
even broader disease categories. This approach not only brings deeper insights into lymphoma
phenotypes, but also paves the way for future discoveries concerning their relationship with disease
classification and outcome.

Abstract: The aim of this study was to investigate the feasibility of using machine learning tech-
niques based on morphological features in classifying two subtypes of primary intestinal T-cell
lymphomas (PITLs) defined according to the WHO criteria: monomorphic epitheliotropic intestinal
T-cell lymphoma (MEITL) versus intestinal T-cell lymphoma, not otherwise specified (ITCL-NOS),
which is considered a major challenge for pathological diagnosis. A total of 40 histopathological
whole-slide images (WSIs) from 40 surgically resected PITL cases were used as the dataset for model
training and testing. A deep neural network was trained to detect and segment the nuclei of lympho-
cytes. Quantitative nuclear morphometrics were further computed from these predicted contours. A
decision-tree-based machine learning algorithm, XGBoost, was then trained to classify PITL cases
into two disease subtypes using these nuclear morphometric features. The deep neural network
achieved an average precision of 0.881 in the cell segmentation work. In terms of classifying MEITL
versus ITCL-NOS, the XGBoost model achieved an area under receiver operating characteristic curve
(AUC) of 0.966. Our research demonstrated an accurate, human-interpretable approach to using
machine learning algorithms for reducing the high dimensionality of image features and classify-
ing T cell lymphomas that present challenges in morphologic diagnosis. The quantitative nuclear
morphometric features may lead to further discoveries concerning the relationship between cellular
phenotype and disease status.

Keywords: artificial intelligence; digital pathology; quantitative morphology; primary intestinal T-
cell lymphoma; convolutional neural network; human-interpretable AI; monomorphic epitheliotropic
intestinal T-cell lymphoma; peripheral T-cell lymphoma; not otherwise specified

1. Introduction

Primary intestinal T-cell lymphomas (PITLs) are rare and therefore pose a challenge
for diagnosis. According to the 2017 World Health Organization (WHO) classification
of lymphoid neoplasms, PITLs include enteropathy-associated T-cell lymphoma (EATL),
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monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), intestinal T-cell lym-
phoma, not otherwise specified (ITCL-NOS), and indolent T-cell lymphoproliferative
disorder of the gastrointestinal tract [1]. EATL, previously designated type I EATL, is celiac
disease-associated, with a specific genetic predisposition and pathological features (en-
teropathy, large tumor cells frequently expressing CD30), which is not a diagnostic problem
in specific clinical settings [1]. MEITL, previously called type II EATL, is characterized by
monomorphic small- to medium-sized tumor cells with an epitheliotropic growth pattern
and the expression of CD8, CD56, and cytotoxic markers [2–4]. ITCL-NOS is a diagnosis of
exclusion and comprises a heterogeneous group of PTCLs that do not meet the diagnostic
criteria for any of the specific types of PITL [1,5]. The neoplastic cells of ITCL-NOS are
usually medium to large-sized and pleomorphic, with a cytotoxic phenotype [6]. Due to
the inconsistency between phenotypic and morphological features of PITLs, it might not
be easy to make a straightforward distinction between MEITL and ITCL-NOS in some
cases. For example, there are cases showing a METIL immunophenotype but with a more
pleomorphic nuclear feature or cases showing a MEITL cellular morphology but with an
atypical immunophenotype. These cases with an inconsistency between the immunophe-
notype and the cellular morphology patterns were regarded as borderline in the study. In
practice, a major challenge for pathological diagnosis is the distinction between MEITL
and ITCL-NOS, as the major diagnostic criterion relies on morphological evaluation.

The traditional diagnostic approach relying on morphological evaluation may be
subjective, with relatively low consistency among pathologists, particularly reflected in the
evaluation of megakaryocytic atypia in myelodysplastic/myeloproliferative neoplasms.
Recently, emerging technologies such as deep neural networks, especially the convolutional
neural network (CNN) technique, demonstrate superior performance for classification,
segmentation, and detection tasks in digital pathology image analysis [7]. For example,
Banaeeyan et al. [8] proposed a deep-learning-based semantic segmentation algorithm to
identify tumor budding on H&E-stained whole-slide images (WSIs) of colorectal cancer.
Similarly, Nateghi et al. [9] proposed a deep-learning-based approach for the detection
of mitoses on WSIs of breast cancers and achieved a superior performance than all other
previous approaches. Despite its success in various pathology image recognition tasks, we
reasoned that an end-to-end approach, i.e., training CNN to directly classify lymphomas,
offers only very limited help to physicians. Instead, using CNN’s superior image recogni-
tion ability to generate human interpretable features, such as nuclear morphometrics, may
not only reduce the high dimensionality of image features [10–12] but also deepen physi-
cians’ understanding of the diseases, which would then lead to more precise diagnosis.
Nuclear segmentation is critical in digital pathology and enables the extraction of cellular
morphometric features for quantitative analysis. Once nuclei are segmented precisely, cell
morphometric features such as size, smoothness, intensity entropy, and pleomorphism can
be easily derived, not only to assess the disease grades but also to quantify morphological
indexes into spectrums for disease differentiation and severity classification [13–16].

