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Abstract

Motivation: Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation, which
produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial resolution has the
limitation that cell-type-specific (CTS), spatial- or time-dependent AI signals may be dampened or not detected.

Results: We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-sequencing
data, or dynamics AI from other spatially or time-resolved datasets. airpart outputs discrete partitions of data, point-
ing to groups of genes and cells under common mechanisms of cis-genetic regulation. In order to account for low
counts in single-cell data, our method uses a Generalized Fused Lasso with Binomial likelihood for partitioning
groups of cells by AI signal, and a hierarchical Bayesian model for AI statistical inference. In simulation, airpart ac-
curately detected partitions of cell types by their AI and had lower Root Mean Square Error (RMSE) of allelic ratio
estimates than existing methods. In real data, airpart identified differential allelic imbalance patterns across cell
states and could be used to define trends of AI signal over spatial or time axes.

Availability and implementation: The airpart package is available as an R/Bioconductor package at https://bioconduc
tor.org/packages/airpart.

Contact: wancen@live.unc.edu or michaelisaiahlove@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Measurement of allelic expression (AE) through RNA-sequencing
experiments can be used to detect genes for which genetic variation
in local cis-regulatory elements (CRE) affects cell, tissue and organ-
ism development. Allelic imbalance (AI), in which one allele is
expressed higher or lower than the other, may indicate local CRE
where regulatory function, e.g. binding of a transcription factor to
its motif, is impacted by genetic variation. AI could also reflect allel-
ic differences in epigenetic state, as in the case of imprinting where
maternal or paternal inheritance determines which allele is
expressed higher, or genetic variation affecting splicing or nonsense
mediated decay. When AE is quantified in bulk tissue or in a manner
lacking the necessary time or spatial resolution, cell-type-specific
(CTS) or contextual AI signals may be weakened. As the catalog of
accessible CRE and active transcription factors differs across cell lin-
eage, developmental time and spatial location (Heinz et al., 2015),

single-cell, temporal and spatial transcriptomic datasets can help to
reveal the cell type, cell state or spatial dependencies of genetic
effects (Andergassen et al., 2017; Combs and Fraser, 2018; Wills
et al., 2013). For example, it has been observed that allele imbalance
changes dynamically along embryo development stage (Deng et al.,
2014; Larsson et al., 2019) and at human leukocyte antigen (HLA)
genes and other autoimmune loci (Gutierrez-Arcelus et al., 2020).

AE analysis cannot detect all variants detectable from expression
quantitative trait loci (eQTL) analysis, which examines the associ-
ation of total expression with genotype, as AE analysis is restricted
to those genes and individuals that harbor heterozygous exonic var-
iants (Khansefid et al., 2018). However, as total expression level can
be affected by technical artifacts (batch effects), environmental
effects or distal-regulation, the within-individual comparisons in AE
analysis offers an advantage in focusing on cis-regulatory effects,
and may increase power (Vigorito et al., 2021). Single-cell studies
offer a unique opportunity to detect extra cis-eQTLs that would not
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have been identified in bulk, and hence a number of single-cell stud-
ies have been proposed to identify CTS cis-eQTL (Cuomo et al.,
2021a, b; Van Der Wijst et al., 2018). Perhaps due to difficulties in
obtaining single-cell AE with sufficient coverage, less attention has
been paid to single-cell AE analysis, though single-cell AE analysis
can be performed even within a single sample, while single-cell
eQTL requires a population of cells of different genotype. Recent
SMART-Seq2 and SMART-Seq3 experiments enable full-length
transcript coverage from single cells at sufficient unique molecular
depth to characterize AE for over 10 000 genes. When applied to
cells of F1 offspring from crosses of different strains or species, AE
data can be generated across hundreds or thousands of cells
(Hagemann-Jensen et al., 2020; Larsson et al., 2019; Picelli et al.,
2014).

