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Abstract

The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It
is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic
polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and
rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and
R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/
group A NTS-DBL1a1 PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these
three recombinant NTS-DBL1a1 domains, we elicited antibodies in mice that were used to develop monovariant cultures by
panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and
virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group
B/C PFL1955w NTS-DBL1a. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red
cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity
assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by
humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence
exceeded 90% for each rosetting line, the kinetics of acquistion of surface-reactive antibodies differed in the younger age
groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup,
consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important
information for vaccine design, as production of a vaccine targeting rosetting PfEMP1 adhesins will require engineering to
induce variant-transcending responses or combining multiple serotypes to elicit a broad spectrum of immunity.
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Introduction

In sub-Saharan Africa, the main burden of Plasmodium falciparum

malarial disease affects children and adolescents, while older

subjects usually experience asymptomatic infections. This is

thought to reflect the gradual acquisition of immunity by

cumulated exposure to successive episodes of malaria caused by

diverse parasite strains [1] and antigenic variants [2,3]. A major

contributor to parasite diversity is the Plasmodium falciparum

erythrocyte membrane protein 1 (PfEMP1) variant adhesin that

the parasite inserts into the membrane of the erythrocyte in which

it develops. Surface expression of PfEMP1 bestows on the infected

red blood cell (iRBC) the capacity to cytoadhere to host cells [4], a

characteristic of this Plasmodium species and considered as an

important contributor to falciparum pathology. PfEMP1 is encoded

by a family of ,60 var genes, each of which codes for a protein

displaying specific binding and serologic characteristics. Successive

expression of distinct var genes by clonal antigenic variation is a

strategy used by the parasite to escape the host immune response

and to establish a persistent infection, thereby optimising

transmission.

PfEMP1 is a multi-modular adhesin, with an extracellular

binding region consisting of a variable number of different (five

types) Duffy-binding-like (DBL) and (three types) cysteine-rich

interdomain region (CIDR) adhesion domains, and a more

conserved cytoplasmic tail [5]. Diversity of PfEMP1 occurs both

within and between genomes. Within each genome, var paralogs

(with the exception of var3) differ in sequence, number of modules

and flanking regulatory sequences, and are classified into groups

A, B, and C, and B/A and B/C hybrid groups. Most var genes are

located in the unstable sub-telomeric regions of the chromosomes

and gene recombination during both meiosis and mitosis between

these paralogs is an important mechanism of repertoire diversi-

fication [6,7], even though recombination is constrained to occur

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16544



within the same group [8,9]. At the population level, the overall

structuring into groups is conserved but var repertoires differ in

their mosaic arrangement within individual modules, contributing

to extensive sequence (allelic) diversity of the domain orthologs.

Chimerism is particularly marked in var genes from group A (also

called UpsA), whose expression tends to be associated with severe

malaria and with infection in young children with a poorly

developed antibody response to the erythrocyte surface antigens

[10,11,12,13]. Whole genome comparison has shown that domain

arrangement and association differ in the various group A paralogs

from different repertoires, although individual domains have allelic

forms [14]. High sequence diversity has been observed in an

analysis of UpsA-associated DBLa tags from a global collection of

parasites [15].

Factors regulating variant antigen diversification remain unclear

but likely include a trade-off between diversifying antibody-driven

selection and purifying function-constrained selection. Longitudi-

nal follow-up studies indicate that malaria episodes tend to be

caused by parasites expressing iRBC surface variants correspond-

ing to gaps in the acquired antibody repertoire, suggesting

negative selection by pre-existing immune responses [3,16].

To gain insight into the immunological consequences of

chimerism and allelic polymorphism, we compared the antibody

response to a set of monovariant parasite lines that display an

allelic form of a PfEMP1 adhesion domain. We chose to study the

Palo Alto 89F5/VarO [17] and the IT4/R29 variant [18], which

both express orthologous NTS-DBL1a1 adhesion domains

mediating rosetting (i.e., binding uninfected red cells), a cytoad-

herence phenotype associated with severe malaria in African

children [19,20,21,22]. In addition, we identified PF13_0003 as

carrying an orthologous adhesion domain in the 3D7 genome [23]

and developed a monovariant 3D7/PF13 line that also formed

rosettes. Apart from the NTS-DBL1a1 domain, homology

between the downstream domains of the three PfEMP1 variants

is modest, allowing to explore the consequence of allelic

polymorphism of the adhesion domain associated with non-

orthologous domains.

We set out to analyse the serological relationships between the

three NTS-DBL1a1 adhesion domains, on one hand, and between

the iRBC surfaces of the three lines, on the other, to study how

allelic diversity impacts on antigenicity. We produced a soluble

recombinant NTS-DBL1a1 adhesion domain from each variant.

A prerequisite for the analysis of the iRBC surface serotype is the

use of monovariant cultures in which all parasites express the same

PfEMP1 variant. This had been achieved for VarO by positive

selection using variant-specific antibodies raised to the recombi-

nant NTS-DBL1a1 [17]. Using the same strategy, we have now

developed monovariant IT4/R29 and 3D7/PF13 parasite lines,

which both formed rosettes. Mouse antibodies elicited by each

recombinant NTS-DBL1a1 domain cross-reacted with their allelic

forms by ELISA but displayed strictly variant-specific iRBC

surface reactivity and variant-specific rosette disruption. Analysis

of naturally acquired antibodies from humans exposed to P.

falciparum living in Dielmo, Senegal, showed positively correlated

ELISA reactivities to the recombinant NTS-DBL1a1 domains.

