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Abstract: Zinc (Zn) ion supercapacitors (ZISCs) have attracted considerable attention as a viable
energy storage technology because they are cost-effective, safe, and environmentally friendly. How-
ever, cathode materials with suitable properties are rare and need to be explored. In this regard,
metal carbides (MXenes) are a good choice for capacitive energy storage, but they exhibit low ca-
pacitance. The energy storage performance of MXenes can be bossed using functionalization with
heteroatom doping, e.g., nitrogen (N), to simultaneously modify ZISCs’ fundamental characteristics
and electrochemical properties. Herein, we present an in-situ N-functionalization of Ti3C2Tx-MXene
via a hydrothermal reaction with urea (denoted as N-Ti3C2Tx-MXene). N-functionalization into
Ti3C2Tx-MXene raised Ti3C2Tx-MXene’s interlayer spacing and boosted the Zn-ion storage in 1 M
ZnSO4 electrolyte. The N-Ti3C2Tx-MXene electrode delivered an excellent specific capacitance of
582.96 F/g at 1 A/g and retained an outstanding cycle stability of 94.62% after 5000 cycles at 10 A/g,
which is 1.8 times higher than pristine Ti3C2Tx-MXene at identical conditions. Moreover, the N-
Ti3C2Tx-MXene//Zn device demonstrated a maximum capacitance of 153.55 F/g at 1 A/g, retained
92% of its initial value after 5000 cycles, and its Coulombic efficiency was ~100%. This strategy
considerably reduced Ti3C2Tx-MXene nanosheet restacking and aggregation and enhanced electro-
chemical performance. Further, this research elucidated N-Ti3C2Tx-MXene’s charge–storage process
and offered a fresh approach to the rational design of novel electrode materials for ZISCs.

Keywords: MXene; nitrogen functionalization; specific capacitance; zinc ion supercapacitor

1. Introduction

Expanding energy crises and environmental degradation have provided a powerful
impetus for the development of safe, environmentally sustainable, and inexpensive energy
storage technologies [1,2]. Further, humans’ extensive energy demands require large-scale
research into electrochemical energy storage and conversion technologies, which can store
energy more efficiently [3,4]. Recently a significant increase in research efforts directed
toward discovering energy storage devices that are safe and affordable have been connected
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with high-performing energy conversion devices [5,6]. Particular consideration has been
given to designing rechargeable batteries [7] and supercapacitors (SCs) [8]. SCs are simple
and risk-free technologies, but their low energy density is a primary limitation. Lithium-ion
batteries (LIBs) have been widely commercialized for electronic devices because of their
low weight, excellent energy density, and outstanding performance [9]. However, scaling
up LIBs is restricted by significant safety and environmental issues [10]. Aqueous Zn-ion
storage has drawn much interest as a potentially useful aqueous electrolyte-based device
for widespread energy storage, because of the Zn anode’s exceptional stability in aqueous
electrolyte and ease of fabrication [11–13]. The research and development of zinc ion
supercapacitors (ZISCs) with excellent performance is therefore of utmost importance.

Electrode material is essential in determining aqueous ZISCs’ electrochemical per-
formance. There have been numerous efforts to investigate novel electrode materials for
high-performance ZISCs, including organic compounds [14,15], Prussian blue [16], and
transition metal oxides [17,18]. Designing aqueous ZISCs with suitable capacitance, ex-
tended cycle life, and remarkable rate performance remains challenging. MXenes are a
novel class of two-dimensional (2D) materials that have applications in energy conversion
and storage [19]. MXenes are typically 2D transition metal nitrides, carbides and/or car-
bonitrides with the general formula Mn+1XnTx, where M denotes transition metal, n = 1–4,
X denotes nitrogen and/or carbon, and T denotes different surface termination groups,
such as –OH, –F or –O [20,21]. Owing to its metallic conductivity, layered structure, su-
perior mechanical characteristics, and surface hydrophilicity [22], MXenes have already
proven to be attractive options as electrode material in SCs, zinc ion batteries, ZISCs, and
sensors [19,23,24]. Unfortunately, similar to many other 2D materials, MXenes have high
interlayer restacking and aggregation, which reduces their electrochemical performance. In
particular, MXenes with multi-layered accordion-like architectures exhibit exceptionally low
water dispersibility [25]. Multi-layers can be separated into fewer further dispersible layers
using ultrasonication. However, MXene layers quickly re-stack and agglomerate when
sonication stops [26,27]. There have been several attempts to address these issues [7,28];
of these, nitrogen (N)-functionalization of MXene nanosheets is an excellent strategy to
boost MXene’s performance. Additionally, to achieve excellent improvements in ZISCs’
performance, it is essential to incorporate pseudocapacitive properties into the electrode
materials [29]. For instance, incorporating heteroatoms, such as N, into carbon-based
materials has proven to be an efficient and successful strategy for improving their elec-
trochemical characteristics [30]. N-functionalized carbon-based materials offer enhanced
electrical conductivity and surface wettability and are employed as electrode materials for
high-performance ZISCs [31].