Prior studies in single-cell AE have categorized genes by allelic
state (e.g. bi- or mono-allelic to one or the other allele), estimated
allele-specific burst kinetics (Jiang et al., 2017) and resolved multi-
mapping reads to genes and alleles in order to reduce spurious
mono-allelic signal (Choi et al., 2019). In this work, we do not ad-
dress the problem of accurate estimation of AE, assuming access to
long reads uniquely assigned to alleles as obtained with SMART-Seq
or similar technologies (Tian et al., 2021). Previous methods have
been proposed to detect imprinted genes from single-cell AE
(Santoni et al., 2017), whereas we focus on detection of CTS cis-gen-
etic regulation resulting in a consistent imbalance within a group of
cells toward a particular allele regardless of parent-of-origin.
Furthermore, a recent regression-based method has been proposed
to leverage datasets with bulk AE and single-cell total expression of
the same tissue, to infer CTS AI (Fan et al., 2021). Here, we examine
single-cell AE datasets, as well as other contextually resolved AE
data, including spatial or time course AE. When the AI only exists in
one or more specific cell type(s) or the AI varies among cell types,
we refer to this phenomenon as differential allelic imbalance (DAI).
As single-cell studies providing sufficient coverage and read length
for allelic quantification are only now emerging, we are aware of
only one related statistical method for detecting DAI, scDALI
(Heinen et al., 2022), which models allele-specific chromatin acces-
sibility using Gaussian Process regression.

Here, we introduce airpart, an AI R package for PARTitioning
groups of cells, leveraging methods for the Generalized Fused Lasso
(GFL) (Devriendt et al., 2021) and hierarchical Bayesian modeling,
to identify DAI across groups of cells or samples. Our AI models are
flexible in terms of the experimental design, and can be applied to
group cells or samples by cell type, spatial location or time points, as
well as allowing adjustment for covariates. The gene clustering and
partitioning of cell types by similar AI signal increases accuracy in
the subsequent AE estimation step, alleviating issues from low
counts and small numbers of cells for certain cell types or cell states.

Our method helps to find subsets of genes sharing similar DAI
signals and helps to generate hypotheses of CTS cis-regulatory
mechanisms, which can be further validated through experimenta-
tion assaying CRE activity or accessibility in particular cell types.
The method is available as an R/Bioconductor (Huber et al., 2015)
package with an accompanying software vignette at https://biocon
ductor.org/packages/airpart.

2 Materials and methods

A summary of the airpart workflow is shown in Figure 1. airpart
takes as input two count matrices and a categorical variable: (i) the
allelic counts for the alternate (a1) and reference (a2) alleles across
genes (rows) and cells/samples (columns) and (ii) the annotated cell
types (or spatial location or time point for bulk RNA-seq) in the
same order as cells/samples in count matrices. Annotation of cell
type can either be provided as prior information or generated by
clustering cells by total count [all single-cell RNA-sequencing
(scRNA-seq) experiments analyzed here had prior annotation link-
ing cells to their cell type]. The allelic counts could be generated
using scBASE (Choi et al., 2019), or the quantification pipeline
outlined in Larsson et al. (2019) (e.g. for well-characterized
diploid transcriptomes). Those inputs are used to construct a

SummarizedExperiment (Lawrence et al., 2013), and functions are
provided to determine genes and cells passing quality control (QC).
We define the observed allelic ratio as the count ratio of alternate al-
lele reads to the total reads. airpart clusters genes with similar AI
pattern across cells (see Supplementary Methods Section S1.1 for
details). Clustering provides two benefits: it stabilizes DAI detection
and estimation in the case that similar patterns occur across genes
(e.g. genes under similar patterns of CTS cis-genetic regulation), and
it speeds up computational time by fitting a partition model
(described below) per cluster instead of per gene. In the following
methods, we consider one gene cluster at a time. For each gene clus-
ter, a GFL framework (Devriendt et al., 2021) with Binomial likeli-
hood is used to partition cell types, or a non-parametric method is
used. Each of these relies on a graph C where vertices represent cell
types and an edge indicates a pair of cell types that can be fused. air-
part does not further partition cells within cell types, these are taken
as fixed input of the method. DAI is declared if the partition has
more than one group of cell types. Given the partition, a hierarchical
Bayesian model is fit, which provides allelic ratio estimates and AI
statistical inference. airpart also includes a number of visualization
functions for exploratory data analysis, presentation of partitions
and statistical inference on allelic ratios. A summary of the notation
used in the following section is provided in Supplementary Table S1.