The aim of this study was to investigate the feasibility of using machine learning (ML)
techniques based on quantitative cell morphometric information to classify histopathology
images between the two subtypes of PITLs, namely, MEITL versus ITCL-NOS. Firstly, a
deep-learning-based algorithm was applied to segment lymphocytes, followed by the com-
putation of cell morphometrics. Then, XGBoost, a decision-tree-based machine learning
algorithm, was trained to classify PITL cases based on the computed nuclear morpho-
metrics [17]. Our results demonstrate that: (1) deep learning algorithms could accurately
segment nuclear boundaries, and the morphometric features could be quantified; (2) there
were significant differences in quantitative morphological features between the neoplastic
cells of MEITL and ITCL-NOS; (3) The XGBoost model based on the extracted morphologi-
cal profile showed a superior performance to CNN applied directly to images in classifying
MEITL from ITCL-NOS, and achieved an area under receiver operating characteristic curve
(AUC) of 0.966.
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2. Materials and Methods
2.1. Patient Samples

A total of 40 PITL patients, including MEITL (n = 26), ITCL-NOS (n = 10), and
borderline cases (n = 4), were collected from 17 hospitals in Taiwan. All 40 specimens were
surgical specimens and their diagnoses were made by a senior hematopathologist (SSC)
based on the 2017 WHO criteria [1]. They were all PITL cases, as confirmed by staging
workups. All cases were negative for Epstein–Barr virus (EBV) as assessed by in situ
hybridization for EBV-encoded small RNA (EBER). Some cases had been included in our
previous study on the significance of EBV in PITL [6]. All four cases (no. T02, T13, T18 and
T20) examined for serum anti-tissue transglutaminase by ELISA were negative [6]. The
major clinicopathological findings of the four borderline cases are summarized in Table 1.
Phenotypically, they were all consistent with MEITL with the expression of CD8, CD56,
and cytotoxic markers; however, the tumor cells were larger than that would be expected
in typical MEITL cases. The study was approved by the Institutional Review Board at
Chi-Mei Medical Center (approval no. 10612-010).

Table 1. Clinicopathological features of the four borderline cases.

Case no./Sex/Age T05A/Male/49 T31/Female/49 T60/Male/64 T63/Male/56

Tumor site Ileum Ileum Jejunum and ileum Ileum

Perforation Present Present Present Present

Cell size Medium to large Medium to large Large Medium to large

Morphology (mono vs. pleomorphic) Pleomorphic Pleomorphic Mildly pleomorphic Pleomorphic

CD8 + + + +

CD30 - - - -

CD56 + + + +

TIA-1 - + + +

Granzyme B + + - +

Lugano stage * Stage IE Stage IE Stage IE Stage IV

Follow-up (month) DOD (34) DOD (2) DOD (6.5) DOD (5.8)

Abbreviation: DOD, died of disease. * Stage IE: single extra-lymphatic site in the absence of nodal involvement.

2.2. Dataset Preparation

For each patient, one hematoxylin-and-eosin-stained section was scanned and digital-
ized to create a total of 40 WSIs with an average size of 175,274 × 407,126 pixels. To avoid
image areas of inferior quality (due to conditions such as out-of-focus scanning, tissue
folding, and bubbles), the slides were reviewed by a senior hematopathologist (S.S.C.), who
manually selected the most representative and high-quality area in each slide before scan-
ning (a representative circled area as shown in Figure 1A). The sections were scanned
using the Pannoramic 250 Flash digital slide scanner (3DHISTECH, Hungary) using
40× objective. For each marked area, 33 regions of interest (ROI, size = 115 µm × 115 µm)
randomly sampled from 19 cases were extracted for the development of the lymphocyte
detection model, whereas 10 high-power fields (HPF, size = 346 µm × 346 µm) from each
case were randomly selected (green boxes in Figure 1A) for the development of nuclear
morphometric feature exaction and the lymphoma classification model.