This paper presents a straightforward approach for preparing a novel type of N-
functionalized Ti3C2Tx-MXene (N-Ti3C2Tx-MXene) via a hydrothermal technique with
urea; N-functionalization into Ti3C2Tx-MXene raised interlayer spacing. The N-Ti3C2Tx-
MXene electrode demonstrated a maximum capacitance of 582.96 F/g at 1 A/g and retained
94.62% of its initial value for 5000 cycles at 10 A/g. In addition, the N-Ti3C2Tx-MXene//Zn
device demonstrated a maximum specific capacitance of 153.55 F/g at 1 A/g, retention of
92% for 5000 cycles, and Coulombic efficiency equal to ~100%. This strategy considerably
reduces Ti3C2Tx-MXene nanosheet restacking and aggregation and enhances electrochem-
ical performance. Further, this research elucidated N-Ti3C2Tx-MXene’s charge–storage
process and offered a fresh approach to the rational design of novel electrode materials
for ZISCs.

2. Experimental Method
2.1. Preparation of Ti3C2Tx-MXene

To prepare layered Ti3C2Tx-MXene, Ti3AlC2 MAX powder (1 g) was mixed in 20 mL
of HF (50 wt.%) containing solution at room temperature (RT) and constantly agitated for
90 h. The resultant Ti3C2Tx-MXene solution was rinsed with water and then centrifuged at
1500 rpm for 15 min to attain a pH of ~6. The Ti3C2Tx-MXene solution was filtered using



Molecules 2022, 27, 7446 3 of 13

a polyvinylidene fluoride (PVDF) membrane. The obtained Ti3C2Tx-MXene powder was
vacuum-dried at RT.

2.2. Synthesis of N-Ti3C2Tx-MXene

First, 1 g of Ti3C2Tx-MXene was dissolved in 100 mL DI water. After that, urea
was dropped into the Ti3C2Tx-MXene solution, which was continuously agitated. The
proportion of urea to Ti3C2Tx-MXene by weight was 1:30. The mixture was placed in an
autoclave. The solution of urea and Ti3C2Tx-MXene underwent a hydrothermal reaction
for 6 h at 160 ◦C. Next, the nitrogen-functionalized Ti3C2Tx-MXene (N-Ti3C2Tx-MXene)
was synthesized by letting the autoclave temperature naturally fall to RT. Finally, the
N-Ti3C2Tx-MXene was cleaned using water before being dried at ambient temperature
in a vacuum.

2.3. Physical Characterization

The sample was structurally analyzed using X-ray diffraction (XRD) (X’Pert Pro PAN-
alytical), with a Cu Kα radiation of 0.15406 nm wavelength λ. The prepared sample’s
morphology was analyzed using a transmission electron microscope (TEM JEM-2100F,
JEOL). The material’s chemical states were analyzed using Raman spectroscopy (HJY Lab
RAM Aramics 70 France). Elemental composition was investigated using X-ray photoelec-
tron spectroscopy (XPS). Experiments involving the adsorption and desorption of nitrogen
were carried out using a Brunauer–Emmett–Teller (BET) analyzer to determine surface area
and pore structure.

2.4. Electrochemical Measurements

For three electrode configurations, the working electrode consisted of 80% N-Ti3C2Tx-
MXene, 10% conductive carbon black, and 10% polyvinylidene fluoride (PVDF) as a binder.
A homogenous slurry was prepared using N-Methyl-2-Pyrrolidone (NMP) as a solvent,
which was pasted on a 1 × 1 cm2 piece of pre-treated carbon cloth (CC) before being
dried in a vacuum oven at 60 ◦C for 6 h. A platinum plate, with Ag/AgCl as a reference
electrode using 1 M ZnSO4 electrolyte, was employed as a counter. To fabricate aqueous
ZISCs, the previous working electrode was served as positive, with Zn as negative, in 1 M
ZnSO4. An electrochemical workstation (CHI 660E, Wuhan, China) was used to perform
cyclic voltammogram (CV) and galvanostatic charge–discharge (GCD) tests, and take
electrochemical impedance spectroscopy (EIS) measurements.

