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Abstract: The research study described in this paper investigated the potential to use steel furnace
slag (SFS) as a stabilizing additive for clayey soils. Even though SFS has limited applications in
civil engineering infrastructure due to the formation of deleterious expansion in the presence of
water, the free CaO and free MgO contents allow for the SFS to be a potentially suitable candidate
for clayey soil stabilization and improvement. In this investigation, a kaolinite clay was stabilized
with 10% and 15% ladle metallurgy furnace (LMF) slag fines by weight. This experimental study
also included testing of the SFS mixtures with the activator calcium chloride (CaCl2), which was
hypothesized to accelerate the hydration of the dicalcium silicate phase in the SFS, but the results
show that the addition of CaCl2 was not found to be effective. Relative to the unmodified clay,
the unconfined compressive strength increased by 67% and 91% when 10% and 15% LMF slag were
utilized, respectively. Likewise, the dynamic modulus increased by 212% and 221% by adding 10%
and 15% LMF slag, respectively. Specifically, the LMF slag fines are posited to primarily contribute
to a mechanical rather than chemical stabilization mechanism. Overall, these findings suggest the
effective utilization of SFS as a soil stabilization admixture to overcome problems associated with
dispersive soils, but further research is required.

Keywords: steel furnace slag (SFS); ladle metallurgy furnace (LMF) slag; soil stabilization; unconfined
compressive strength; dynamic modulus; slag characterization

1. Introduction

Dispersive and soft clayey soils are some of the most problematic soils due to their poor and
vulnerable engineering properties [1,2], such as their expansive nature, excessive cracking, low
compressive and shear strengths, low modulus, large settlement under loading, high volumetric
shrinkage, and poor durability against wetting/drying and freezing/thawing cycles [3], which imposes
severe damage to and/or failure of geotechnical structures [4–6]. For decades, various industrial-based
chemical stabilizers, such as Portland cement, lime, asphalt, and polymers, have been proven to improve
the quality of clayey soils [7–9], but can be considered to demand high economic and/or environmental
costs. The increased cost associated with traditional chemical stabilizers has led researchers to develop
alternative soil modifiers from industrial by-products [10–14], such as ground granulated blast furnace
slag, fly ash, and cement kiln dust, which provide both economic and environmental solutions to
resource conservation in soil engineering.

Steel furnace slag (SFS) from the steelmaking and steel refining processes is a common by-product
produced around the world [15–19]. An estimated 169–254 million tons of SFS were produced
worldwide in 2017 [20]. Aside from its abundance, SFS has been regarded as a potential material for
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use in civil infrastructure applications [16], such as Portland cement concrete, asphalt concrete, road
base, ballast, embankment, and soil stabilization. From recent studies, there is limited usage of SFS,
particularly in bound applications (e.g., aggregate in Portland cement concrete or in cement-treated
bases) due to the deleterious expansion that it undergoes when the free calcium oxide (CaO) and
magnesium oxide (MgO) present in the SFS react with water [16,21–24]. Free CaO and free MgO
expand by 92% and 120%, respectively, when reacting with water to form hydroxides [25]. The free
CaO content ranges for two types of SFS, which include basic oxygen furnace (BOF) slag and electric arc
furnace (EAF) slag, are 1–10% and 0–4%, respectively [19]. This expansion can be extensive and result
in structural failures (e.g., failure due to swelling, expansive cracking, loss in strength, etc.) [26–28].

However, the free CaO and free MgO in SFS can be effectively used in geotechnical engineering
applications, such as stabilization of clayey soils and improvement of their engineering properties.
Similar to the performance of lime in stabilizing dispersive soils [29–31], the cation exchange, flocculation
and agglomeration, and pozzolanic reaction can occur as a clayey soil reacts with certain free oxides
in SFS. Various research studies have been conducted to employ SFS to enhance the properties of
problematic soils, while primarily demonstrating that SFS can be an effective stabilization agent [32–49].
From the early 1990s, Akinmusuru [43] pioneered the attempt to use SFS in soil stabilization for rural
roads with low traffic volume, which suggests that SFS possesses the potential to improve the soil
properties by increasing the strength, California bearing ratio (CBR), and dry density. Subsequent
results by Poh et al. [45] showed that using BOF slag for soil improvement was not encouraging.
Despite the employment of chemical activators, the engineering properties (dry density, strength,
and durability) of BOF-stabilized samples were lower than those properties improved by cement
stabilization. A recent study of Akinwumi [42] concluded that the addition of SFS to lateritic soil
increased the dry density, decreased the optimum moisture content, and, as the percent SFS increased,
the soaked and un-soaked CBR and the unconfined compressive strength increased. Zumrawi and
Babikir [47] studied the effectiveness of adding 5%, 10%, 15%, 20%, and 30% of SFS to an expansive
soil and reported that the addition of SFS improved soil properties. Abdi [49] investigated stabilizing a
kaolinite soil with a combination of BOF slag and hydrated lime, which demonstrated that higher BOF
slag with lime contents yielded higher compressive strengths. This finding also agreed with the work
of Yildirim et al. [44], which evaluated soil stabilization with the blend of SFS and either Class C fly
ash or ground granulated blast furnace slag. Manso et al. [36] found that clay soils stabilized with
ladle furnace slag could have bearing capacities similar to lime-stabilized clay soils.

