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Abstract

In situ measurements with visible and near-infrared spectroscopy (vis-NIR) provide an efficient way for acquiring soil
information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to
evaluate its feasibility to predict a series of soil properties including organic matter (OM), organic carbon (OC), total nitrogen
(TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK) and pH of paddy soils in Zhejiang
province, China. Firstly, the linear partial least squares regression (PLSR) was performed on the in situ spectra and the
predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support
vector machine (LS-SVM) algorithm was carried out aiming to extract more useful information from the in situ spectra and
improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i) the predictions were worse using in situ
spectra compared to laboratory-based spectra with PLSR algorithm (ii) the prediction accuracy using LS-SVM (R2.0.75,
RPD.1.90) was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even
better than results generated using laboratory-based spectra with PLSR; (iii) in terms of AP and AK, poor predictions were
obtained with in situ spectra (R2,0.5, RPD,1.50) either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in
situ vis-NIR spectroscopic estimation of soil properties of paddy soils.
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Introduction

Paddy soil is one of the most important soil resources for

humans because more than half of the world’s population takes

rice, the typical farming product of paddy soils, as staple food. As

one of the major rice producers, China has a large area of paddy

fields of more than 25 million hectares, accounting for 29% of the

cultivated lands of China and 23% of the world [1]. In the past 30

years, due to over-fertilization, significantly declined soil pH has

been found in major crop production areas and enhanced nitrogen

deposition has been identified in terrestrial and aquatic ecosystems

as well as in rice [2,3]. As a result, characterizing the properties of

paddy soils in an efficient way is of great importance for

management of crop growth and yield.

Over the past decades, various agricultural sensors have been

used to determine the soil properties as well as their spatial

variabilities [4]. Among the agricultural sensors, visible and near-

infrared (vis-NIR) spectroscopy has received popularity because it

is fast, less labor-intensive and cost-effective compared to

conventional chemistry experiments and enables rapid measure-

ments of various soil physical and chemical properties. However,

the flooded soil condition in paddy fields makes it difficult to

perform soil sampling and analysis. The best time for soil

measurement is the short time gap between the harvest and

following rotation, when irrigation water has been drained away.

Despite the success of predicting various soil properties using

laboratory-based measurement with vis-NIR spectra, the pre-

treatment of samples (e.g. air-drying, grinding and sieving) is still

tedious and time-consuming. With its faster and more effective

characteristics compared to the laboratory-based spectroscopic

measurement, in situ vis-NIR is a promising method in measuring

and mapping soil properties of paddy fields [5].

Researchers have reported successful application of in situ vis-

NIR spectroscopy to prediction of several soil properties. In terms

of predicting clay content, Waiser et al. (2007) [6] found that in

situ vis-NIR sensing can obtain similar results compared with

laboratory-based sensing. With regard to soil organic and

inorganic carbon, Morgan et al. (2009) [7] got slightly larger

prediction errors using field-based vis-NIR measurements than

using laboratory-based sensing method. When predicting soil color

and mineral composition, Viscarra Rossel (2009) [8] concluded

that results from in situ vis-NIR measurements were in good

agreement with Munsell Book and X-ray diffraction methods.

Furthermore, Mouazen et al. (2009) [9] improved prediction

accuracy of available P by optimizing the field-based vis-NIR

sensing system. In addition, a few other soil properties have been
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predicted with acceptable accuracy, including soil organic matter

[10], nitrogen [11,12], pH [13] and water content [12,14].

However, most of the studies on predicting soil properties using in

situ vis-NIR spectroscopy were conducted on dry farming land.

Although a couple of studies conducted on determining

properties of paddy soils based on laboratory-based vis-NIR

spectroscopy [15,16], to the best of our knowledge, there are few

papers published describing the systematic use of in situ vis-NIR

measurements to predict soil properties in paddy fields.