Here also, however, reactivity with the iRBC surface was variant-

specific and the age-acquisition pattern differed for the three

variants. Absorption of sera with the recombinant domain showed

that the anti-NTS-DBL1a1 antibodies represented a large fraction

of the iRBC surface reactivity. Taken together, these data

demonstrate that the related rosette-forming parasites display

variant-specific iRBC-surface epitopes. Thus, PfEMP1 allelic

variation causes antigen diversification and participates in immune

evasion at the population level. In addition, these data provide

important information for vaccine development since a strategy

targeting rosetting will need either to combine multiple serotypes

or to engineer the antigen so as to broaden specificity.

Results

NTS-DBL1a1-VarO orthologs in the IT4 and 3D7 genome
In the 3D7 [23] and IT4 genomes [14] there are no var genes

with a similar gene architecture and a high sequence identity score

across the entire gene length, although the best identity scores for

individual domains were found in the subset of group A genes

[17]. Since the DBL1a1 domain mediates rosetting, we focussed

further work on genes harbouring the orthologous domain,

namely PF13_0003 (hereafter called PF13) and R29 (IT4var9)

(hereafter called R29) from in the 3D7 and IT4 genomes,

respectively. Both R29 and PF13 belong to the group A/UpsA var

genes with a typical PoLV Group 1 (2 cysteines/MFK*) sequence

signature [13,24]. Pairwise identity between the domains is close to

60% across the NTS-DBL1a1 protein sequence. The downstream

protein architecture of VarO, R29 and PF13 differs in the number

and type of DBL domains, and the presence of a second CIDR

domain in R29 and PF13 that is absent in VarO (Fig. 1). The

VarO domains downstream from the NTS-DBL1a1 have limited

homology with the downstream domains of R29 and PF13

(,30%), apart from the DBL2b and DBL5b domains of PF13

(38% identity) (Figure S1). Thus, VarO, R29 and PF13 display an

allelic form of the NTS-DBL1a1 domain combined with non-

allelic forms of partner domains.

Production of R29 and PF13 NTS-DBL1a1 recombinant
domains and mouse antisera

A recombinant, soluble NTS-DBL1a1 domain was produced in

E.coli for R29 and PF13 with a C-terminal His-tag. Protein purity

was checked by SDS-PAGE analysis under reducing and non-

reducing conditions and immunoblotting. The proteins migrated

at the expected molecular mass (Figure S2). N-terminal sequencing

identified a single sequence (data not shown), confirming protein

purity. Circular dichroism spectra in the near and far UV regions

indicated that the proteins were properly folded and N-terminal

sequencing of trypsinised fragments was consistent with the protein

being produced with the native conformation (data not shown), as

shown for the VarO domain [25].

The R29 and PF13 proteins elicited a consistent, homogeneous

and strong response, with high ELISA titres in outbred mice

(N = 6 per antigen). The endpoint ELISA titre to the immunogen

was .661027 (Fig. 2), similar to the titre elicited by the VarO

recombinant domain [25].

Mouse anti-NTS-DBL1a1 antibodies cross-react in ELISA
with the allelic recombinant domains

Cross-reactivity of the various mouse sera was analysed on the

recombinant VarO, R29 and PF13 domains by ELISA and

compared to the reactivity with a domain from a paralog from a

distinct PoLV of DBL1a. We chose NTS-DBL1a PFL1955w,

encoded by an UpsB/C type paralog, with a Cys4, group 4

DBL1a domain and displaying 32–33% identity with the VarO,

R29 and PF13 domains (Figure S1). The recombinant PFL1955w

domain was produced using a similar strategy and its recognition

by the various antisera was studied in parallel with the other

proteins.

The anti-NTS-DBL1a1-VarO sera cross-reacted with the R29

and PF13 alleles, with 30- and 16-fold reduction of the 95% titre,

respectively; reaction with PFL1955w was quite modest as both

signal and titre were low (Figures 2A and S3). Importantly, this
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Figure 1. Domain organisation of the PfEMP1 proteins and sequence comparison of the NTS-DBL1a domains. (A) Schematic domain
organisation of the Palo Alto/varO, IT4/R29, 3D7/PF13_0003 and 3D7/PFL1955w PfEMP1 proteins. Regions corresponding to the recombinant NTS-
DBL1a domains are indicated by bars, with the N- and C-terminal residue numbers giving sequence limits. Domains in dark grey have .50%
sequence identity, shaded DBLb domains have ,38% identity; DBL1a-PFL1955w is shown in light grey (29–33% identity). (B) The NTS-DBL1a
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was observed with sera raised to both the baculovirus and the E.

coli NTS-DBL1a1-VarO proteins (data not shown). Cross-

reactivity was not due to reaction with the His-tag present in the

VarO, R29 and PF13 recombinant proteins, as the sera failed to

react with e.g. the His-tagged CIDR-VarO construct (and vice

versa, data not shown). The anti-R29 sera cross-reacted with the

VarO and PF13 alleles with a 30- and 80-fold reduced 95% titre,

respectively, and reacted poorly with PFL1955w (Figure 2B). The

anti-PF13 sera cross-reacted more efficiently with VarO than with

R29 (16- and 45-fold reduction of the 95% titre, respectively)

(Figure 2C). They reacted with PFL1955w with a higher

maximum value than the antisera raised to VarO or R29,

although with low 50% and 95% titres.

Establishment of monovariant cultures of R29 and PF13
To investigate iRBC surface reactivity, we developed mono-

variant cultures of R29 and PF13, with .95% iRBC displaying

the PfEMP1 in question. Initially, the anti-NTS-DBL1a1-R29

polyclonal mouse antibodies reacted with less than 15% of the

trophozoite/schizont stages from a rosette-enriched IT4/R29

culture in which the rosetting phenotype had been maintained by

weekly enrichment (Figure 3A). This heterogeneity reflected

antigenic switching to other rosette-forming parasites that no

longer expressed R29. To enrich with parasites expressing R29,

we isolated the sub-population of anti-R29-positive iRBCs from

the rosette-enriched culture by cell sorting. This allowed to

establish an in vitro single variant culture of R29 in which a vast

majority of iRBC expressed the R29 protein.