One major concern in using SFS, relative to more traditional stabilizing materials, is the slow
rate of hydration at early stages due to the low activity of calcium silicates in SFS [50]. Some studies
have attempted to accelerate the hydration of SFS by adding a chemical activator such as quicklime,
sodium hydroxide (NaOH), calcium chloride (CaCl2), sodium chloride (NaCl), or sodium metasilicate
pentahydrate (Na2SiO3-5H2O) [50]. Although studies have shown that quicklime and Na2SiO3-5H2O
were effective in accelerating the hydration of the SFS for soil stabilization [45], CaCl2 was found to be
more effective to increase the SFS hydration rate both not only for soil improvement but also in SFS
paste and as a replacement in concrete [51].

Therefore, this study focuses on evaluating the use of SFS for improving the engineering properties
of a clayey soil. The clayey soil selected has a low bearing capacity, which makes it unsuitable for
any road base, foundation, and other construction projects. The soil stabilization was carried out
at 10% and 15% additions of SFS by weight. Ladle metallurgy furnace (LMF) slag, also known as
secondary refining slag, was employed in this study, which is a promising SFS type and shares common
chemical features with other steel slags [18,21,36,52–55]. In addition, CaCl2 was selected as a potential
chemical admixture to accelerate the hydration of the dicalcium silicate phase in the SFS. The primary
contribution of the research is the use of LMF slag for clayey soil stabilization, which has seen little
focus in the literature (e.g., References [36,38] used LMF slag powder), and particularly LMF slag
fines, which have not been used in the literature as a soil stabilizer and which offer potential for both
chemical and mechanical stabilization mechanisms.
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Overview of SFS Selection and Properties

SFS is a by-product generated during the steelmaking process. Most SFS are generally classified
as either by the conversion of iron to steel in a basic oxygen furnace (BOF) or the melting of scrap to
make steel in an electric arc furnace (EAF). In fact, 99.6% of the steel produced worldwide is produced
by either the BOF or the EAF process [56], with around 71% of the worldwide production using
the BOF process [56]. Further refinement of the steel during secondary steelmaking can occur after
the BOF or EAF processes from which ladle metallurgy furnace slag (LMF) is produced. For BOF
production, liquid blast furnace metal, scrap, and various fluxes, consisting of lime or dolomitic lime,
are charged to the furnace, and high-pressure oxygen is injected through a lance. The impurities,
which include carbon monoxide, silicon, manganese, phosphorus, and liquid oxides, combine with the
lime or dolomitic lime to form the slag. The EAF process is different in that it electrically charges cold
steel scraps such as iron scrap, pig iron, and direct reduced iron. The steel scrap is melted with the
charge and brought up to the required chemical composition by adding other metals. Oxygen is then
blown into the EAF to purify the steel, which creates a slag layer that will float on the top and can be
poured off.

The chemical composition of SFS may vary by plant and even by batch. As a byproduct of
steel production, it is dependent on the raw materials, types of steel produced, furnace conditions,
cooling processes, etc. [15,16]. The primary components in most SFS are oxides of calcium, magnesium,
aluminum, silicon, and iron [15,16]. Mineralogically, BOF slags consist by weight mainly of 30–60%
dicalcium silicate (2CaO-SiO2), 0–30% tricalcium silicate (3CaO-SiO2), 0–10% free CaO, 10–40% wüstite
(FeO), and 5–20% dicalcium ferrite (2CaO-Fe2O3) [19]. Comparatively, Portland cement is composed
of about 55% tricalcium silicate (3CaO-SiO2), 18% dicalcium silicate (2CaO-SiO2), 10% tricalcium
aluminate (3CaO-Al2O3), 8% tetracalcium aluminoferrite (4CaO-Al2O3-Fe2O3), and 6% gypsum
(CaSO4-2H2O) [57]. Therefore, there is potential for SFS to behave as a slow-reacting cementitious
material [58–62].