The aims of this study were to evaluate the feasibility of in situ

vis-NIR sensing for prediction of soil properties in paddy soils by (i)

predicting various soil properties of paddy soils (i.e. organic carbon

(OC), organic matter (OM), total nitrogen (TN), available nitrogen

(AN), available phosphorus (AP), available potassium (AK) and pH

using in situ vis-NIR spectroscopy; (ii) comparing the prediction

accuracy between in situ vis-NIR spectra and laboratory-based

spectra for paddy soils; (iii) evaluating the prediction accuracy of in

situ vis-NIR measurements of soil properties by implementing a

multivariate calibration algorithm, i.e., linear partial least square

regression (PLSR), and a data-mining algorithm, i.e., least-square

support vector machine (LS-SVM).

Materials and Methods

Ethics Statement
We randomly chose 11 paddy fields from close vicinity to 6

cities in Zhejiang province and got permission from Agricultural

Bureaus from these six cities, i.e. Tonglu (2 fields, 16 samples),

Jiande (2 fields, 11 samples), Pujiang (1 field, 8 samples), Zhuji (1

field, 8 samples), Yiwu (1 field, 24 samples) and Fuyang(4 fields,

117 samples). Three of the four fields we chose in Fuyang were the

experimental fields in the China National Rice Research Institute.

There is no endangered or protected species involved.

Soil sampling and spectroscopic measurements
In this study, the spectra of the soil samples were recorded by

proximal in situ stationary vis-NIR sensing and by laboratory-

based vis-NIR measurements. A total of 184 sampling sites were

randomly selected in eleven paddy fields in Zhejiang Province,

China, with latitudes ranging from 29u039N to 30u109N, and

longitudes from 119u109E to 122u489E. The water in the paddy

fields was drained and left to dry for 10 days prior to sampling and

vis-NIR measurement.

vis-NIR measurements at 104 sampling sites were taken in

November 2011, while the remaining 80 sites were surveyed in

August 2013. At each site, the water content of the surface soil (i.e.

0–20 cm) was firstly measured using a TDR-300 (Spectrum

Technologies Inc., USA) with a 20-cm guide. Then, a soil sample

was collected using a cube soil sampler to a depth of 20 cm. The

surface of the sample profile was flattened and evened, without

smearing the soil. Spectra were recorded at three randomly

selected locations at different depths within A horizon. If there

were stones, roots or voids within the soil sample, spectroscopic

measurements were made on the adjacent area. For each of the

three sensing locations, 10 spectra were recorded, and the mean

value of the whole 30 spectra was used to represent the spectra of

the soil at that site. In total, 184 spectra were recorded under the

field condition with one spectrum per site.

After in situ vis-NIR measurements, the samples were packed

into plastic bags, labeled and transported to laboratory. The soil

samples were air-dried, ground and sieved to less than 2 mm. The

vis-NIR spectra of these 184 samples were then measured again

under laboratory condition. The chemical analyses of soil

properties were also conducted using these samples, which would

be described later.

A Fieldspec ProFR vis–NIR spectrometer (Analytical Spectral

Devices, Boulder, CO, USA) was used for in situ and laboratory-

based measurements. The instrument measures the spectra

between 350 and 2500 nm, with a resolution of 3 nm at 700 nm

and 10 nm at 1400 nm and 2100 nm. The sampling resolution of

the spectra is 1 nm. To implement in situ sensing, a high intensity

contact probe (Analytical Spectral Devices) was used to prevent

the interference from stray light during measurement. The probe

has its own light source and a viewing window of 2 cm in diameter

through which the measurements are made. To keep the

measurement consistent, the contact probe was also used in the

laboratory-based measurement. A Spectralon panel with 99%

reflectance was used to calibrate the spectrometer before each

measurement.