To develop a single variant PF13 model, we hypothesised that

the PF13_0003 gene encoded a PfEMP1 mediating the formation

of rosettes, like its orthologs in the IT4 and Palo Alto lines. We

performed a weekly enrichment of rosette-forming parasites,

starting from a standard long-term 3D7 culture. After 10 weeks

of rosette-enrichment, a rosetting 3D7 culture was established. As

hypothesised, a fraction of these rosette-forming parasites tested

positive by flow cytometry for surface expression using the

polyclonal mouse anti-NTS-DBL1a1-PF13antibodies (Figure 3B).

Cell sorting from the multi-variant rosette preparation using the

polyclonal mouse sera selected the sub-population recognised by

the anti-NTS-DBL1a1-PF13 antibodies, allowing to establish a

monovariant PF13 culture, with 95% or more of the trophozoites/

schizonts staining positive and forming rosettes (Figure S4).

Further characterisation of the R29 and PF13 monovariant

cultures was carried out by RT-PCR, with mRNA extracted from

mature trophozoites. Analysis of the cDNA sequences obtained for

each culture perfectly matched the published sequence of R29 and

PF13, respectively, indicating that indeed, the R29- and PF13-

selected parasites expressed the corresponding PfEMP1 adhesin.

Subsequently, monoclonal antibodies (mAbs) were isolated from

animals immunised with the R29 or PF13 recombinant domain

and used bi-monthly for routine enrichment of R29-expressing

IT4 cultures or PF13-expressing 3D7 parasites following the

procedure described for VarO [17].

Absence of surface cross-reactivity of mouse sera raised
to the recombinant domains

The iRBC-surface reactivity of the various mouse anti-NTS-

DBL1a1 antibodies was analysed using the VarO, R29 and PF13

monovariant cultures. Although each antiserum reacted with its

cognate iRBC-surface, no cross-reactivity was observed with the

heterologous cultures expressing an allelic form of the NTS-

DBL1a1 domain (Figure 4A). This also held true when surface

reactivity of mAbs raised to the individual recombinant domain

was studied, as each reacted solely with the iRBC expressing the

cognate PfEMP1 from which the immunising NTS-DBL1a1 was

derived (Figure 4B). This allele-specific surface reactivity was

further emphasised when rosette disruption was studied

(Figure 4C). Each serum readily disrupted rosettes expressing the

sequences aligned as described in the Materials and Methods. Cysteine residues are shown in white on a black background and residues with 50% or
more sequence identity are shown in white on a grey background.
doi:10.1371/journal.pone.0016544.g001

Figure 2. ELISA titration curves of mouse sera against the NTS-
DBL1a recombinant domains. Serial two-fold dilutions of mouse
anti-VarO (A), anti-R29 (B), anti-PF13 (C) polyclonal sera (initial dilution
1/200) tested by ELISA against the recombinant domains. The plates
were coated with the VarO (squares), R29 (triangles), PF13 (open circles)
and PFL1955w (diamonds) domains; (x) indicates pre-immune sera.
doi:10.1371/journal.pone.0016544.g002
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homologous antigen, but failed to disrupt the rosettes displaying an

allelic form. These results indicate that the various NTS-DBL1a1

domains elicited allele-specific surface-reacting antibodies in the

mouse.

Elevated seroprevalence of domain-reactive and iRBC
surface-reactive antibodies

The prevalence of antibodies to the various NTS-DBL1a1

recombinant domains was studied in a community living in a

malaria holoendemic area (Dielmo, Senegal). Serum samples of all

individuals (0.5 to 85 year old) were analysed. The threshold for

positive recognition was set from reactivity of non-immune French

adults. Seroprevalence to the R29 and PF13 recombinant domains

was very high, with 96.5% [95% confidence interval (CI) 94.07–

98.9] and 99.1% [97.9–100] positive sera, respectively, compared

to 87.7% [82.8–91.6] positive sera to VarO. As for VarO [17],

R29- and PF13-NTS-DBL1a1 seroconversion was observed in the

2–5 y age group (Figure 5A). Seroprevalence to the group B/C

PFL1955w domain was also quite high – at 95% [92.9–97.6] -

although the age distribution differed and was shifted towards

older children compared to the group A domains. The reactivities

to the three group A domains were highly correlated with each

other and moderately correlated to reactivity with PFL1955w

(Table 1).

Prevalence of surface-reactive IgG was also high, with 81.7%

[CI 76.4–86.9] and 87.1% [82.7–91.4] to the R29- and PF13-

iRBC surface, respectively, but slightly lower than the 93.9%

[89.7–96.4] previously observed for VarO with the same sera [17],

shown here for comparison (Figure 5B). The prevalence of VarO-

or PF13-surface-reactive antibodies rapidly increased with age,

with more than 80% of children having acquired surface-reactive

antibodies by the age of 5 y. The kinetics of acquisition for R29

was delayed by a few years, reaching its maximal value by the age

of 9–11 y. Surface reactivity to the three variants was positively

correlated. The correlation of iRBC surface reactivity with ELISA

reactivity to the cognate recombinant domain was modest and did

not differ from the correlation of reactivity with the allelic or

outsider domain (Table 1).