2. Materials and Methods

2.1. Material Selection

A clayey soil with a low bearing capacity was selected for this experiment. The soil and the LMF
slag were characterized using several methods. The gradations of both the LMF and the clayey soil
were evaluated by ASTM C136 while the LMF slag specific gravity and absorption were characterized
by ASTM C128. ASTM C29 was used to evaluate the LMF unit weight (rodding method). Additionally,
the soil for this stabilization project was a refractory clay, which is commonly utilized to make ceramics
but is useful in soil studies for its plastic properties. The plastic limit (PL), liquid limit (LL), and
plasticity index (PI) were determined according to ASTM D4318.

For this experimental study, the SFS provided for stabilization was a ladle metallurgy furnace
(LMF) slag, which was produced by a modified EAF process. The LMF process can introduce more
free lime (CaO) in the slag than the typical EAF process. The LMF slag was provided by the Edw. C.
Levy Co. from a plant in Crawfordsville, IN, USA.

2.2. Chemical and Mineralogical Characterization

Mineralogical characterization of the LMF slag and the clayey soil was conducted using powder
X-ray diffraction (XRD). The LMF slag was crushed to a particle size passing the No. 100 sieve
(≤150 µm). The material passing the No. 200 sieve (≤75 µm) was used to determine the mineralogy of
the clayey soil. A Siemens-Bruker D5000 XRD (Bruker, Billerica, MA, USA) was used, which utilizes
copper (Cu) Kα radiation and has a graphite monochromator and a scintillation detector. The machine
was operated at 40 kV and 30 mA. The sample size was 0.5 cm3 (0.03 in3). The 2θ scan range was from
10◦ to 80◦ with an increment of 0.02◦ and a scan speed of 0.5◦/min.
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Likewise, additional quantification of the LMF slag composition was conducted using
thermogravimetric analysis (TGA), which has been commonly utilized to better assess the total
calcium oxide (CaO) and calcium hydroxide (Ca(OH)2) contents present in SFS, based on the method
proposed by Brand and Roesler [21]. In this study, a TA Instruments Q50 TGA (TA Instruments,
New Castle, DE, USA) was utilized, which heated the sample to 1000 ◦C at a heating rate of 10 ◦C per
minute to derive the weight loss. Nitrogen was used as the purge gas at flow rates of 60 mL/min for
the sample purge and 40 mL/min for the balance purge.

Complexometric titration was utilized to determine the free lime content. In this technique,
a sample of SFS is mixed with hot ethylene glycol, filtered, and then titrated with acid after an indicator
has been added. Ethylene glycol extraction methods were originally developed to rapidly determine
the free lime content of Portland cement and clinker [63], but have since been adopted for SFS (e.g.,
References [64–67]). Specifically, the method from Brand and Roesler [21,68] was followed: about 1 g
of SFS passing the No. 100 sieve (≤150 µm) was weighed and continuously stirred with 50 mL of
ethylene glycol in a water bath at 95 ± 5 ◦C for 30 min. After filtering, 10 drops of a phenolphthalein
indicator were added and then titrated with 0.1 N hydrochloric acid (HCl). The “ethylene glycol
number” (EGN) is calculated as follows based on the initial mass of the SFS sample (m), the normality
of the HCl (NHCl), the volume of HCl titrated (VHCl), a correction for the volume of HCl titrated in a
blank ethylene glycol sample (Vblank), and an equivalency factor (F).

EGN = F
[

NHCl(VHCl −Vblank)

10 m

]
(1)

The correction factor F for this method is 28 [21,69,70]. The correction Vblank is specified in other
standards [71] to account for the amount of HCl needed to titrate a plain solvent sample (i.e., plain
ethylene glycol). It was found that Vblank = 0 mL, which is a reasonable result since the pH of ethylene
glycol is close to neutral. The EGN value accounts for the available Ca2+ ions from the free CaO and
Ca(OH)2, so the free lime content needs to be adjusted based on the Ca(OH)2 determined by TGA [21].