Figure 1. The average reflectance spectra measured in
laboratory (red) and in situ (blue) and their corresponding
standard deviation values (shaded regions).
doi:10.1371/journal.pone.0105708.g001

Figure 2. Wavelength specific t-tests between continuum
removed laboratory-based and in situ spectra. Note: The shaded
regions show where significant differences occur between the spectra
at a~0:01significance level.
doi:10.1371/journal.pone.0105708.g002
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Chemical analysis
Soil OM was measured using the H2SO4-K2Cr2O7 oxidation

method at 180uC for 5 minutes [17]. Soil TC and OC content

were determined by dry combustion at 1100uC with a multi N/C

3100 (Analytik Jena AG, Germany). Before the determination of

soil OC, soil samples were acidized by hydrochloric acid to

remove the inorganic carbon in the soil. Soil TN was measured

using Semi-micro Kjeldahl Method and soil AN was measured by

the alkaline hydrolysis diffusion method [18]. Soil AP was

measured by the NH4F-HCl method [18]. Soil AK was measured

using the NH4OAC extraction method and analyzed using a flame

photometer [18]. Soil pH was measured in a 1:1 soil: water

suspension [18]. The statistics of measured soil properties are listed

in Table 1.

Data pre-processing
The spectral regions for 350–399 nm and 2451–2500 nm were

deleted because of noise. The reflectance spectra were transformed

to apparent absorbance (log1/R) and then mean centered. The

smoothing process of the spectra was made using the Savitzky-

Golay algorithm with a window size of 11 and polynomial of order

2 [19]. One sample was regarded as outlier and removed from the

dataset because its spectra were strange. For each soil property,

corresponding values were sorted from small to large, and then

every forth one was selected into test dataset, leaving the rest in

training dataset.

Partial least square regression (PLSR)
Among the multiple linear calibration algorithms, partial least

square regression (PLSR) [20] is one of the most popular

algorithms used for spectral calibration and prediction. It is

closely related to principal component regression (PCR) yet with a

slight difference. Both of them compress the data before prediction

while PLSR avoids the dilemma encountered by PCR of choosing

components for the regression [21].

We assume the spectral data matrix used as independent

variable into PLSR is X, where X = [x1,x2, � � � ,xi], and soil

properties as dependent variable is y, with both mean-centered.

The first step to perform PLSR is to extract a few linear

combinations (called components or factors), T, of the original

spectral matrix X:

T~vTX ð1Þ

where v are the scaled weights and can be calculated as the

eigenvectors of the matrix X
0
yy
0
X . Then both X and y can be

regressed onto T as follows:

X~TPTzE ð2Þ

y~Tqzf ð3Þ

where P are spectral loadings and q are chemical loadings,

describing how the variables in T relate to X and y. E and f are

residuals and represent noise or irrelevant variability in X and y.

After the model parameters are estimated, they can be combined

into the final prediction model as

ŷy~b0zxib̂bi ð4Þ

where b0 is the intercept and b̂bi are regression vectors. The

detailed description of b̂bi can be found in the book of [21].

To avoid over-fitting or under-fitting, leave-one-out cross

validation was used to determine the number of factors to retain

in the calibration models [22]. Root mean square error of cross

validation (RMSE) and Akaike information criterion (AIC) [23]

were used to decide the number of factors.

RMSECV~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

(ŷyi{yi)
2=n

s
ð5Þ

Where ŷyi is the predicted value and yi is the observed value, n is

the number of calibration samples.

AIC~nlnRMSECVz2p ð6Þ

Figure 3. Number of factors (NF) used in partial least square regression versus (a) cross-validated root mean square error (RMSEcv)
and (b) Akaike Information Criterion (AIC).
doi:10.1371/journal.pone.0105708.g003
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Where n is the number of samples and p is the number of

features used in the prediction. The best model has the

smallestRMSECV and AIC.

Least square support vector machine (LS-SVM)
Support vector machine (SVM) is a kernel-based learning

algorithm [24] and has been widely used in the pattern

classification and regression. The kernel-based learning methods

use an implicit mapping of the input data in a high dimensional

feature space, a special type of hyperplane defined by a kernel

function, in which a regression model is built. As an optimized

algorithm based on standard SVM, the least-squares support

vector machine (LS-SVM) [25] uses a squared loss function

instead of the e-insensitive loss function, from which equality

constraints rather than inequality constraints follow. Compared to

SVM, complex calculations are avoided in LS-SVM and the

multivariate calibration problem can be solved in a relatively fast

way. The theory of LS-SVM has been introduced by Suykens et al.
(2002) [25].