2.1 Distributional assumptions for allelic counts
In previous work, researchers often used a Binomial model (Castel
et al., 2020) or a Beta-Binomial (BB) model for the allelic counts
(Castel et al., 2015; Choi et al., 2019; Edsgärd et al., 2016; Heinen
et al., 2022; Santoni et al., 2017; Skelly et al., 2011; Zitovsky and
Love, 2019), whereas BSCET uses a linear regression for the CTS AI
test (Fan et al., 2021). For the datasets examined in Section 3, either
SMART-Seq2 single-cell datasets, or spatially or time-resolved bulk
RNA-seq, we found that a Binomial assumption was sufficient for
grouping cell types or conditions by AI, as many genes had minimal
over-dispersion relative to a Binomial model. However, one real
dataset examined in Section 3 exhibited over-dispersion of allelic
counts relative to a Binomial, and so non-parametric methods were
considered for the partition. When deriving per-gene allelic ratio
estimates within a cluster, we modeled allelic counts using a BB gen-
eralized linear model (GLM). In summary, airpart offers Binomial
or non-parametric models for partitioning cell types, and BB for
deriving allelic ratio estimates.

2.2 GFL with binomial likelihood
airpart leverages a GFL framework (Devriendt et al., 2021) imple-
mented in an R package smurf, for partitioning cell types into
groups of similar allelic ratio. For gene cluster u, suppose there are
G genes, I cells and K cell types. For gene g and cell i, let Ygi indi-
cates the observed allelic count for the alternative allele, mgi indi-
cates total count, rgi ¼ Ygi=mgi indicates the observed allelic ratio, xi

indicates cell or sample state, which could be cell types, discrete spa-
tial or time points and ci indicates any additional covariates that
may associate with allelic ratios. We note that x and c are repre-
sented internally with dummy variables. We assume the following
distribution for the alternative allele count with the logit link
function

Ygijmgi � Binðmgi;piÞ; (1)

where pi indicates the true allelic ratio for cell i. We define
zi ¼ xi

Tbþ ci
Tc, such that

pi ¼
1

1þ e�zi
: (2)

Without loss of generality, we will refer to the values of xi as cell
types. The GFL in smurf is used to fit coefficients representing CTS
allelic ratios, where fusing two coefficients means the two cell types
are predicted to have a similar allelic ratio. Given the graph C as
shown in Figure 1 in the Modeling panel, a complete graph (the de-
fault) can fuse all pairwise cell types differences, or alternatively, a
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flexible graph can be used with specific edges denoting the cell types
that can be fused, e.g. an adjacency graph. The specific edges of C
would be provided a priori, e.g. allowing fusing only among cell
types on the same major branch of a developmental trajectory.
Suppose h; k 2 f1; . . . ;Kg are any two cell-type vertexes that are
connected in the graph, then the regularized objective function for
model is

Oðb; c; x;m; rÞ ¼ �
P

g;i mgi½rgizi � logð1þ ezi Þ� þ kjjCðwÞbjj ;

where the second part is the regularization term of the GFL (Höfling
et al., 2010). Here, bh and bk denote elements of full parameter vec-
tor b such that ðb0; b1; . . . ; bKÞ ¼ b and CðwÞ is the matrix with
dimensions NC �K, where NC is the total number of edges in the
graph C.