For the lymphocyte detection model, a full dataset of 33 ROIs were split into the train-
ing, validation, and testing sets at a ratio of 8:1:1. ROIs used as testing sets were contained
in WSIs independent from those that contained training and validation ROIs. Within each
ROI, the contours of lymphocytes were manually annotated by two pathologists (C.H.L.
and S.S.C.). For the development of the disease classification model, a total of 400 HPFs
were used as the dataset. A 3-fold cross-validation was employed to train and evaluate the
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model such that the images from an individual patient would only appear in either the
training or validation set. The four borderline cases were excluded from both the training
and testing sets and were used only as references. The classification model was tested at
the case level. The recruited cases and the disposition of training and validation sets under
different phases are summarized in Table 2.
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in red line. 
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Figure 1. Sample images used as the dataset. (A) An example of the whole-slide image. A high-quality region was manually
marked by a senior hematopathologist using a black circle. The tiny green boxes represent the randomly sampled high-
power fields (HPF). (B) Representative HPF images of the neoplastic lymphocytes from MEITL (left), borderline (middle),
and ITCL-NOS (right) cases. The neoplastic lymphocytes detected and segmented by the model are contoured in red line.

Table 2. Dataset used at each phase of machine learning model.

Lymphocyte Detection
Model Feature Extraction T Cell Lymphoma Classification Model

(XGBoost and CNN)

No. of cases (WSIs) 18 40 40

MEITL 14 26 26

ITCL-NOS 3 10 10

Borderline 1 4 4

No. of ROIs 33 400 400

ROI size 768 × 768 pixels 2304 × 2304 pixels (HPF) 2304 × 2304 pixels (HPF)

Data level ROI-level HPF-level HPF-level

Data set 33 ROIs 400 HPFs
(28 features per HPF)

36 cases (360 HPFs)
4 borderline cases were excluded

Training set 27 ROIs

- 3-fold cross-validationValidation set 3 ROIs

Testing set 3 ROIs

Abbreviations: HPF: high-power field; ROI: region of interest.
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2.3. Lymphocyte Detection Model

To segment the neoplastic lymphocytes, an instance segmentation model was trained
by employing a region-based CNN model—the hybrid task cascade regional proposal
convolutional network (HTC-RCNN) [18] with ResNet50 [19] as the backbone. The HTC-
RCNN model was trained using the stochastic gradient descent (SGD) optimizer, at a
learning rate of 0.001, and a batch size of 16 on a single NVIDIA V100 GPU. The perfor-
mance of the detection model was evaluated using average precision (AP). To compute
AP, each detected box was first matched to the ground truth to evaluate whether the
intersection-over-union (IoU) was over a threshold of 0.5. Subsequently, precision scores
were estimated under different recall thresholds ranging from 0 to 1, and AP was computed
by summing the area under the precision-and-recall curve.

2.4. Computation of Nuclear Morphometrics

The trained lymphocyte detection model was applied to the 400 HPFs to segment
lymphocytes. For quantitative analysis of nuclear morphology, seven numerical attributes
were calculated for each segmented nucleus of lymphocyte (Table 3). For each HPF, four
moment statistics including mean, variance, skewness, and kurtosis were computed for
the whole cellular population within an HPF. Thus, the nuclear morphology of each HPF
was characterized by 28 features. The throughput of our morphology extraction module
was estimated, and it required an average of 2.22 ± 0.42 s (range: 0.91 to 3.13 s) to process
each HPF, which could be applicable for clinical practice. At the case level, the extracted
features were further aggregated by averaging feature scores across HPFs for each case no.
to form a feature set (feature matrix). The feature set was used in a decision-tree-based
machine learning algorithm (XGBoost) for disease type classification at the case level.

Table 3. Definition of attributes in cellular morphometrics.

Attributes Definition

Ratio of axis length The ratio of the longest axis and the second-longest axis

Circularity Ratio of overlapping pixels between the concentric circle and size of the cell

Entropy Measure of the randomness of pixels in the cell

Area Total numbers of pixels within the boundary of the cell.