We next investigated whether naturally acquired antibodies to

VarO, R29, and PF13 iRBC cross-reacted with the iRBC surface

using the mixed agglutination assay [26]. For each rosetting

variant, iRBC were magnetically selected to obtain .95% iRBC

at mature stages and stained green or red with PKH57 or PKH26,

respectively, before being incubated with human sera. To validate

the assay, iRBCs of the same culture were differentially labelled

with the two dyes, mixed and incubated in the presence of sera

from non-immune individuals or from Dielmo villagers. No

agglutinates were detected with non-immune sera (data not

shown). VarO-, R29- or PF13-iRBC formed large mixed

agglutinates when incubated with malaria hyper-immune sera

(Figure 6). However, single-colour, variant-specific agglutinates

were formed when using mixtures of differentially stained VarO

and R29, VarO and PF13 or R29 and PF13 iRBC. Comparable

results were obtained with pooled sera and individual sera (data

not shown). Age of the serum donor did not influence serotype

specificity, as single colour agglutinates were observed with sera

from children as well as from adults.

This indicates that naturally acquired antibodies to the P.

falciparum variant surface are variant-specific. Reactivity with the

iRBC surface is the sum of binding to multiple variable epitopes

displayed by the various PfEMP1 domains and possibly by other

variant surface antigens. To evaluate the contribution of anti-

NTS-DBL1a1 antibodies to the overall iRBC surface-reactivity,

sera were depleted of NTS-DBL1a1-reactive antibodies by

immunoabsorption onto the recombinant antigen and tested for

iRBC surface reactivity, mixed agglutination and rosette disrup-

tion. The mean fluorescence intensity was markedly reduced after

depletion by NTS-DBL1a1 but was essentially unaffected by

absorption with an irrelevant recombinant protein (Figure 7). This

shows that anti-NTS-DBL1a1 antibodies constitute a large

fraction of surface-reactive antibodies.

Discussion

Allelic sequence diversity, chimerism and architectural diversity

of the var repertoire, together, pose formidable obstacles to the

study of immune responses acquired in endemic areas and to the

Figure 3. Isolation of monovariant cultures of IT4/R29 and 3D7/PF13_0003. Rosette-enriched IT4/R29 (A) and 3D7/PF13 (B) cultures were
incubated with polyclonal sera raised against recombinant domains and were isolated by cell sorting (see Materials and Methods). The left-hand
panels show surface positivity rates of the initial rosette-enriched cultures and the right-hand panels show the surface reactivity of the negative
(upper) and positive (lower) sorted populations. The x and y axes show Log10 fluorescence.
doi:10.1371/journal.pone.0016544.g003
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Figure 4. Variant-specific iRBC surface serotypes of Palo Alto/VarO, IT4/R29 and 3D7/PF13. (A) Surface immunofluorescence:
monovariant lines were incubated with mouse sera raised to the recombinant domain and analysed by FACS. Rows and columns show parasite lines
and sera, respectively, as indicated. The x and y axes show Log10 fluorescence. (B) Variant-specific surface reactivity of the mAbs raised to the
recombinant domains with the monovariant lines analysed by FACS. In each panel, the shaded area, the thick line and the thin line indicate reactivity
with Palo Alto/VarO, IT4/R29 and 3D7/PF13, respectively. (C) Variant-specific rosette disruption. Monovariant cultures were incubated with mouse

Allele-Specific Red Cell Surface Malarial Antigens
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rational design of vaccines aimed at preventing cytoadherence.

Whether protective immunity is brought about by a broad

repertoire of antibodies against polymorphic PfEMP1 epitopes that

block reinfection, or by the slow acquisition of antibodies against

conserved PfEMP1 epitopes, is a critical issue for understanding the

evolutionary constraints on the var gene family and for designing

interventions targeting this family of adhesins. The present work has

aimed at obtaining insight into the immune responses mounted to

PfEMP1 adhesins displaying an allelic form of a rosette-mediating

adhesion domain, a cytoadherence phenotype commonly observed

in severe malaria. We were particularly interested to determine

whether naturally acquired antibodies to the surface-exposed

PfEMP1 molecule in the three parasite lines cross-reacted and

whether cross-reacting antibodies could be induced by immunising

mice with the shared adhesion domain.

Monovariant clonal lines expressing a single iRBC surface

serotype showed no evidence of antibody cross-reactivity of the

surface-exposed PfEMP1 epitopes even though ELISA cross-

reactivity to the natively folded recombinant domains was

observed. Human sera formed single colour agglutinates, irre-

spective of the donor age. These non-overlapping surface serotypes

indicate that allelic diversity and chimerism participate in strain

and serotype structuring. Although surface serotypes differed, clear

evidence of cross-reactivity with the recombinant NTS-DBL1a1

domains was observed in ELISA, suggesting that they belong to

the same serogroup. The data further show that immunisation

with the recombinant adhesion domain elicited variant-specific

surface-reacting antibodies, implying that vaccine development

will require either engineering an immunogen that induces

variant-transcending responses or combining multiple serotypes

serum as indicated and the fraction of mature stages forming rosettes was monitored. White, light grey and dark grey bars indicate Palo Alto/VarO,
IT4/R29 and 3D7/PF13, respectively.
doi:10.1371/journal.pone.0016544.g004

Figure 5. Seroprevalence for NTS-DBL1a domains and Palo Alto/VarO, IT4/R29 and 3D7/PF13 iRBC in Dielmo (Senegal).
Seroprevalence to recombinant domains (A) and the iRBC surface (B) in Dielmo, Senegal, measured by ELISA and FACS, respectively. The boundaries
of the boxes indicate the 25th and 75th percentiles, and the line in each box indicates the median. The whiskers indicate the 10th and 90th
percentiles. The outlying dots show values exceeding the 10th and 90th percentiles. The number of persons by age group was 9, 23, 19, 14, 12 and
158 in the 0.5-.2, 2-,5, 5-,7, 7-,9, 9-,11 and .11 years, respectively. Symbols used: open, VarO; light grey, R29; medium grey, PF13; dark grey,
PFL1955w (in A only).
doi:10.1371/journal.pone.0016544.g005
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in order to elicit a broad spectrum of antibodies to rosette-forming

variants.