Furthermore, the experimental design consisted of five total mixtures to be compacted at optimum
moisture content, including the unmodified and SFS-stabilized clay. Moisture-density relationships
were conducted to determine the optimum moisture content for the unmodified clay and the two SFS
content mixtures (10% and 15% by weight). Based on the literature review, it was deemed that calcium
chloride (CaCl2) may act as a suitable accelerator for the dicalcium silicate phase in the SFS. Therefore,
additional mixtures at 10% and 15% SFS were made with 2% CaCl2 (by weight of total water). All five
mixtures were then tested for unconfined compressive strength and dynamic modulus.

2.3. Moisture-Density Relationships

The standard Proctor test according to ASTM D698 was employed to determine the
moisture-density relationship for unmodified clay and the clay samples modified with 10% and
15% SFS by weight. The materials were compacted at different moisture contents until the maximum
dry density was achieved. The mixing was carried out using a mechanical mixer to accomplish uniform
mixing. The compacted samples were weighed and recovered for determining actual moisture content.
The optimum moisture content corresponding to maximum dry density was then estimated using the
moisture density curves.

2.4. Unconfined Compressive Strength (UCS)

To evaluate the suitability of using the SFS modified mixtures in subgrade stabilization, it is
important to quantify the effects of these stabilizers on the sample strength gain characteristics in
comparison to unmodified clay strength properties. For this purpose, an unconfined compressive
test for the unmodified clay was carried out using ASTM D2166, which was followed by testing
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the SFS-modified mixtures using ASTM D5102. This is for determining the UCS of compacted
soil-lime mixtures.

The mold used for preparing the samples was 2.8 inches (7 cm) in diameter with a height of
5.6 inches (14 cm) with a diameter to height ratio of 1:2. The samples were compacted in the mold
at the optimum moisture content to achieve the maximum dry density. The maximum dry density
and optimum moisture content information was also employed to determine the exact weight of clay,
SFS, and water to result in a specimen of required dimensions as mentioned above. The specimen was
compacted into three equal layers.

The unmodified sample was tested immediately after compaction, whereas the modified specimens
were wrapped in plastic to avoid moisture loss and then subjected to accelerated curing at 49 ◦C for
48 h. The accelerated curing used for this research has been tested as equivalent to the 28-day strength
of soil-lime mixtures at 23 ◦C [72,73]. The cured samples were tested for unconfined compressive
strength at a displacement rate of 1.0 mm/min. The test performed was stress controlled. The peak
load measured was recorded as the unconfined compressive strength.

2.5. Vibration Resonance

In addition to the UCS testing, the improvement to the properties of the soil with the addition of
SFS was also investigated by studying the dynamic modulus of the compacted soil. One such method
of measuring the dynamic modulus is by vibration resonance. An impact event, when incident on a
specimen of finite size, will generate various waves in the specimen, namely primary, secondary, and
surface waves. The multiple reflections of the primary and secondary waves will eventually set up a
vibration resonance in the sample, which is a function of the dynamic modulus and density of that
material [74]. Since the vibration resonance acts to “homogenize” the specimen, the test method can be
applied to heterogeneous materials to determine the dynamic modulus, provided that the size of the
specimen is larger than the constituents. The dynamic modulus (Ed) can be computed based on the
density (ρ), length (L), and fundamental longitudinal frequency (fl) of the specimen as follows.

Ed = ρ(2 flL)
2 (2)

Vibration resonance testing, while more commonly applied to concrete materials according to
ASTM C215, has been applied to both stabilized and un-stabilized soils [75–80]. Guimond-Barrett
et al. [75] found repeatable resonance tests between multiple specimens of soil-cement mixtures, which
indicates that it is useful for such heterogeneous materials as stabilized soils. A good agreement
was reached between the resonant frequency dynamic modulus measured in the laboratory and the
modulus measured in the field [76]. In addition, Hilbrich and Scullion [77] determined that a reasonable
agreement existed between the resonant frequency dynamic modulus and the resilient modulus of
stabilized soils.

In this laboratory experiment, a compacted cylindrical specimen for the unstabilized and stabilized
clay mixtures were tested for longitudinal resonance using three impactor sizes (8, 14, and 18 mm).
The experiment configuration followed ASTM C215 for the support arrangement, impact location, and
accelerometer location (Figure 1). The accelerometer voltage and time were recorded and post-processed
by a fast Fourier transform (FFT) algorithm and plotted in the frequency domain to determine the
resonance frequency. For each signal, 50,000 data points were collected with a sample interval of 2 µs
for a spectral line spacing of 10 Hz.
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Figure 1. Cylindrical specimen and configuration for testing the longitudinal resonance frequency.