2.5. Calculations

Csp =
I∆t

m × ∆V
(1)

Cd =
I∆td

M × (V)
(2)

E =
1
2

CdV2 × 1000
3600

(3)

P =
E
∆t

(4)

η (%) =
∆td
∆tc

× 100 (5)

where Cd and Csp denote capacitance for two- and three-electrode configuration, respec-
tively; E and P denote energy and power densities, respectively; η denotes Coulombic
efficiency; I(A) denotes current; M denotes the mass of two-electrode configurations; ∆t (s)
denotes discharge time; and V(V) denotes the potential window.
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3. Results and Discussion

Figure 1 illustrates the preparation method for N-functionalized Ti3C2Tx-MXene (N-
Ti3C2Tx-MXene). First, multilayer Ti3C2Tx-MXene with slightly increased layer spacing was
formed via selective removal of the Al layer of Ti3AlC2 MAX using hydrofluoric acid (HF).
During this procedure, several O-containing groups formed a negative charge on MXene
nanosheets [32,33]. N-Ti3C2Tx-MXene was subsequently fabricated using a hydrothermal
process with urea.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 13 
 

 

𝜂 (%) =
∆𝑡𝑑

∆𝑡𝑐
 × 100 (5) 

where Cd and Csp denote capacitance for two- and three-electrode configuration, respec-

tively; E and P denote energy and power densities, respectively; η denotes Coulombic 

efficiency; I(A) denotes current; M denotes the mass of two-electrode configurations; Δt 

(s) denotes discharge time; and V(V) denotes the potential window.  

3. Results and Discussion 

Figure 1 illustrates the preparation method for N-functionalized Ti3C2Tx-MXene (N-

Ti3C2Tx-MXene). First, multilayer Ti3C2Tx-MXene with slightly increased layer spacing was 

formed via selective removal of the Al layer of Ti3AlC2 MAX using hydrofluoric acid (HF). 

During this procedure, several O-containing groups formed a negative charge on MXene 

nanosheets [32,33]. N-Ti3C2Tx-MXene was subsequently fabricated using a hydrothermal 

process with urea.  

 

Figure 1. A schematic diagram of N-Ti3C2Tx-MXene’s preparation. 

A transmission electron microscope (TEM) was employed to analyze the micromor-

phology and microstructural development of both Ti3C2Tx-MXene and N-Ti3C2Tx-MXene. 

Figure 2a shows a low-resolution TEM image of pristine Ti3C2Tx-MXene, which exhibits 

translucent and smooth nanosheets that ultimately overlapped to produce a wrinkled 

structure. Figure 2c is a TEM image of N-Ti3C2Tx-MXene, which reveals the porous struc-

ture of N-functionalized MXene nanosheets. Figure 2b shows a high-resolution TEM im-

age of Ti3C2Tx-MXene, which exhibits a crystallite with an interplanar spacing of d110 = 0.30 

nm, corresponding to the (110) plane. After N-functionalization, the interlayer spacing in 

the N-Ti3C2Tx-MXene sample increased to d110 = 0.32 nm, as shown in Figure 2d. The in-

creased interlayer spacing facilitated the interfacial charge transfer and electrolytic ion’s 

accessibility to electroactive areas. Moreover, the presence of large pores on N-Ti3C2Tx-

MXene nanosheets enhanced ion movement within the material, which enhanced its elec-

trochemical performance. Figure 2e illustrates a uniform distribution of N, T, and C across 

the whole material via energy-dispersive X-ray spectroscopy (EDS) for N-Ti3C2Tx-MXene.  

Figure 1. A schematic diagram of N-Ti3C2Tx-MXene’s preparation.