Irregularity Variance of length from the center of cell to each vertex of the boundary

Perimeter Estimated total numbers of pixels along the cell boundary

Orientation Cell orientation of the longest axis

2.5. T-cell Lymphoma Classification Model

We used extreme gradient boosting (XGBoost), a tree-based machine learning ap-
proach, to select important features for modeling case-level classification. For the machine
learning algorithm, the weight by Gini was applied as the feature selection method it-
eratively to alleviate the effect of redundant features and to minimize the loss of binary
cross-entropy, while random search was employed as the hyper-parameter optimization
approach. Two XGBoost models were employed, taking different input sets: (1) only
morphological features (28 feature scores per subject) were used as inputs; (2) both mor-
phological features and immunohistochemical (IHC) phenotypes (i.e., either positive or
negative for the expression of CD8 and CD56) were used as inputs. A binary classifier was
trained to classify each HPF into two types of PITLs, either MEITL or ITCL-NOS, based on
the selected features.

To compare the model performance of the XGBoost approach versus the CNN ap-
proach, a CNN with ResNet50 backbone was also trained by applying the AdamW opti-
mizer, at a learning rate of 0.001, with a batch size of 16 using an Nvidia Quadro RTX 8000.
To prevent the loss of the model in local minima due to limited number of training images,
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the AdamW optimizer is preferable to the SGD in the current study. The data augmen-
tation technique was applied during the training phase to increase data variability. The
applied augmentation methods in this study included random horizontal/vertical flipping,
random translation, random rotation, random scaling, random color jittering in bright-
ness/contrast/saturation/hue, random Gaussian blurring, and random cropping. An
early-stopping technique was employed to stop training processing when validation loss
did not improve for 10 epochs. The CNN took an image of HPF as the input and predicted
the disease type of the image based on its case-level outcome. For the testing phase, the
case-level prediction for disease type was based on the classification decisions (outcome
probabilities) averaged from the 10 HPFs of each case. The classification performance of
different models was evaluated using the area under the receiver-operating curve (AUC)
with a 3-fold cross-validation, where each fold is split at the case level. Finally, Delong’s
test was employed to compare AUCs between models with a two-tailed hypothesis testing
at the significance level of 0.05.

In addition to the case-level prediction, the feature importance of the XGBoost was
evaluated using “gain”, which implies how informative the features are when used to split
the data across all trees. Higher “gain” indicates a greater contribution of the corresponding
feature to the model.

2.6. Modeling for Diagnostic Prediction from the Feature Profile

A general linear model (GLM) was employed to better understand the effects of
different morphological features on diagnostic decisions. A repeated measurement method
was used to control the within-subject variations. Given the fact that the cells sampled
from a single HPF might not be fully representative of each case, 10 HPFs were randomly
sampled and used to estimate the error variance sourced from HPF sampling. The effects
of the morphological feature scores on the prediction of the diagnosis can be formulated as
follows: Yij = µ + αj + πi + εij, where Yij (dependent variable) denotes the morphological
feature score; µ, the population mean of the feature; αj, the group mean score sourced from
disease type j; πi, the mean score of Casei; and εij, the residual error for the observation.
The four borderline cases were not included in the statistical analysis.

The descriptive statistics of the 28 aggregate morphological feature measurements of
two lymphoma types (METIL vs. ITCL-NOS) and the F-test were conducted to test the
differences of each feature score between two disease subtypes.

3. Results
3.1. The Lymphoma Nucleus Detection Model Shows High Sensitivity along with High Positive
Predictive Value

An average of 892.18 ± 254.80 nuclei (range: 331 to 1502) were detected in each HPF.
The lymphoma nucleus detection model achieved an average precision of 0.943 and 0.881
on segmenting lymphoma nuclei for the validation set and the testing set, respectively. For
the testing set, our model achieved a precision (positive predictive value) of 0.911 with a recall
(sensitivity) of 0.868. Representative examples of boundary-segmented lymphoma nuclei
with monomorphic, pleomorphic, and borderline morphology were depicted in Figure 1B.

3.2. The T-Cell Lymphoma Classification Model Discriminated MEITL and ITCL-NOS Cases and
Showed Higher Accuracy Than the CNN

The classification performance of two XGBoost models using morphological feature
measurements with or without IHC phenotypes as inputs on discriminating the two types
of PITLs was evaluated by using AUC. As depicted in Figure 2A, the XGBoost model using
only morphological feature measurements achieved an AUC of 0.966 (95% CI: 0.949–0.984),
while the XGBoost model using both morphological feature measurements and IHC phe-
notypes as inputs achieved an AUC of 0.955 (95% CI: 0.935–0.975), indicating no significant
difference in the discriminative power by adding the IHC phenotype as a model input
(p-value = 0.412), as assessed by Delong’s test. In comparison, the deep CNN directly trained
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using HPFs as image inputs achieved an AUC of 0.820 (0.734–0.906), which was significantly
inferior to the XGBoost method (without IHC, p < 0.01; with IHC, p < 0.01; Table 4).
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Figure 2. Accuracy and feature analysis. (A) Classification accuracy (AUC) of different models. The XGBoost model using
only morphological feature measurements (XGB, w/o IHC) achieved an AUC of 0.966 (95% CI: 0.949–0.984), while the
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Table 4. Comparison of model performance based on the case-level prediction.