The three var genes studied possess the structural signatures of

the small subgroup of group A/Cys2 type genes that has been

more particularly associated with severe disease [11,24] and/or

with disease in poorly immune, young children [13]. The large

allelic diversity of group A/Cys2 type var genes in the field

[13,15,24] supports the view that they are under immune

selection. The data presented here are consistent with this.

Antibodies naturally acquired by the Senegalese villagers failed to

cross-react with the iRBC surface of the heterologous rosette-

forming variants irrespective of the combination used. A lack of

surface serotype overlap was observed in all age groups, indicating

that cumulative exposure results in accumulating distinct antibody

specificities rather than developing broadly cross-reacting anti-

bodies. The age-association of antibody distribution in the

community and importantly, the non-overlapping surface sero-

types, support the conclusion that allelic diversity is an immune

escape and that antibodies participate in antigen diversification by

selecting variant sequences and by structuring strains into separate

serotypes. Nevertheless, we propose that serotypes include highly

related sequences, as it is unlikely that parasites displaying the

exact VarO, R29 or PF13_0003 sequences circulate in the village.

In the absence of information on the local var repertoire, which we

suppose is very large in view of the global diversity in Dielmo [27],

we suggest that the observed antibody responses were elicited by

parasites expressing genes presenting higher sequence identity

than the three allelic domains studied here (i.e., .60% identity).

The degree of homology needed to generate cross-reactive surface-

reacting antibodies is unknown. One study in India reported the

frequent occurrence of mixed-colour agglutinates with P. falciparum

isolate pairs tested with convalescent-phase sera [28]. It is unclear

why this was not observed in our study and in many studies with

parasites and sera from other endemic areas [29,30]. It is possible

that mixed agglutination assays lack sufficient sensitivity to detect

cross-reactive antibodies if these represent only a small fraction of

the surface-reactive antibodies. However, even in the case of

var2csa, which displays a limited population polymorphism [15,31],

surface serotypes do not fully overlap, as many human immune

sera form single-colour, isolate-specific agglutinates with CSA-

binding lines, with mixed agglutinates being infrequent and pan-

agglutination quite rare [29,31,32]. Similarly, human mAbs

reacting with PfEMP1-var2csa expressed by CSA-binding parasites

seem to target determinants not present in all lines [33]. However,

some antibodies elicited by var2csa or var1csa recombinant domains

cross-reacted with the surface of heterologous lines

[34,35,36,37,38,39]. By contrast, neither the mouse antisera nor

the mouse mAbs raised to the three recombinant rosetting

domains cross-reacted with the heterologous iRBC surface and

none were able to cross-disrupt rosettes. As the NTS-DBL1a1 is

the most conserved domain between the three variants, the

variant-specific surface reactivity could potentially be targeting the

more distant PfEMP1 domains downstream or other variant

surface antigens such as rifins or stevors. We can reasonably

exclude this possibility, however, since the marked reduction of

surface reactivity following absorption by the recombinant domain

showed that antibodies to NTS-DBL1a1 accounted for a large

fraction of surface seroreactivity.

Mapping the polymorphic residues onto the recently deter-

mined crystal structure of NTS-DBL1a1-VarO (Juillerat et al,

submitted) (Figure 8) revealed numerous surface-exposed poly-

morphic residues. These represent potential allelic variants of

surface-displayed epitopes and most likely account for much of the

specific surface seroreactivity of the human antibodies as well as of

antibodies induced by the recombinant domain (including mAbs).

Interestingly, however, the protein surface displays relatively

conserved areas as well, which may be candidates for binding

sites to heparin, which disrupts rosettes for all three variants

[17,40] (results not shown for PF13).

Another important lesson of the present work is that the analysis

of ELISA-reactive and surface-reactive antibodies reveals different

aspects of the antibody response. Indeed, although no surface

cross-reactivity could be observed, there was clear evidence of

cross-reactivity between the recombinant NTS-DBL1a1 domains

in ELISA, with higher titres and values on the allelic forms than on

the unrelated group C NTS-DBL1a. It appears that the group A/

Cys2 DBL1a1 antigens studied here form a group of related

serotypes, although more work is needed with additional domains

from other subgroups to substantiate this conclusion. Accordingly,

ELISA could potentially be used to define serogroups of related

orthologs/alleles or paralogs. Similar ELISA cross-reactivity was

reported with mouse or rabbit sera obtained by immunisation with

recombinant domains from var2csa [34,35,38,39] and from other

rosette-forming parasites [41]. The strong inter-domain correla-

tion and the similar age pattern of antibody acquisition observed

here for the three group A NTS-DBL1a1 domains in the

Senegalese community suggest that ELISA cross-reactivity occurs

with human sera as well, although this was not formally tested by

competition ELISA. Interestingly, limited intra-genome cross-

reactivity of human antibodies with a panel of DBL1a and CIDR

domains encoded by the 3D7 repertoire has been observed by

competition ELISA but this was restricted to a few domains that

shared more than 50% sequence identity [42]. This restricted

inter-paralog cross-reactivity contrasts with the inter-allelic

ELISA cross-reactivity observed here, and supports the interpre-

tation that the three alleles studied form a serogroup of related

serotypes. We suggest that ELISA detects more epitopes than

surface immunofluorescence, agglutination or rosette disruption

assays, perhaps by revealing conserved or shared epitopes of the

protein that are not surface-accessible but become unveiled when

coated on ELISA plates. In line with this, immunoblots of

monovariant cultures showed variant specificity under non-

reducing conditions but showed cross-reactivity under reducing

Table 1. Pairwise correlation of antibody reactivity to
individual recombinant domains with reactivity to iRBC
surface.