A transmission electron microscope (TEM) was employed to analyze the micromor-
phology and microstructural development of both Ti3C2Tx-MXene and N-Ti3C2Tx-MXene.
Figure 2a shows a low-resolution TEM image of pristine Ti3C2Tx-MXene, which exhibits
translucent and smooth nanosheets that ultimately overlapped to produce a wrinkled struc-
ture. Figure 2c is a TEM image of N-Ti3C2Tx-MXene, which reveals the porous structure
of N-functionalized MXene nanosheets. Figure 2b shows a high-resolution TEM image of
Ti3C2Tx-MXene, which exhibits a crystallite with an interplanar spacing of d110 = 0.30 nm,
corresponding to the (110) plane. After N-functionalization, the interlayer spacing in the
N-Ti3C2Tx-MXene sample increased to d110 = 0.32 nm, as shown in Figure 2d. The increased
interlayer spacing facilitated the interfacial charge transfer and electrolytic ion’s accessi-
bility to electroactive areas. Moreover, the presence of large pores on N-Ti3C2Tx-MXene
nanosheets enhanced ion movement within the material, which enhanced its electrochemi-
cal performance. Figure 2e illustrates a uniform distribution of N, T, and C across the whole
material via energy-dispersive X-ray spectroscopy (EDS) for N-Ti3C2Tx-MXene.

Figure 3a,b depict X-ray diffraction (XRD) images of Ti3C2Tx-MXene and N-Ti3C2Tx-
MXene. Ti3C2Tx-MXene’s XRD pattern has a characteristic peak less than 10◦, which
confirms that Ti3AlC2 was successfully etched to fabricate Ti3C2Tx-MXene [34]. XRD im-
ages of N-Ti3C2Tx-MXene show that the N-functionalization approach had minimal effect
on Ti3C2Tx-MXene’s phase structure; the only notable change was that the (002) peak
moved toward a lower diffraction angle associated with increased spacing. After further ex-
amination, it was discovered that the (002) peak was situated at approximately 9.3◦, which
was associated with a 0.96 nm interlayer spacing. Following N-functionalization, the posi-
tion of the (002) peak changed to 8.9◦, and the interlayer spacing was modified to 0.99 nm
(Figure 3b). Increased interlayer spacing might have efficiently exploited the potential area
for Zn2+ accommodation, implying a high capacitance. Further, Figure 3c shows high reso-
lution Ti-2p XPS spectra, which were deconvoluted into five components: Ti-C (454.65 eV),
Ti2+-C (456.05 eV), Ti3+-C (458.35 eV), TiO2 (460.74 eV), and Ti4+-C (464.21 eV). After N-
functionalization, a new peak appeared at Ti4+-C (464.21 eV). Notably, each peak’s intensity
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was enhanced after N-functionalization, suggesting that Ti3C2Tx-MXene underwent partial
oxidation during the N-functionalization process. N-Ti3C2Tx-MXene’s deconvoluted N-1s
XPS spectra are shown in Figure 3d, which shows peaks at 399.30 eV corresponding to
pyrrolic-N, whereas the peak at a 401.33 eV binding energy corresponds to graphitic-N.
The contribution of pyrrolic-N and graphitic-N groups proved the improvement in the
sample’s electrical conductivity and electrochemical activity. Figure 3e depicts the F-1s
spectrum, which reveals peaks at 284.39 and 285.79 eV, related to Ti-F and Ti-F-Ti, respec-
tively, indicating the presence of the -F group generated by HF etching. The deconvoluted
C-1s spectrum is depicted (Figure 3f). This spectrum displays four peaks at binding en-
ergies 281.15, 284.61, 286.25, and 288.51 eV, related to the Ti–C, C–C, C–O–C, and COOH
bonds, respectively.
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(d) N-1s; (e) F-1s; and (f) C-1s.

Using a three-electrode configuration in 1 M ZnSO4, the electrochemical performance
of pristine Ti3C2Tx-MXene and N-Ti3C2Tx-MXene were investigated. Figure 4a displays
the CVs of pristine Ti3C2Tx-MXene and N-Ti3C2Tx-MXene electrodes across the potential
window range of −0.8–0.2 V. Both CV curves have a characteristic rectangular shape
with anodic and cathodic peaks, suggesting that both electrodes retained their capacitive
behavior. However, the individual capacitances displayed significant variation, as seen
in the area under the CV curves. Compared to the pristine Ti3C2Tx-MXene electrode, an
enhanced specific capacitance can be inferred from the larger CV area for N-Ti3C2Tx-MXene
due to the outstanding conductivity and interconnectivity of N-Ti3C2Tx-MXene nanosheets.
Figure 4b depicts CVs of N-Ti3C2Tx-MXene at various sweep rates (1–75 mV/s). Even
when the sweep rate was very high (75 mV/s), N-Ti3C2Tx-MXene displayed extremely
capacitive behavior, excellent ion responsiveness, and good rate capabilities, with slight
shifts in cathodic and anodic peaks [35]. Additionally, the mechanism for charge storage in
electrodes was analyzed using a power law study of electrochemical kinetics [36].