Similarly, the spectral data matrix used as independent variable

is X, where X = [x1,x2, � � � ,xi], and soil properties as dependent

variable is y. The LS-SVM uses nonlinear regression function:

y(x)~
Xn

i~1

aiK(x,xi)zb0 ð7Þ

where b0 is the bias; n is the number of samples; xi is the measured

vis-NIR spectra of different samples; K(x,xi) is defined by the

kernel function. We used radial basis function kernel (RBF), which

is the typical general-purpose kernel:

K(x,xi)~e{( x{xik k2
)=2s2 ð8Þ

where s2 is the RBF kernel function parameter, determining the

width of the kernel.

ai is Lagrange multipliers (i.e. support value), which is used by

solving the linear Karush-Kuhn-Tucker (KKT) system:

0 IT
n

In Kzc{1I

" #
b0

a

� �
~

0

y

� �
ð9Þ

where I refers to an (n6n) identity matrix; c is the regularization

parameter which balances the model’s complexity and the training

errors; In is a (n61) vector, with all elements ones; y is an (n61)

vector of observed properties values and K denotes elements in

kernel matrix.

As we can see from these formulas, in order to make an LS-

SVM model, two additional parameters (i.e. c and s2) need to be

determined by users. The regularization parameter c determines

the trade-off between the fitting error minimization and smooth-

ness of the estimated function, and is important to improve the

generalization performance of the LS-SVM model. An increase in

Figure 4. Grid search on c and s2 using least square support vector machine (LS-SVM).
doi:10.1371/journal.pone.0105708.g004
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Figure 5. Predicted versus observed values of soil (a) OM, (b) OC, (c) TN, (d) AN, (e) AP, (f) AK, and (g) pH using least square support
vector machines (LS-SVM) with in situ vis-NIR spectra.
doi:10.1371/journal.pone.0105708.g005
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c is analogous to an increase in the number of latent variables in a

PLS model [26]. The RBF kernel function parameter s2 changes

the width of the kernel, and thus the degree of the non-linearity

can be modeled. When s2 increases, the kernel becomes confined,

forcing the model towards a linear regression, and its accuracy

decreases as well. By contrast, decreased s2 and increased c may

lead to over-fit and thus should be treated cautiously [26].

Assessment of statistics
Coefficients of determination (R2), root mean square error

(RMSE) and the ratio of prediction derivation (RPD) were used to

compare the prediction accuracies.

R2~

Pn
i~1

(ŷyi{
�̂yŷyyi)(yi{�yyi)

� �2

Pn
i~1

(ŷyi{
�̂yŷyyi)

2 Pn
i~1

(yi{�yyi)
2

ð10Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

(ŷyi{yi)
2

s
ð11Þ

RPD~SD=RMSE ð12Þ

Where ŷyi is the predicted value and yi is the observed value; �yyi is

the mean of observed value; �̂yŷyyiis the mean of predicted value; SD is

standard deviation of observed values; n is the number samples.

Williams (2003) [27] and Saeys et al. (2005) [28] proposed a

criterion for the classification of R2 and RPD: an R2 value below

0.50 or an RPD value below 1.5 indicates very poor model

predictions and such a value could not be useful; an R2 value

between 0.50 and 0.65 an RPD value between 1.5 and 2.0

indicates a possibility of distinguishing between large and small

values, while an R2 value between 0.66 and 0.81 or an RPD value

between 2.0 and 2.5 makes approximate quantitative predictions

possible. For an R2 value between 0.82 and 0.90 or an RPD value

between 2.5 and 3.0 and above 3.0, the prediction is classified as

good. If R2 value is larger than 0.91 and RPD value is larger than

3.0, the prediction is considered excellent. Generally, a good

model prediction would have large values of R2 and RPD, and a

small value of RMSE. In order to simplify the classification, Grade

A to E was assigned to the accuracy classes from excellent to not

useful.

The LS-SVM toolbox (LS-SVM v.1.5, Suykens, Leuven,

Belgium) was applied with Matlab R2009 (MathWorks, Inc.,

Natick, MA) to perform the LS-SVM models. And other data

analysis was conducted in R 2.15.0 [29].