recombinant NTS-DBL1a iRBC surface

VarO R29 PF13 PFL1955 VarO R29 PF13

recombinant NTS-DBL1a

VarO 1

R29 .818# 1

PF13 .784# .815# 1

PFL1955 .462# .576# .585# 1

surface IFA

VarO .476# .574# 612# .462# 1

R29 .520# .611# .663# .512# .632# 1

PF13 .515# .506# .642# .418# .651# .627# 1

#P,0.00001.
Pairwise comparisons are based on individual OD values determined by ELISA
and mean fluorescence intensity determined by FACS (all age groups).
Spearman correlation tests using STATA 9.2.
doi:10.1371/journal.pone.0016544.t001
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conditions (data not shown). Antibodies reacting with linear

conserved epitopes have been detected in sera from individuals

living in areas where malaria is endemic [43,44]. This probably

accounts for the observation that ELISA reactivity with the

recombinant domain correlated only moderately with iRBC

surface reactivity. ELISA could thus be used to define serological

subgroups of related orthologs/alleles or paralogs, but it does not

predict surface reactivity and as such does not inform about

potential selective forces driving surface polymorphism in the

population. To study such selective forces - be they immunolog-

ical or functional/adhesive - work with isolates from patients and

with laboratory isolates should use monovariant, pure serotypes

and adhesion types. Generating a panel of such variants will

require a major community effort to derive the appropriate

reagents.

The VarO, R29 and PF13 surface serotypes were quite frequent

in the Senegalese community. They were acquired with different

kinetics, the earliest response being apparently to VarO.

Antibodies to R29 appear to be acquired later than antibodies

to VarO or PF13. The low seroprevalence in young children is

consistent with findings in Kenyan children [25]. Antibody

acquisition in young children is consistent with a role for rosetting

parasites in falciparum pathology, although children from Dielmo

are usually protected against severe malaria from a very young age

- earlier than the mean age for acquisition of surface-reacting

antibodies, including antibodies to VarO. While a different study

design is needed to analyse the potential contribution of the three

variants to severe malaria, we can conclude that acquisition of

specific antibodies coincides with mounting protecting response

against malaria disease. Although, the precise mechanism of this

Figure 6. Mixed agglutination assay with Palo Alto/VarO, IT4/R29 and 3D7/PF13 monovariant lines. After rosette disruption with
dextran sulphate, the RBC membrane was labelled with either PKH26 or PKH67, mixed in homologous or heterologous pairwise association, and
incubated with human serum in the presence of dextran sulphate. Agglutination was examined using a fluorescence microscope. A representative
example with an individual serum is shown. (A), (B) and (C) show mixed agglutinates of homologous PKH26- and PKH67-labeled Palo Alto/VarO, IT4/
R29 and 3D7/PF13 associations, respectively, while (D) shows a typical absence of mixed agglutinates using heterologous association (shown is a
PKH26-labeled Palo Alto/VarO and PKH67-labeled IT4/R29 association).
doi:10.1371/journal.pone.0016544.g006
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immunity is still unclear, the present data are consistent with

immunity against clinical malaria being brought about by the

acquisition of a large repertoire of antibodies preventing expansion

of a large number of antigenic variants.

We studied the domain-specific response using recombinant

NTS-DBL1a1 domains that are correctly folded, as they met not

only different biophysical criteria [25] but also induced surface

reactive, rosette-disrupting antibodies and bound RBC [17,40].

Figure 7. Residual VarO-iRBC surface reactivity after serum depletion of human sera using the recombinant VarO domain. FACS
analysis of serum from adults (A and C) and from a 6 y old child (B) living in Dielmo, Senegal before and after antibody depletion. The grey area
indicates fluorescence intensity distribution of non-immune French blood donors. The thick, dotted and thin lines indicate IFA distribution of non-
depleted, control TALON-absorbed, recombinant VarO-depleted serum, respectively. The x axis shows Log10 fluorescence.
doi:10.1371/journal.pone.0016544.g007

Figure 8. Sequence polymorphism of the three alleles mapped upon the NTS-DBL1a1 varO crystal structure. Three mutually
orthogonal views of the surface of the NTS-DBL1a1-varO crystal structure with sequence polymorphism between the three alleles, VarO, R29 and
PF13, colour-coded from blue (variable) to red (conserved - see the nine-point colour scale, insert). (A) and (C) are viewed with the C-terminus of the
domain at the bottom and are rotated with respect to each other by 180u about a vertical axis. (B) is a perpendicular view, seen from above (A) and
(C).
doi:10.1371/journal.pone.0016544.g008
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The antibody response acquired in endemic areas has been

monitored using large panels of recombinant domains, although

their native folding was usually not assessed and domain

boundaries possibly not optimally designed. The definition of

individual domains is not straightforward, as the original

boundaries based on sequence alignment do not fully match with

the crystal structures. In particular, our structural analysis of NTS-

DBL1a1-varO.indicates that the NTS region is an intrinsic part of

the domain. The recombinant DBL1a domains used by other

groups to assess the acquired antibody response lacked the NTS

moiety and in some instances did not include a critical last pair of

cysteine residues [42,45,46,47,48]. It is therefore difficult to

compare published seroprevalence for group A-derived domains

with our findings. However, we note that the selevated

seroprevalence against NTS-DBL1a1-R29 in Dielmo is in line

with seroprevalence against DBL1a1-R29 in areas of high

endemicity [49].