i(V) = a.vb (6)

log (i) = b log (v) + log (a) (7)

where v denotes the sweep rate, i denotes the peak current density, and a and b denote
arbitrary constants. A b-value = 0.5 implied that capacitance was regulated via ionic
diffusion, whereas b-value = 1.0 showed that the capacitive mechanism dominated during
charge–discharge. Figure 4c shows corresponding anodic and cathodic b-values of 0.81 and
0.88, respectively, demonstrating the synchronous diffusion and capacitive-controlled
mechanisms in the electrochemical reaction of the N-Ti3C2Tx-MXene.
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Figure 4d demonstrates that, at a sweep rate of 20 mV/s, N-Ti3C2Tx-MXene stored
charge 28.8% through a diffusion-controlled mechanism and 71.2% through a capacitive-
controlled mechanism. Furthermore, Figure 4e illustrates the capacitive- and diffusion-
controlled mechanisms for pristine Ti3C2Tx-MXene and N-Ti3C2Tx-MXene at various sweep
rates (1 to 50 mV/s). The capacitive-controlled mechanism rose as the sweep rate increased,
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suggesting that the capacitive mechanism dominated the total capacitance, particularly at
high sweep rates.

Figure 5a displays the GCDs of pristine Ti3C2Tx-MXene and N-Ti3C2Tx-MXene at
5 A/g. N-Ti3C2Tx-MXene had a charge–discharge duration of 253.35 s, which was signifi-
cantly longer than the charge–discharge duration of a pristine Ti3C2Tx-MXene electrode
(152.69 s), and was consistent with CV observations. Additionally, Figure 5b displays the
N-Ti3C2Tx-MXene electrode’s GCDs at 1 to 20 A/g; excellent capacitive responsiveness
with highly reversible charge–discharge at the N-Ti3C2Tx-MXene electrode is indicated by
the GCD curves’ symmetry across all current densities. A small IR drop in discharge curves
indicates the low internal resistance of the N-Ti3C2Tx-MXene electrode [37]. A longer dis-
charge duration at higher current density values and maintaining symmetry indicate good
Coulombic efficiency and outstanding charge storage characteristics [38]. Using discharge
times, capacitances were determined according to Equation (1). As seen in Figure 5c, the ca-
pacitances of pristine Ti3C2Tx-MXene and N-Ti3C2Tx-MXene were 582.96 and 380.64 F/g at
1 A/g, respectively. Surprisingly, the N-Ti3C2Tx-MXene retained its capacitance of 400 F/g
(68.6%) even at 20 A/g, and it was higher than that of pristine Ti3C2Tx-MXene (250.66 F/g,
65.8%). The higher capacitance of the N-Ti3C2Tx-MXene electrode was attributed to N-
functionalization. Figure 5d depicts the Nyquist pattern, which helps explain the increased
electrochemical performance of N-Ti3C2Tx-MXene, as determined using EIS tests. The
semicircle’s diameter shows a charge transfer resistance in the high-frequency zone of
Rct ~ 10.71 Ω for the N-Ti3C2Tx-MXene electrode, which was lower than that of pris-
tine Ti3C2Tx-MXene (Rct ~ 13.3 Ω). The computed equivalent series resistance Rs from
the x-intercept for N-Ti3C2Tx-MXene was Rs ~ 2.39 Ω, whereas it was Rs ~ 2.56 Ω for
the Ti3C2Tx-MXene electrode. This demonstrates N-Ti3C2Tx-MXene’s higher electrical
conductivity due to N-functionalization. The cyclic life of pristine Ti3C2Tx-MXene and
N-Ti3C2Tx-MXene were evaluated at 10 A/g. The cyclic stability of pristine Ti3C2Tx-MXene
and N-Ti3C2Tx-MXene electrodes are depicted in Figure 5e. The N-Ti3C2Tx-MXene elec-
trode exhibited 99.62% retention for 5000 cycles, whereas pristine Ti3C2Tx-MXene demon-
strated 88.54% retention for 5000 cycles; the N-Ti3C2Tx-MXene electrode had exceptional
cyclic performance.