Results and Discussions

Comparison of in situ spectra and laboratory-based
spectra

The average reflectance (R) of in situ and laboratory-based

measurements of 183 samples and their respective standard

deviations are given in Fig. 1. In brief, in situ spectra have smaller

reflectance values compared with the laboratory-based spectra.

This is because the presence of soil moisture, replacing the air

within the soil gaps, increases forward scattering of light and thus

the whole absorption of soil moisture at each wavelength increases

[30].

Near Infrared (NIR) spectra are dominated by weak overtones

and combinations of fundamental vibration which occurs in the

MIR region, while visible spectra mainly comprise of electronic

transitions [22]. The absorption features of the raw reflectance

spectra are usually broad and weak and some of them are difficult

to distinguish with the naked eye. As such, continuum removal was

applied to all spectra to emphasize absorption features in the

spectra. The averaged continuum removed reflectance (CR) is

given in Fig. 2, and wavelength specific t-tests were performed

between the continuum removed laboratory-based and in situ

spectra. In Fig. 2, shaded regions show where there were

significant differences between the spectra at a~0:01 significance

level. The absorption features due to soil iron oxides near 430 nm

and 480 nm [31] have similar size and shape in both in situ and

laboratory-based spectra. However, the absorption feature near

650 nm probably correlated with haematite (Fe2O3) [32,33] of in

situ spectra is greater than that of laboratory-based measurements.

The shallow absorption near 1000 nm may be due to amidogen

group present in both in situ and laboratory-based spectra, and

they are significantly different. The most obvious differences

between the two types of spectra are located in two primary water

absorption regions within the NIR spectrum, i.e. one around

1450 nm and the other near 1950 nm. It can be explained by the

permanently waterlogged conditions of the paddy soil samples.

The absorptions caused by soil moisture increases when soil is wet

and their features broaden and deepen compared to laboratory

collected spectra. However, the strong water absorption near

1950 nm of in situ field collected spectra partly masks the

absorptions of clay minerals near 2200 nm which can be identified

in the dry laboratory-based spectra. It might affect the prediction

accuracies of the spectroscopic models [30].

Prediction of soil properties using PLSR
PLSR algorithms were performed on the training dataset with

the optimal number of factors decided by leave-one-out cross

validation, and the test dataset was used to validate the PLSR

model independently. Taking TN for example, the cross-validated

RMSEcv and AIC were plotted against the number of factors

(Fig. 3). The optimal number of factors was selected based on the

minimum RMSECV and AIC. Meanwhile, a small number of

factors should be included in the model to reduce its complexity

when comparable predictions can be obtained. As a result, 8

factors were selected to be used in PLSR with laboratory vis-NIR

spectra.

Prediction accuracy of seven soil properties with laboratory-

based soil spectra using PLSR method and their accuracy classes

are presented in Table 2. Of all the measured soil properties, TN

was best predicted with R2 of 0.87 and RPD of 2.81(Grade B).

OM and OC were approximately quantitatively predicted (Grade

C), with R2 of 0.81, RPD of 2.30 and R2 of 0.81, RPD of 2.20 for

OM and OC, respectively. The predictions of TN, OM and OC is

comparable to previous studies [34,35] The successful predictions

of these properties are mainly because carbon and nitrogen have

direct spectral responses due to the overtones and combinations of

N-H, C-H+C-H and C-H+C-C in the vis-NIR spectra [36,37].

However, the prediction accuracy often varies with the forms of

carbon and nitrogen present in the soils [36,38]. The phenomenon

also occurs in our results. For example, prediction of AN shows a

lower accuracy than that of TN with R2 of 0.86 and RPD of 2.49

(Grade B). This is because most of AN in soil is inorganic, which

have no characteristic absorption in vis-NIR region, and the

amount of AN is usually small, generally less than 5% of TN,

which have a slighter effect on soil spectra.