Model Model
Comparison

XGB-1
(Morphology-only)

XGB-2
(Morphology + IHC) CNN

AUC 0.966 0.955 0.820

95% CI 0.949–0.984 0.935–0.975 0.734–0.906

p-value (Delong’s Test)

XGB-1 VS. XGB-2 0.166

XGB-1 VS. CNN 0.003 *

XGB-2 VS. CNN 0.001 *

Note: Model XGB-1: Only morphological features (28 feature scores per subject) were used as inputs; Model XGB-2: Both morphological
features and immunohistochemical (IHC) phenotypes. * p < 0.05.

As shown in Figure 3, there was a high concordance between the XGBoost model
and the diagnoses by the senior hematopathologist except for case nos. T02, T20, and T70.
Case no. T20 was diagnosed as ITCL-NOS by the hematopathologist but was predicted as
MEITL by the XGBoost model; while both cases no. T02 and T70 were diagnosed as MEITL
but predicted to more likely be ITCL-NOS by the model.
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cases (case no. T31, T63, T05A, and T60) and a wrongly predicted case (case no. T20, predicted as MEITL but actually
ITCL-NOS) are shown in the lower panels.

3.3. The Importance of Features Obtained from the XGBoost Model Can Be Ranked

As illustrated in Figure 2B, the most important morphological features selected based
on the “gain” derived from the XGBoost model included the variance in perimeter, the
variance in nuclear area, and the mean of nuclear irregularity. When the IHC phenotype
was used as an input in the XGBoost model, both CD56 and CD8 expression status ranked
higher than most of the other morphological features, except for the variance in perimeter,
indicating that the variance in perimeter contributed the most to the classification decisions.

3.4. Feature Analysis Using the GLM Enabled Explicit Interpretation of the
Morphological Features

Cell contour delineated by the detection model enabled the quantitative comparison of
the morphological profiles between the two disease subtypes. The 28 morphological feature
scores computed for each case are presented in Table 5. These features were used to conduct
statistical analysis using GLM. Among all the detected cells, the average cell size was
41.72 ± 9.00 µm2; the axis ratio, 1.29 ± 0.06; the perimeter, 24.32 ± 2.66 µm; the irregularity,
1.15 ± 0.40; the circularity, 0.75 ± 0.03; and the entropy, 5.85 ± 0.10, respectively.
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Table 5. Characteristics of the computed cellular morphometrics between cases of MEITL and ITCL-NOS. (* p < 0.05).