In conjunction with their potential window, the improved energy storage performance
of N-Ti3C2Tx-MXene electrodes in a three-electrode system suggested that a two-electrode
energy storage device constructed from such material might exhibit excellent performance.
Therefore, to investigate the viability of the N-Ti3C2Tx-MXene electrode for use in real-
world applications, an aqueous N-Ti3C2Tx-MXene//Zn device was assembled. Figure 6a
illustrates the assembly process and operation of an aqueous N-Ti3C2Tx-MXene//Zn de-
vice using a 1 M ZnSO4. Figure 6b displays CV curves for the N-Ti3C2Tx-MXene//Zn
device using a potential window of 0.0 to 1.2 V, where preservation of CVs’ shapes demon-
strates excellent electrochemical stability. Further, the area under CV curves gradually
increased with sweep rates, indicating that the N-Ti3C2Tx-MXene//Zn device had superior
electrochemical performance. In addition, GCD measurements were performed from 1 to
7 A/g, as shown in Figure 6c. GCD curves for the N-Ti3C2Tx-MXene//Zn device demon-
strate both highly reversible charge–discharge curves and high Coulombic efficiency. The
maximum capacitance (Cd) of the N-Ti3C2Tx-MXene//Zn device was calculated according
to Equation (2). The maximum computed specific capacitance was 153.55 F/g at 1 A/g,
as illustrated in Figure 6d. At 10 A/g, 54% capacitance was retained, which indicated
the N-Ti3C2Tx-MXene//Zn device’s exceptional rate performance. Figure 6e displays
the Ragone plot, which demonstrates the E and P of the N-Ti3C2Tx-MXene//Zn device
(calculated according to Equations (3) and (4), respectively). The N-Ti3C2Tx-MXene//Zn
device delivered energy densities of 30.7, 24.3, 20.1, 19.1, 17.7, and 16.7 Wh/kg at power
densities of 600.5, 1200.9, 1801.4, 3002.4, 4203.4, and 6004.8 W/kg, respectively. This indi-
cates its superiority compared to most previously explored symmetric/asymmetric SCs
devices [35,39–43]. Furthermore, Figure 6f displays the cyclic stability of the N-Ti3C2Tx-
MXene//Zn device, which exhibited 92% retention for 5000 cycles, indicating exceptional
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cyclic stability with nearly 100% Coulombic efficiency. According to the findings of the
single electrode and ZISCs device, N-Ti3C2Tx-MXene material demonstrates outstanding
electrochemical performance as indicated by specific capacitance, cyclic performance, en-
ergy density, and power density. We believe that these exceptional properties are due to
the favorable N-functionalization of the N-Ti3C2Tx-MXene electrode material. In particular,
N-atoms’ presence enabled N-Ti3C2Tx-MXene to provide a relatively high active surface
area and excellent electrochemical activity.
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Figure 6. Electrochemical characterization of N-Ti3C2Tx-MXene//Zn in a two-electrode setup:
(a) schematic illustration of N-Ti3C2Tx-MXene//Zn device; (b) CVs of N-Ti3C2Tx-MXene//Zn in
0.0 to 1. 2 V; (c) GCDs at 1 to 7 A/g; (d) capacitance versus current density; (e) Ragone plot;
and (f) cyclic stability.
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4. Conclusions

In conclusion, we presented a straightforward fabrication method for a newly designed
N-Ti3C2Tx-MXene via a hydrothermal reaction with urea. N-functionalization into Ti3C2Tx-
MXene raised the interlayer spacing of Ti3C2Tx-MXene. The fabricated N-Ti3C2Tx-MXene
delivered a maximum capacitance of 582.96 F/g at 1 A/g and retained 94.62% capacitance
for 5000 cycles at 10 A/g. Additionally, the N-Ti3C2Tx-MXene//Zn device demonstrated a
maximum capacitance of 153.55 F/g at 1 A/g, with 92% retained capacitance for 5000 cycles
and a Coulombic efficiency of ~100%. The N-Ti3C2Tx-MXene//Zn device revealed an
energy density of 30.7 Wh/kg with a power density of 600.5 W/kg. This research provided
insight into the rational assembling of innovative electrode materials for ZISCs.
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