Prediction with In Situ Vis-NIR Spectra

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e105708



Although some researchers have reported successful prediction

of AP and AK using vis-NIR [39–42], it is not the case in this

study. AP was not well predicted in consideration of R2 of 0.29

and RPD of 1.17 (Grade E); prediction of AK was even worse with

R2 of 0.07 and RPD of 0.77 (Grade E). It is because there is no

direct spectral absorption features in the vis-NIR region for AP

and AK. The occasionally successful prediction of these soil

properties may be due to the covariation with other soil properties

which have directly spectral responses in the vis-NIR range [37].

However, in the present study, poor correlations of AP or AK with

carbon and nitrogen have been found (see Table 3).

Additionally, pH can be predicted with approximately quanti-

tative accuracy with R2 of 0.82 and RPD of 2.42 (Grade B–C).

Although without direct spectral responses in the vis-NIR region,

measurements of pH were always reported to be more successful

compared to P and K [43,44]. It might be because pH is related to

wavelengths of minerals [33]. However, further investigation was

needed.

Spectroscopic prediction using PLSR: in situ vs.
laboratory-based

Prediction accuracies with in situ collected spectra using PLSR

are given in Table 2. Compared to laboratory-based spectroscopic

measurements, predictions of soil properties, such as OC, OM,

TN, AN and pH, with in situ measured spectra were worse. For

example, predictions of soil OM and OC using laboratory-based

spectra were considered to be approximately quantitatively

accuracy (Grade C) while those using in situ measurements were

only able to be distinguished between high and low values (Grade

D). Besides, the prediction accuracy of AN decreases to Grade D

using in situ spectra (R2 = 0.76 and RPD = 1.91) from Grade B

using laboratory-based spectra (R2 = 0.86 and RPD = 2.49). It may

be caused by the environmental factors existing during the in situ

measurement, such as soil moisture, ambient light, temperature

and condition of the soil surface, which would partly mask the

absorption features of some soil properties.

As prediction of soil properties with in situ vis-NIR spectra is less

accurate than with laboratory-based measurement when linear

calibration algorithm was used, a non-linear data mining (i.e. LS-

SVM) algorithm was carried out aiming to extract more useful

information from the in situ spectra and improve predictions.

Spectroscopic prediction of soil properties: PLSR vs. LS-
SVM

In attempt to improve the prediction accuracy using in situ soil

spectra, LS-SVM was used to build the models. In order to

determine the parameters of c and s2 for LS-SVM models, c
ranging from 221 to 210 and s2 ranging from 2 to 215 were tested.

The ranges were based on previous studies. For each combination

of c and s2, the root mean square error of cross-validation

(RMSEcv) was calculated and the optimal parameters were

determined when smaller RMSEcv occurred. The optimizing

process of predicting TN is shown in Fig. 4. The grid search and

leave-one-out cross validation were employed to find the optimal

combination of c and s2. Grid search is a two-dimensional

minimization procedure based on exhaustive search in a limited

range. The grids of ‘‘.’’ in the first step was 10610, and the

searching step at this stage was relatively large. The grids of ‘‘6’’ in

the second step was 10610, and the searching step in the second

stage was relatively small. The optimal search area was

determined using the contour lines of RMSEcv plotted in Fig. 4.

Predictions with in situ spectra using LS-SVM can be found in

Table 2. Firstly, comparison between PLSR and LS-SVM was

made with in situ spectra. Soil OM and OC can only be

distinguished by high and low values (i.e. Grade D) when PLSR

method was performed (OM: R2 = 0.75 and RPD = 1.83; OC:

R2 = 0.75 and RPD = 1.95). However, using LS-SVM method,

both OM and OC can be approximately quantitatively estimated

(i.e. Grade C), with the prediction accuracies of R2 = 0.81 and

RPD = 2.18 for OM, and R2 = 0.79 and RPD = 2.20 for OC.

Prediction of TN was even more accurate using LS-SVM with

R2 = 0.88 and RPD = 3.05 (i.e. Grade A) compared to PLSR with

R2 = 0.86 and RPD = 2.68 (i.e. Grade B). Besides, comparable

prediction accuracies of AN were obtained between LS-SVM and

PLSR, both with R2 = 0.76 and RPD = 1.91 (Grade D). In terms

of pH, LS-SVM only slightly improved the prediction compared

to PLSR. However, AK and AP remained unpredictable (Grade

E) using two methods. The use of the data-mining algorithm (i.e.