Disease Type F-Test

Overall MEITL ITCL-NOS
F-Statistics p-Value

No. Attributes Moments
(Mean ± SD) N = 36 N = 26 N = 10

1 Ratio of axis length

Mean 1.29 ± 0.06 1.27 ± 0.03 1.34 ± 0.06 11.53 <0.001 *

Variance 0.04 ± 0.02 0.04 ± 0.01 0.06 ± 0.02 13.51 <0.001 *

Skewness 1.52 ± 0.35 1.59 ± 0.22 1.48 ± 0.34 1.01 0.374

Kurtosis 6.79 ± 2.80 7.18 ± 1.51 6.78 ± 2.50 0.6 0.557

2 Circularity

Mean 0.75 ± 0.03 0.76 ± 0.02 0.72 ± 0.03 10.25 <0.001 *

Variance 0.01 ± 0.00 0.008 ± 0.001 0.010 ± 0.002 14.95 <0.001 *

Skewness −0.75 ± 0.26 −0.83 ± 0.19 −0.61 ± 0.27 3.64 0.037*

Kurtosis 3.57 ± 0.70 3.68 ± 0.49 3.21 ± 0.69 2.86 0.071

3 Entropy

Mean 5.85 ± 0.10 5.86 ± 0.09 5.84 ± 0.10 0.31 0.734

Variance 0.07 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 4.24 0.023

Skewness −0.19 ± 0.14 −0.20 ± 0.09 −0.21 ± 0.10 2.84 0.072

Kurtosis 3.39 ± 0.38 3.40 ± 0.22 3.38 ± 0.17 0.02 0.976

4 Nuclear area

Mean 41.72 ± 9.00 38.13 ± 7.25 45.84 ± 6.93 11.63 <0.001 *

Variance 234.16 ± 155.71 157.74 ± 70.25 362.70 ± 118.91 24.09 <0.001 *

Skewness 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 2.27 0.119

Kurtosis 0.14 ± 0.07 0.16 ± 0.07 0.12 ± 0.02 4.32 0.021 *

5 Irregularity

Mean 1.15 ± 0.40 0.94 ± 0.22 1.55 ± 0.30 22.18 <0.001 *

Variance 1.75 ± 1.06 1.22 ± 0.40 2.87 ± 0.94 23.87 <0.001 *

Skewness 0.45 ± 0.12 0.50 ± 0.08 0.40 ± 0.07 8.67 0.001 *

Kurtosis 2.63 ± 1.57 3.16 ± 0.97 2.32 ± 1.00 7.14 0.003 *

6 Perimeter

Mean 24.32 ± 2.66 23.26 ± 2.23 25.64 ± 1.90 11 <0.001 *

Variance 20.32 ± 9.91 15.33 ± 4.80 30.40 ± 6.42 25.97 <0.001 *

Skewness 0.09 ± 0.07 0.11 ± 0.06 0.08 ± 0.03 3.35 0.047 *

Kurtosis 0.66 ± 0.24 0.74 ± 0.19 0.55 ± 0.07 7.03 0.003 *

7 Orientation

Mean 1.55 ± 0.13 1.54 ± 0.12 1.57 ± 0.14 0.52 0.599

Variance 0.71 ± 0.15 0.72 ± 0.14 0.69 ± 0.16 0.14 0.870

Skewness 0.001 ± 0.004 0.0009 ± 0.07 −0.0002 ± 0.04 0.50 0.610

Kurtosis 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.62 0.543

The F-statistic derived from GLM was employed to access the significance of variance
between the means of the two disease subtypes among morphological features measure-
ments. Generally, the F-test estimates if the two effects are sourced from the same popula-
tion. A two-tailed null hypothesis was employed to examine the significance. The results
reveal statistically significant differences in several morphological feature measurements
between the two disease subtypes. For differentiating MEITL and ITCL-NOS, five out of
seven measurements in variance were significant (p < 0.01) and five of seven measurements
in mean were significant. Only irregularity and perimeter showed a significant difference
in both measurements in skewness and kurtosis. The orientation of cells in the local region
showed no statistical significance in differentiating these two diseases. Features associ-
ated with the size of cells, including the perimeter and the area, showed a stronger effect
(p < 0.001) for measurement in the variance than in the mean.
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As illustrated in Figure 4B, the two different disease subtypes can be visually separated
by plotting the variance in nuclear perimeter versus the variance in nuclear irregularity.
The borderline cases (green dots) that could be hardly distinguishable were also shown in
Figure 3B. For MEITL cases, the variance in perimeter and the variance in irregularity were
smaller and showed a linear correlation; on the contrary, the ITCL-NOS cases showed a
higher variance in irregularity or perimeter.
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shown in the upper-right corner of the scatter plot; atypical cases (e.g., case no. T02 and T69) are located in the middle of the
scatter plot.

3.5. The Model Produced a 1:1 Ratio Prediction for the Four Borderline Cases

The clinicopathological findings and the model prediction results of the four bor-
derline cases as diagnosed by the senior hematopathologist are presented in Figure 3B.
Phenotypically, they were all consistent with MEITL, with neoplastic cells expressing CD8,
CD56, and cytotoxic markers; however, the tumor cells were larger than would be expected
in typical cases of MEITL. Based on the model prediction, two cases (case nos. T31 and
T63) were predicted as MEITL; while the other two cases (T05A and T60) were predicted
as ITCL-NOS.

4. Discussion

Due to the rarity of PITL, differentiating MEITL from ITCL-NOS is challenging for
pathologists, and the distinction relies on the experience of the pathologists in evaluating
histopathological features, particularly monomorphic versus pleomorphic tumor cells,
in conjunction with immunophenotype; nevertheless, the morphologic classification by
pathologists could be subjective. In the current study, we collected PITL cases from
17 hospitals in Taiwan and demonstrated a successful workflow that could detect and
segment lymphoma nuclei accurately using a CNN model, followed by knowledge-based
morphological feature extraction for quantitative analysis and classification of PITL using
an XGBoost model.