3. Results and Discussion

3.1. Characterization of LMF Slag

In accordance with standards, the averages of three replicate gradation tests performed on the
LMF slag fines and the fine clayey soil are illustrated in Table 1. The standard deviation was ≤2.3% for
the replicate gradation measurements. The LMF slag had 100% passing the No. 4 (4.75 mm) sieve
with about 11% passing the No. 200 (75 µm) sieve. The clayey soil had about 15% passing the No.
200 (75 µm) sieve. Table 1 indicates that the clayey soil had a finer gradation than the LMF slag, as
was expected. Additionally, the LL, PL, and PI results of the clayey soil are summarized in Table 2.
With about 15% of the material passing the No. 200 (75 µm) sieve, the clayey soil is characterized as an
AASHTO A-2-6 soil.

Table 1. Average gradations of the LMF slag and clayey soil.

Sieve Size Average Cumulative Percent Passing

US mm LMF Slag Clayey Soil

1/4” 6.35 100.0 100.0
#4 4.75 100.0 100.0
#8 2.36 99.9 97.9

#16 1.18 89.2 83.1
#30 0.6 60.4 66.9
#50 0.3 38.2 42.8
#100 0.15 21.9 28.8
#200 0.075 10.8 14.6

Table 2. Clayey soil physical properties.

Liquid Limit Plastic Limit Plasticity Index Percent Passing #200 Sieve

35 21 14 14.6%

Table 3 displays the specific gravity (GS) and absorption of the LMF slag fines, as the average of
three replicate tests. Oven dry (OD) and saturated surface dry (SSD) moisture conditions were assessed
for the relative GS. Typically, steel slags have higher GS values due to the presence of iron content.
The specific gravity of SFS aggregates can be around 3.2 to 3.5 [81]. The absorption was relatively high
for the LMF slag fines due to production and processing. Typical SFS absorption values have been
reported to be around 0.2% to 1.0% [82].
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Table 3. Average GS and absorption values for the LMF slag fines.

Relative GS (OD) Relative GS (SSD) Apparent GS Absorption (%)

Average value 2.575 2.767 3.186 7.46%
Standard deviation 0.018 0.017 0.018 0.09%

Mineralogical characterizations of the LMF slag and the clayey soil using XRD are summarized in
Table 4. Qualitative analysis of the XRD revealed the presence of wüstite (FeO), larnite (β-dicalcium
silicate, Ca2SiO4), mayenite (Ca12Al14O33), and periclase (MgO) in the LMF slag. Recent research by
Brand and Roesler [21,55] also revealed that larnite and wüstite are common mineral phases in any
steel slag type (EAF, BOF, and LMF slags), which is also consistent with Motz and Geiseler [17]. While
phases like mayenite and periclase or magnesium oxide (MgO) are mostly seen in EAF slags, the LMF
slag also show only the presence of both oxides [18,83]. The clayey soil was also characterized by XRD.
It was indicated that the soil primarily consisted of quartz (SiO2) and kaolinite (Al2Si2O5(OH)4).

Table 4. Mineral phases identified by qualitative XRD.

Mineral Phases LMF Slag Fine Clayey Soil

Kaolinite, Al2Si2O5(OH)4 X
Quartz, SiO2 X

Larnite, β-dicalcium silicate, Ca2SiO4 X
Periclase, MgO X

Mayenite, Ca12Al14O33 X
Wüstite, FeO X

Table 5 lists the corresponding identified phases while Figure 2 illustrates the graphical
representation of the TGA result of SFS. The total content of a given phase was determined
stoichiometrically based on weight loss. The identified mass loss phases included free and
chemically-bound water, magnesium hydroxide (Mg(OH)2), calcium hydroxide (Ca(OH)2), and
calcium carbonate (CaCO3). From Figure 2, the decomposition of Mg(OH)2, Ca(OH)2, and CaCO3 lies
at an approximate temperature of 330 ◦C, 400 ◦C, and 600–650 ◦C, respectively, which agree with the
ranges reported in the literature [21,66,84].

Table 5. Phase identification and content by TGA.