LS-SVM here) improved the prediction accuracy of most of soil

properties compared with the linear PLSR algorithm with in situ

vis-NIR spectra. Fig. 5 shows the predicted values of seven soil

properties against the observed ones using LS-SVM with in situ

vis-NIR spectra.

Surprisingly, the predictions of OM, OC and pH with in situ

spectra using LS-SVM were comparable to those using PLSR with

laboratory-based spectra; prediction of TN using in situ spectra

with LS-SVM was one grade better than using laboratory-based

measurement with PLSR. The prediction accuracy of TN is

comparable to the result from Kleinebecker et al. (2013) [45] with

air dried samples. However, in term of AN, laboratory-based

model with PLSR still offers better prediction. Given the improved

prediction results of OM, OC, TN and pH using LS-SVM, in situ

vis-NIR spectroscopy would become an effective tool for rapid and

reliable measurement of soil properties in the field.

Table 4. Comparison of prediction accuracy of soil properties with in situ vis-NIR for paddy soils and irrigated soils (dry-farming).

Soil property Paddy soils (PLSR) Paddy soils (LS_SVM) irrigated soils [36]

OC D C B–C

OM D C N.A.

TN B A B

AN D D N.A.

AP E E C

AK E E D

pH C C C

doi:10.1371/journal.pone.0105708.t004
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In situ prediction: paddy soils vs. irrigated soils
The prediction of paddy soil properties with in situ vis-NIR

spectra were compared to a recent review of in situ vis-NIR

measurements [36] of irrigated (arable) soils, i.e. dry-farming soils

(Table 4). Prediction accuracy of TN and pH of paddy soils is

similar to that of irrigated soils. However, due to the presence of

considerable amount of soil water in paddy soils, which affects the

in situ measured soil vis-NIR spectra, OC, AP and AK are better

predicted in irrigated soils compared to paddy soils.

Conclusions

Compared with laboratory-based vis-NIR spectroscopic mea-

surement, field-based measurement is more efficient by measuring

soil spectra directly in situ. It thus offers a promising way to

analysis soil properties quickly in paddy fields when water is

drained away before and after harvest. In our study, systematic

research on paddy soil properties using in situ vis-NIR spectra and

laboratory-based vis-NIR spectroscopy were carried out, including

soil organic matter (OM), total organic carbon (OC), total nitrogen

(TN), available nitrogen (AN) available phosphorus (AP), available

potassium (AK) and pH.

Using the PLSR algorithm with laboratory-based vis-NIR

spectra, soil OM, OC, TN, AN and pH can be quantitatively

estimated with various accuracies while AP and AK can be poorly

predicted. However, the prediction accuracy of soil properties

decreased to some extent when in situ spectra were used for

modeling. It happened especially for the prediction of soil OM,

OC, AN and pH, with one grade decreasing. It might be due to

the existence of soil moisture and ambient light, as well as the

environment temperature and soil surface condition, which might

mask or partly mask the absorption information on spectra, and

influence their prediction accuracies.

By performing the non-linear LS-SVM algorithm, prediction of

soil OM, OC, TN and pH with in situ vis-NIR spectra was

obviously improved. Their predictions were comparable or even

better than laboratory-based spectroscopic measurement using

PLSR algorithm. Prediction of AN was not improved and AP and

AK remained unpredictable. Thus, we propose the use of LS-

SVM algorithm for in situ vis-NIR spectroscopic estimation of soil

properties of paddy soils.

Owing to the permanently waterlogged conditions of paddy

soils, in situ prediction of several soil properties of paddy fields is

less accurate compared with irrigated soils. Other data mining

methods are expected to be tested on the in situ paddy soil spectra.

Besides, further research on the chemometic algorithms for

removing the effects of water and other environmental factors

from the spectra might fundamentally improve the prediction of

soil properties with in situ spectra.

Supporting Information

File S1 In situ measured vis-NIR spectra of 184 samples. To
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