Of note, sequence identity of PF13 with VarO and R29

predicted the cytoadherence phenotype, as the three lines indeed

formed dextran sulfate- and heparin-sensitive rosettes, suggesting

that orthologs of NTS-DBL1a1-VarO in other parasite genomes

are involved in rosetting as well. Our data also illustrate antigenic

switching occurring in the IT4/R29 line, since after several

months of culture including weekly enrichment for rosettes,

surface reactivity to NTS-DBL1a1-R29 had dropped below

20%. This reflects switching expression from the dominant

R29/IT4var9 gene to another rosette-mediating paralog. Rosetting

is encoded by a subset of var paralogs whose exact number is

unknown. To circumvent the consequences of antigenic switching

within the rosetting population in each of the three lines, we

developed specific mAbs to pan the culture at regular intervals.

Surface seroreactivity to patient isolates has been extensively

used to analyse the acquisition of responses [3,16,50,51,52,53,54],

but these studies did not permit definition of specific serotype/

serogroups as unpanned laboratory lines and patient isolates

express multiple var genes [11,55,56,57]. The same limitation

applies to analysis of serotypes using lines selected for a specific

cytoadherence because of the redundancy of cytoadherence

specificities in the var repertoire [14,58]. The only exception is

var2csa, since it is single copy in most lines and the only gene

associated with adhesion to CSA [59]; monovariant lines can be

thus readily selected by panning on CSA. Apart from var2csa-

expressing parasites, serology studies using monovariant lines are

scarce. Analysis of seroreactivity of Kenyan sera to the

monovariant A4u line panned using a specific mAb showed an

age- and transmission-dependent acquisition of surface seroreac-

tivity [47]. Interestingly, surface reactivity correlated poorly with

ELISA reactivity to individual recombinant domains derived from

the A4var gene expressed, consistent with our findings with the

rosette-forming lines.

Both naturally acquired antibodies and mouse antibodies to the

recombinant domains failed to show overlapping surface serotypes

between the three related group A/Cys2 variants studied. This has

major implications for vaccine development, as it indicates that

specific strategies should be developed in order to target this

particular subgroup considered serologically more conserved and

cross-reactive than variants expressed in older children [42,54]

and thus of major interest for the development of a vaccine against

severe falciparum malaria [13]. Such strategies could include the

combining of multiple serotypes or engineering the immunogen to

induce a broad reactivity. Both approaches face the challenge that

we need a deeper understanding of the number of distinct genes

implicated in rosetting and of their serogroup and serotype

diversity. Mapping of the surface epitopes and the surface areas

involved in adhesion will be facilitated by the recently determined

crystal structure of the VarO adhesion domain; the available

rosetting inhibitory anti-VarO mAbs should help this endeavour.

Materials and Methods

Production of NTS-DBL1a1 domains
Production of the VarO soluble recombinant domain has been

described [25]. Recodoned R29 (Gencust, amino acids 1–481) and

PF13 (GenScript; amino acids 1–486) domains had predicted N-

glycosylation sites mutated to NxA to allow possible expression in

eukaryotic systems and a C-terminal hexa-His tag. The coding

sequence was cloned in pET21a (Novagen), and transformed into

E. coli Rosetta-gamiTM 2 (DE3) (Novagen). Protein expression was

induced with 0.1 mM isopropyl-b-D-thio-galactopyranoside for

4 h at 30uC followed by 16 h at 20uC. Cells were resuspended in

20 mM Tris-HCl, 200 mM NaCl, pH 8 in presence of PMSF

(Fluka) and Protease inhibitor cocktail complete EDTA-free

(Roche) and lysed mechanically (EmulsiFlex-C5, Avestin). Soluble

proteins were purified by metal affinity (TALON, Clontech)

followed by size exclusion chromatography (Hiload 16/60 Super-

dex 200, GE Healthcare). The recodoned PFL1955w domain

(without mutations or His tag) was cloned in pMAL-c2X (New

England BioLabs) and expressed in E. coli SHuffleTM Express

(New England BioLabs) as an MBP-fusion protein [25]. The

protein was purified on an amylose column equilibrated with

20 mM Tris/HCl, pH 8, 200 mM NaCl, and released by passing

the same buffer with 500 mM NaCl, 10 mM maltose. After size

exclusion chromatography in the same Tris buffer, the fusion

protein was cleaved with Factor Xa (Novagen) as described for the

VarO domain. The domain was separated from MBP on a PD-10

column (GE Healthcare) in 20 mM Tris/HCl, pH 8, 50 mM

NaCl, and a heparin column (HiTrapTM heparin HP, GE

Healthcare) equilibrated with the same buffer. The domain was

eluted with 20 mM Tris/HCl, pH 8, 300 mM NaCl.

Production of mouse anti-NTS-DBL1a1 antibodies
Outbred mice were immunised as described [17]. Sera (N = 6

per group) were collected prior to the first injection (pre-immune

sera) and 10 days after the third injection and stored at –20uC until

use. R29-specific mouse mAbs were custom-produced (Genscript).

PF13-specific mAbs were produced in-house as described [17].

MAbs were screened by ELISA on the immunising antigen and by

iRBC surface reactivity. Animal studies complied with institutional

guidelines of Institut Pasteur.