Identified Phases Peak Decomposition (◦C) Mass Loss Range (◦C) Mass Loss Phase Content

Free water 126.6 89–155 1.33% 1.33%
Chemically bound

water 255.6 190–302 2.39% 2.39%

Mg(OH)2 332.7 302–362 0.98% 3.18%
Ca(OH)2 380.7 362–395 0.32% 1.32%
CaCO3 629.0 580–660 0.57% 1.29%

The result of the complexometric titration indicated that the free lime content of the LMF slag
was about 2.5% (Table 6)). Coupled with the 1.3% Ca(OH)2, 3.2% Mg(OH)2, and an unknown
amount of free MgO, there are multiple phases in this LMF slag sample that can contribute to soil
stabilization mechanisms.

Table 6. Free lime content of the LMF slag fines.

EGN Value from
Titration (%)

Ca(OH)2 Content from
TGA (%)

Stoichiometric CaO
Content in Ca(OH)2 (%)

Estimated Free CaO
Content (%)

3.45 1.32 1.00 2.45
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Figure 2. TGA result of the LMF slag, which indicates the weight loss and the derivative of the
weight loss.

3.2. Moisture-Density Relationships

The standard Proctor test was used to determine the moisture density relationship for unmodified
clay and clays modified with 10% SFS and 15% SFS by weight of the total mix. Figure 3 shows the
moisture-density results of the different clay samples. Table 7 summarizes the optimum moisture
contents and corresponding maximum dry densities for the unmodified and the SFS-modified clay
samples. The values suggest that, as the amount of SFS is increased, the optimum moisture to achieve
the maximum dry density is also increased possibly as a result of the high absorption capacity of the
SFS. In addition, the maximum dry density was also observed to increase with growing SFS content,
which is likely due to the SFS having a higher specific gravity than the clay.
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Table 7. Optimum moisture content and maximum dry density values for the unmodified and
SFS-modified clay.

Mixture Type Optimum Moisture Content (%) Maximum Dry Density (kg/m3)

Unmodified Clay 13.70% 17.82

10% SFS 14.25% 18.01

15% SFS 15.00% 18.10

3.3. Unconfined Compressive Strength (UCS)

Three replicate UCS tests were performed for each of the five mixes. The unmodified clay samples
were tested immediately after compaction. It was assumed that the addition of the CaCl2 did not
affect the optimum moisture content, so these specimens were mixed at the optimum moisture content
determined for the SFS mixtures without CaCl2. The SFS-modified samples and SFS-modified samples
with CaCl2 were tested after curing for 48 h at 49 ◦C. An increase in average UCS was observed
with growing SFS content. However, the addition of CaCl2 in SFS-modified clay samples showed a
reduction in the UCS compared to the equivalent SFS-modified samples without CaCl2, which was
also shown by Thomas [85]. Meanwhile, the UCS for SFS modified clay with CaCl2 was greater than
unmodified clay, as observed in the work of Poh et al. [45].

Figure 4 shows the comparison of three replicates tested for each mixture. Table 8 summarizes the
values measured for UCS for different mixtures. The results indicate that there was variability in UCS
and the displacement at peak load in the three replicates. However, the displacement at peak load was
not necessarily differentiated between the unmodified and SFS-modified clay samples. The average
UCS for each mixture is shown in Figure 5, which indicates that the SFS-modified clay samples had
greater standard deviations than the unmodified clay. This suggests that there was greater variability
in the chemical reactions and/or compaction.
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Figure 4. Unconfined compressive strength (UCS) comparison of clay samples.
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Table 8. Values of unconfined compressive strength (UCS), actual moisture, target moisture, and
displacement at peak load.

Mix
Optimum
Moisture

Content (%)

Actual
Moisture

Content (%)
Replicateno. Peak Load

(kN) UCS (kPa) Displacement at
Peak Load (mm)

Unmodified
Clay 13.70 15.53

1 0.40 * 707.4 5.94
2 0.73 1291.4 3.67
3 0.72 1274.2 4.62

10% SFS 14.25 18.46
1 1.12 1981.6 5.77
2 1.31 2318.0 4.58
3 1.20 2122.9 4.12

15% SFS 15.00 18.71
1 0.78 * 1380.3 12.10
2 1.26 2229.1 5.37
3 1.51 2671.7 8.58

10% SFS +
CaCl2

14.25 17.48
1 1.13 1585.8 8.37
2 1.20 2122.9 6.28
3 1.09 1928.5 7.92

15% SFS +
CaCl2

15.00 18.20
1 0.83 1468.6 11.34
2 0.75 1327.2 5.23
3 0.91 1609.9 6.15

* Data point considered an outlier and not included in the average.
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Despite accounting for the moisture content of the clay and SFS, it can be observed in Table 8
that the actual moisture at compaction was higher than the optimum moisture content. This can
contribute to the variability in the findings since not all samples were, therefore, compacted to maximum
density [33].