Previous studies have shown that analyzing cellular properties such as nuclear size
and the homogeneity of the cell population can be clinically useful for differentiating
different groups of cells and for predicting prognosis. For example, Maqlin et al. [15] and
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Faridi et al. [14] applied boundary-based and region-growing methods to segment cells
for extracting morphological features such as nuclear size, solidity, and eccentricity to
grade pleomorphism scores of WSIs of breast cancer cases, and achieved an accuracy of
89.4% and 86.6%, respectively. Similarly, Moran et al. [16] employed the cell detection
module in QuPath [20], an open-source image analysis toolbox for digital pathology,
to extract the morphological features of Markel cell carcinoma (MCC) and found that
nuclear area and circularity were crucial factors for the prognosis of MCC. To date, many
critical findings have been achieved by analyzing morphological features using traditional
image-processing methods with handy packages such as QuPath and ImageJ; however,
the selection of parameters such as background radius, nucleus radius, or local intensity
threshold require careful adjustment when processing each single image. As most image-
processing methods adopt the same hyper-parameter set to segment cells, it may fail in
some challenging cases, including: (1) image with crowded cells, (2) cells with inconsistent
shape or size in a local area, and (3) cells with hyperchromatic or vesicular nucleus [21].

The state-of-the-art deep-learning-based segmentation models have achieved excellent
performance in nuclear segmentation [22,23]. As illustrated in Figure 5, QuPath with the
default setting can segment the cell boundary successfully in most cases; however, fragile
contours and false positives occurred frequently when cells were crowded, vesicular,
or with atypical chromatin patterns. In comparison, our deep-neural-network-based
algorithm showed a robust segmentation result with less fragile contours. Notably, nuclei
of other types of cells, such as vascular endothelial cells, may fail to be distinguished from
lymphocytes because only lymphocytes were labelled to train the detection model in the
current study. Falsely included non-lymphoid cells may slightly distort the estimation of
morphological features. The inclusion of various types of annotated cells are expected to
improve the algorithm. Still, using CNNs to segment cells precisely, requiring no tedious
parameter adjustment across different fields of view, could enable pathologists to analyze
nuclear morphology without manual region selection and can be applied to WSIs efficiently.

In accordance with the aforementioned studies using nuclear morphometrics for clas-
sifying cells into benign versus malignant [24–26] or presence versus absence of Merkel
cell polyoma virus in MCC [27], the current study demonstrated that nuclear morpholog-
ical patterns made a significant contribution in differentiating MEITL from ITCL-NOS.
Specifically, the variance in perimeter and irregularity were two of the most critical features
to separate MEITL and PICL-NOS into different clusters. As illustrated in Figure 4B, the
shape of lymphocytes in a typical MEITL case (case no. T48) was apparently round and
regular, while that in a typical ITCL-NOS case (case no. T45A) was pleomorphic. For
atypical cases, such as case nos. T02 and T69 (Figure 4B), it was difficult to classify them
into either MEITL or ITCL-NOS according to the appearance of nuclei (in the middle of
both slides) by human eyes. Using our algorithm-derived morphological indexes and
classification scheme, the four borderline cases as judged by the experienced hematologists
(typical immunophenotype but with more pleomorphic nuclei than typical MEIL cases)
were classified either as MEITL (case nos. T31 and T63) or ITCL-NOS (nos. T05 and T60),
indicating limitations from both manual and AI-assisted histopathological evaluation when
it comes to making a clear-cut diagnosis. Alternatively, the degree of “monomorphism”
might not be as strict as the name of MEITL implies, suggesting that there might be a
certain degree of nuclear pleomorphism in cases currently defined as MEITL. The nature of
such borderline cases in our series may potentially be revealed by their underlying genetic
features, which we have been currently investigating.