Monovariant cultures
P. falciparum parasites were cultured in human O+ erythrocytes

[17]. Late trophozoites/young schizont stages of IT4/R29 were

weekly enriched for rosette-forming parasites by centrifugation on

ice-cold Ficoll (density 1.077 mg.mL21, Abcys). For 3D7 (obtained

from MR4), weekly rosette enrichment for 2.5 months yielded a

rosette-forming parasite culture. After rosette dissociation with

10 mg.mL21 dextran sulfate (Sigma) incubated for 30 min at 37uC,

mature iRBC were magnetically selected on a CS column (MACS,

Miltenyi Biotec). For cell sorting, the iRBC pellet was resuspended

in PBS, 2% foetal calf serum (FCS) and stained with anti-R29 or -

PF13 sera (final dilution 1/200), and a goat anti-mouse IgG Alexa

fluor 488 conjugate (dilution 1/1000). Surface-positive iRBCs

were sorted by flow cytometry (MoFlo flow cytometer, Dako) and

sub-cultured in O+ erythrocytes. Rosette formation was then

selected by weekly enrichment and bi-monthly panning with

specific mAbs as described [17]. Rosetting frequency and surface

positivity in each monovariant culture was .90%.
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Human sera
Serum samples from 235 villagers (.5–85 years old) living in

Dielmo (Senegal) were used. [17]. Non-immune sera from healthy

adults living in France (Blood Bank, EFS, Rungis) were used as

negative control.

ELISA, surface immunofluorescence and rosette
disruption assays

Experimental conditions for ELISA, surface immunofluores-

cence, flow cytometry and rosette-disruption assay using mono-

variant parasite cultures were as described [17].

Mixed agglutination assays
After rosette disruption using dextran sulfate, iRBC were

magnetically enriched. The iRBC membrane was labelled using

PKH67 or PKH26 (Invitrogen) following the manufacturer’s

instructions, followed by three washes with PBS-2% FCS. Cells

were resuspended in complete culture medium, 10 mg.mL21

dextran sulfate. An equal volume of differentially stained iRBC

was mixed and incubated 1 h at 37uC with human sera (final

dilution 1/20) and Hoechst dye (dilution 1/1000). Immune

agglutinates were visualised using fluorescent microscopy (Leica).

An iRBC agglutinate was defined as a clump containing more

than three iRBC. Each serum was tested in duplicate in two

independent experiments.

Depletion of human sera on recombinant NTS-DBL1a1

protein
10 mg of the VarO protein was absorbed on 10 mL of TALON

resin (Clontech) for 1 h at 4uC. Unbound protein was removed by

three washes with 20 mM Tris/HCl, pH 8, 200 mM NaCl. The

resin was then incubated for 1 h at 4uC with human serum

samples (4 mL of serum, 1/10 final dilution). The depleted sera

were collected by centrifugation. Depletion was verified by ELISA.

Mapping of surface-exposed polymorphic residues
The CONSURF web server [60] was used to assign a colour

code according to the degree of conservation for each residue of

the three variant sequences, which were aligned by ClustalW and

corrected by hand, taking into account secondary structure

elements of NTS-DBL1a1-varO. The result was displayed using

PyMOL [61].

Statistical analysis
ELISA OD and surface IFA values were log-transformed. The

Student’s t-test and Wilcoxon’s nonparametric test were used to

compare normal and non normal distributions of log-transformed

data. Surface-reactive and domain-reactive antibodies were

correlated using Spearman rank correlation test. Data were

analyzed with STATA software (version 9.2, STATA corporation,

College Station, TX, USA) and P,0.05 was considered to be

statistically significant.

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the Institut Pasteur (http://webcampus.

pasteur.fr/jcms/c_98517/protocoles-usuels) and complied with

the European Union guidelines for the handling of laboratory

animals (http://ec.europa.eu/environment/chemicals/lab_animals/

home_en.htm). The procedures were approved by the Institut

Pasteur animal care and use committee. Animal care and

handling was approved by the Ministère de l’Agriculture et de

la Pêche (rapport 107503056792, clearance number 75–273,

issued on 28th August 2007 to OMP) and the protocols and

procedures used by the Direction départementale des services

vétérinaires de Paris (Ref. RL- 07031395-30701147) isued on

29th August 2007 to OMP.

The human study was conducted in accordance with the

Declaration of Helsinki and was approved by the Institutional

Review Board of the Institut Pasteur of Paris (reference: RBm/

2006.032 in September 2007) and by the National Council on

Health Research of Senegal (reference nu 05 MSP/DS/CNRS in

February 2008). Both review boards approved the verbal consent

procedures. The project objectives were carefully explained to

the assembled village population and the village head, the

spokesperson for the women, for the younger generation, the

religious authority of the village gave their informed consent.

Individual verbal informed consent was then obtained, as most

participants were illiterate, at each stage of the study. In formed

consent was obtained individually from all participants (parents

or ward of children) and was recorted in the individual villager’s

file. The possibility to withdraw from the project at any time was

stated.

Supporting Information

Figure S1 PfEMP1 protein sequence analysis. Pairwise

amino acid sequence identity between domains of similar subtype

from the Palo Alto/varO, IT4/R29, 3D7/PF13_0003 and 3D7/

PFL1955w PfEMP1 proteins.

(PDF)

Figure S2 SDS-Page analysis of the recombinant do-
mains. The recombinant NTS-DBL1a domains of VarO (lanes

1, 2), R29 (lanes 3, 4), PF13_0003 (lanes 5, 6) and PFL1955w (7,8)

were migrated under reducing (even lanes) or non-reducing (odd

lanes) conditions.

(PDF)

Figure S3 Cross-reactivity between allelic domains
measured by ELISA. ELISA 50% and 95% titres of sera from

mice immunised with individual recombinant NTS-DBL1a1

domains tested against the recombinant domains (top chart).

Reduction factor of reactivity with the heterologous domains

(bottom chart).

(PDF)

Figure S4 Rosette-forming, surface-positive sorted
iRBC used to derive IT4/R29 and 3D7/PF13_monovar-
iant lines. Microscopic visualisation (left) and immunostaining

(right) of rosettes from the IT4/R29 (A) and 3D7/PF13_0003 (B)

monovariant cultures obtained after cell sorting with mouse sera

raised to the recombinant R29 and PF13_0003 domains

respectively.

(PDF)
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