The stress-displacement curves for the various mixtures and replicates are shown in the
Supplementary Material (Figure S1), with averages compared in Figure 6. The stress-displacement
behavior suggests that the modulus of the stabilized clay samples is greater than the unmodified clay.
Estimating the elastic modulus based on the linear portion of the stress-strain curves reveals that
the elastic modulus for the different mixes follows the same trend as with UCS, as demonstrated in
Figure 7. However, it is noted that the CaCl2 addition did not affect the elastic modulus relative to
the 10% SFS mix, but the limited dataset for the 10% SFS mix may skew this finding. The addition of
10% SFS increased the elastic modulus by 60% while 15% SFS increased the elastic modulus by 75%,
relative to the unmodified clay.
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3.4. Vibration Resonance

For the unmodified clay, the longitudinal resonant frequency was found to be more repeatable
(coefficient of variation of 1.3%) when compared to the transverse resonant frequency (coefficient of
variation of 3.1%), as can be seen in Table 9. The larger impactors generated a transverse resonant
frequency that was lower than that generated by the small impactor, which is unexpected since the
resonant frequency is a fundamental material property and should not change. This finding suggests
that the unmodified clay has a damping effect that influences the resonant frequency. The possible
damping effect of the clay may have been a factor for previous studies that determined the longitudinal
resonant frequency [75–77]. Comparing the impactor size (see Supplementary Material, Figure S2),
it is evident that the small impactor induced the most prominent response. The larger impactors
additionally induced some noise in the signal before the resonant frequency for both the longitudinal
and transverse testing.
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Table 9. Longitudinal and transverse resonant frequencies for the unmodified clay.

Impactor Size Test Replicate Transverse Resonant
Frequency (Hz)

Longitudinal Resonant
Frequency (Hz)

8 mm
1 660 1130
2 670 1140
3 620 1140

14 mm
1 660 1130
2 630 1110
3 650 1100

18 mm
1 630 1120
2 620 1140
3 620 1130

Given the higher variability in the transverse resonant frequency, only the longitudinal resonant
frequency was determined for the stabilized mixtures along with the corresponding dynamic modulus
(Table 10). As shown in Table 10, the longitudinal resonant frequency was higher for the stabilized
mixtures when compared to the unmodified clay, which resulted in higher dynamic moduli for the
stabilized mixtures (Figure 8). Relative to the unmodified clay, the increases in dynamic modulus were
212%, 221%, 139%, and 105% for the stabilized mixes with 10% SFS, 15% SFS, 10% SFS with CaCl2, and
15% SFS with CaCl2, respectively. Comparing the stabilized mixes with and without CaCl2, the CaCl2
was not effective at accelerating the hydration or the reaction of the SFS.

Table 10. Longitudinal dynamic modulus for each mixture.

Sample Impactor Size Length (cm) Density
(kg/m3)

Average
Longitudinal

Resonant Frequency
(Hz)

Average Dynamic
Modulus (MPa)

Unmodified
Clay

8 mm 14.2 2064.0 1136.7 215
14 mm 14.2 2064.0 1113.3 206
18 mm 14.2 2064.0 1130.0 213

10% SFS
8 mm 14.2 2101.2 1990.0 671
14 mm 14.2 2101.2 1950.0 644
18 mm 14.2 2101.2 1966.7 656

15% SFS
8 mm 14.2 2146.4 1996.7 690
14 mm 14.2 2146.4 2025.0 710
18 mm 14.2 2146.4 2015.0 703

10% SFS +
CaCl2

8 mm 14.1 2097.6 1755.0 514
14 mm 14.1 2097.6 1765.0 520
18 mm 14.1 2097.6 1753.3 513

15% SFS +
CaCl2

8 mm 14.1 2141.9 1610.0 442
14 mm 14.1 2141.9 1625.0 450
18 mm 14.1 2141.9 1593.3 432

Note that the dynamic modulus from resonance testing was significantly greater than the estimated
elastic modulus from the UCS tests. This is an expected outcome, as has been demonstrated for various
geomaterials [86–90] because of differences in strain rate, material heterogeneity and the volume
probed, anisotropic effects, stress history, and strain amplitude. For instance, the static elastic modulus
testing in this study involved large strains relative to the comparatively small strains in resonant
frequency dynamic modulus testing. It was found that the dynamic modulus was 2.5–6 times greater
than the estimated elastic modulus.
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3.5. Effect of SFS Content