Immunophenotypically, Weisenburger et al. [28] reported that 19% and 6% of ITCL-
NOS cases expressed CD8 and CD56, respectively, indicating a phenotypic overlap between
MEITL and ITCL-NOS. Our algorithm could classify PITL cases into either MEITL or
ITCL-NOS based on the morphological indexes; however, the relationship between these
indexes and disease prognosis remains unclear. Further studies are needed to explore the
relationship between morphological features and patient outcomes with these rare tumors.
For differentiating MEITL and ITCL-NOS, immunophenotypic features were found to
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bring no additional benefits for classification performance to the tree-based models on top
of morphological features in our models.
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Figure 5. Comparison of contour segmentation results with the QuPath cell detection module. The first row represents
the original image. For the QuPath cell detection module (the second row), default parameters were employed, except the
nucleus sigma (radius of the nuclei) was set to 3 µm due to the pixel-to-µm ratio. Fragile contours (FC) and false positives
(FP) occurred frequently in QuPath. Our lymphocyte detection model (the third row) showed fewer FC and FP but more
false negatives (FN) at a score threshold of 0.2, along with an IoU threshold of 0.5, which might be due to the low confidence
of the segmented contours.

Using CNNs as an end-to-end solution to estimate clinical quantification indexes,
such as nuclear atypia score [7,13], has become popular in recent years. In this study, the
CNN model trained by images directly was capable of differentiating these two types of
PITLs (AUC = 0.82); however, the classification performance was significantly inferior to
the tree-based models (p < 0.01) using quantitative nuclear morphometric features as input.
Previous studies have shown that CNNs can achieve over 95% AUC in the classification
of lymphomas, for instance, the diffuse large B-cell lymphoma [29] and the follicular
lymphoma (FL) [30]. In these studies, the researchers utilized architectural patterns rather
than cellular details for analysis. For instance, in our previous study, we found that
the duodenal FL had a higher density of follicles and larger follicle size as compared
with the reactive lymphoid hyperplasia [31]. In the current study, the growth patterns of
PITL, either MEITL or ITCL-NOS, was diffuse and we could not use growth pattern for
differential diagnosis. Instead, we needed to extract morphological features of the single
tumor nucleus for second-order statistical analysis. Notably, CNNs are known to achieve
an inferior performance when there are insufficient training data, whereas XGBoost models
with expert-defined features could achieve a satisfactory performance with limited data,
because this prevents models overfitted to the ultra-high dimensionality of image features.
Incorporating more cases might improve the classification performance of the CNN model.
The explainability of CNNs remains a debatable but valuable research topic in the future,
especially in medical image analysis. In contrast, models based on accurately segmented-
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then-extracted handcrafted features could be used as clinical indexes for prediction, given
that the weights of each extracted feature parameter can be estimated and understood
by pathologists. The weighting of extracted features makes it easier for pathologists to
associate their diagnostic experiences with digital findings, and thus, the algorithm may
offer the possibility of a reliable computer-aided system for routine diagnostic practice.

While most quantitative indexes, such as mitoses, tumor budding, and the Ki67 in-
dex, require pathologists to follow a complex visual scoring protocol to execute laborious
counting, using ML algorithms to accomplish an automated scoring is ideal given that
a computer algorithm can provide a consistent and objective result efficiently. Previous
studies have demonstrated that an ML algorithm is able to achieve comparable quantifi-
cation results with manual examination by pathologists in a variety of tasks, including
cell counting and IHC scoring [32]. In this study, cellular morphology was quantified,
and the results show that several extracted morphological indexes, including nuclear size,
nuclear circularity, and irregularity, were found to be important morphological features
and showed a significant contribution in regression models for differentiating MEITL from
ITCL-NOS. These findings are in line with previous findings showing correlations between
morphological indexes and the severity of diseases. With the aid of AI, such morphological
evaluation and counting tasks can be easily accomplished on a larger scale, which is beyond
most of the current visual scoring protocols using limited numbers of cells for the score
index, after selecting the representative fields.

In the context of clinical practice, pathologists may incorporate the AI-derived results
with immunophenotypic findings for diagnosis, particularly for morphologically borderline
cases as shown in our current study. In computational pathology, the ML algorithm may
be applied to other indications; for example, to differentiate classic versus pleomorphic
cytomorphological variants among mantle-cell lymphomas or to classify low- versus high-
grade follicular lymphoma. Therefore, our workflow might be applicable to various tumor
types for morphological evaluations.

5. Conclusions

In conclusion, this study used ML techniques based on quantitative cell morphometric
information for classifying histopathological images of PITLs into two subtypes, either
MEITL or ITCL-NOS. The classification performance of the XGBoost model was superior to
the end-to-end CNN model and could elucidate explicit relationships between predictions
and morphological features. Furthermore, it achieved a comparable result to that of the
incorporation of immunophenotype and to that of the senior hematopathologist. Our
model may hold great potential to improve diagnostic consistency, efficiency, and accuracy
for other types of cancers.
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