A general trend of increasing UCS and dynamic modulus was noted with increasing SFS content,
which suggests that: (1) the CaO and Ca(OH)2 content of the SFS is reacting with the clay and/or
(2) the SFS particles are physically acting to stabilize the soil structure. Certainly the chemical reaction
between lime and clay minerals will enhance the engineering properties of the soil [91,92]. However,
the total CaO and Ca(OH)2 content of the LMF slag was about 3.5%, which may not be sufficient
to be the sole cause of the increase in strength and modulus. Therefore, it is likely that the SFS also
contributes a mechanical stabilization or modification of the soil, as has been demonstrated in the
literature using other aggregates [93–96].

Figure 9 also demonstrates that the dynamic and elastic (static) moduli increased with increasing
SFS content, with the dynamic modulus increasing more than the elastic modulus. As discussed in
Section 3.4, the dynamic and elastic moduli are not equivalent, as demonstrated in other studies [86–90],
with the dynamic modulus often being a greater magnitude than the elastic modulus [86]. Therefore,
the moduli behavior in Figure 9 is in agreement with the literature.Materials 2020, 13, x FOR PEER REVIEW 14 of 19 
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Figure 9. Relationships between UCS and modulus with the SFS content (without CaCl2).
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As shown in Figure 9, the dataset suggests that a linear trend matches the increase in properties
at least up to 15% SFS. However, the dataset is too limited to definitively assess and characterize the
relationship between the SFS content and the hardened properties of the stabilized clay.

3.6. Effect of CaCl2 Addition

Relative to the SFS-modified clay samples, the addition of the CaCl2 reduced the UCS and dynamic
modulus of the stabilized clay. With 10% SFS, the addition of CaCl2 reduced the dynamic modulus
by 23% while, with 15% SFS, the reduction was 36% when CaCl2 was added. Taylor [97] reports
that the accelerating effect of CaCl2 is more pronounced for Portland cement at lower temperatures.
Therefore, perhaps, the elevated curing temperature adversely affected the accelerating ability of the
CaCl2. In addition, while the use of chloride salts appears to enhance the reaction of lime with clayey
soils [98–100], it is possible that the elevated curing temperature accelerated the carbonation of the free
CaO in the SFS [101], which could have, therefore, negated the effectiveness of chloride in accelerating
the lime-clay reaction. It has also been reported that the calcium silicate phase(s) in SFS are poorly
reactive or relatively inert [81,102], which would additionally suggest that the CaCl2 did not sufficiently
affect the SFS reactivity.

4. Conclusions

The study was undertaken to investigate the potential for stabilizing a clayey soil with steel
furnace slag (SFS). The SFS employed was specifically a finely graded ladle metallurgy furnace (LMF)
slag. The LMF slag was found to be composed of wüstite, larnite (β-dicalcium silicate), mayenite, and
periclase with approximately 2.5% free lime, 1.3% calcium hydroxide, and 3.2% magnesium hydroxide.
The soil, selected for its plastic properties, was a refractory clay composed of quartz and kaolinite and
was classified as an AASHTO A-2-6 soil with a plasticity index of 14.

Two SFS contents were tested, which included 10% and 15% LMF slag by weight. The moisture-
density relationships revealed that the maximum dry density and optimum moisture content increased
with increasing SFS content. The results indicated a linear trend for increasing unconfined compressive
strength (UCS) and dynamic modulus with increasing SFS content. Relative to the unmodified clay,
the UCS increased by 67% and 91% when 10% and 15% SFS were utilized, respectively. The elastic
modulus increased by 60% and 75% when 10% and 15% SFS were used, respectively, and the dynamic
modulus increased by 212% and 221% when 10% and 15% SFS were added, respectively. Based on the
literature, additional SFS modified samples were created with calcium chloride added at 2% by weight
of the total water in an attempt to accelerate the hydration of the dicalcium silicate in the LMF slag, but
the results suggested that calcium chloride was not effective.

These findings suggest that LMF slag fines are suitable for stabilizing clayey soils. While there was
insufficient evidence of a chemical stabilization mechanism, it is likely that the SFS at least contributed
to a mechanical stabilization mechanism. The results also indicate that 15% SFS provides the most
improvement to the UCS and dynamic modulus of the stabilized soil, even though further testing is
required to validate and improve upon these findings.
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