Estimation of coefficients relies on selection of optimal k and
specification of adaptive penalty weights for asymptotic consistency
(Devriendt et al., 2021). The standardized adaptive weights in smurf

are defined as wh;k ¼ K�1
NC

ffiffiffiffiffiffiffiffiffiffi
nhþnk

N

q
jbbh � bbkj�1 to adjust for possible

level imbalances where nk represents number of cells in cell type k. k
is chosen according to the criterion of the lowest deviance (negative
of log likelihood) within one standard error of the minimum devi-
ance observed across a grid of k values, based on 5-fold cross-
validation, which encourages parsimony (more fusing of pairwise
differences). When there are <8 cell types represented in x, k is
chosen by finding the lowest deviance within half a standard error
of the minimum, thus allowing more non-zero pairwise differences
to persist. In addition to the Binomial likelihood (airpart.bin), a
Gaussian likelihood (airpart.gau) is considered, which assumes
rgi � Nðpi; rÞ. The different likelihood models for GFL were com-

pared via simulation.

2.3 Pairwise Mann–Whitney–Wilcoxon test
An alternative method is considered and available within airpart,
relying on a non-parametric test (airpart.np), both for increased
speed and for cases when the distributional assumptions of the
above model do not fit the data. We extend the Mann–Whitney–
Wilcoxon (MWW) test to derive a partition based on the P-values
from pairwise comparisons across cell types.

For all pairs of cell types with edges in C, pairwise MWW tests
are performed for the allelic ratio distribution difference. A

similarity score matrix S½K;K� is constructed, with elements equal to
the MWW test P-values. Each element of this matrix is therefore
related to the separability of the ranked allelic ratios for the two cell
types. This matrix is then binarized into S0 as follows: S0½h; k� ¼
1S½h;k�<q with 1 the indicator function. This binarization depends on
a tuning parameter q and defines a network adjacency matrix. For
pairs not represented by edges in C; S0½h;k� is set to 0. Finally, the
adjacency matrix is used as a distance matrix for hierarchical
clustering.

To choose the tuning parameter q and find the cell types parti-
tion, a model selection is performed based on the Bayesian informa-
tion criterion (BIC). The BIC scores a candidate model using both its
performance on the in-sample error and the complexity of the
model. The best model is chosen by minimizing a loss function
defined below, along a range of q ¼ 10v, where default v sets are
f�2;�1:8; . . . ;�0:4g. The loss function is constructed based on the
Gaussian special case of BIC that assumes independent errors from a
normal distribution, and that the derivative of the log likelihood
with respect to the true variance is zero (Hannan, 1982). We have

q ¼ argmin
q
½N logðbr2

e Þ þ Kq logðNÞ�;

where N is the total number of elements within this gene cluster
(N ¼ G� I), br2

e is an estimate of the error variance and Kq is the
number of groups derived from constructing the adjacency matrix
according to each q threshold among the partition of K cell types.
The estimate of the error variance in this case is defined asbr2

e ¼ 1
N Rg;iðrgi � brgiÞ2, which is a biased estimator for the true vari-

ance. In terms of partition group the loss function is

q ¼ argmin
q

N log
1

N

XKq

j¼1

X
i2Grpj

ðri � brjÞ2
0
@

1
Aþ Kq logðNÞ

2
4

3
5 ;

where Grpj is a set of cells in group j, brj is the mean allelic ratio of
all elements within group j.

2.4 Hierarchical Bayesian modeling
In the airpart steps to estimate the partition of cell types within a
gene cluster, the true allelic ratio pi being modeled with the GFL is
assumed not to vary across genes within the cluster. However, the
allelic ratio may vary across genes within a cluster, though the

Fig. 1. Overview of airpart framework. airpart takes as input allele-specific read counts, quantified upstream of our method. Known cell annotation or cell clusters derived

from total counts are also part of the input to airpart. Following QC steps, clustering is performed on genes based on their allelic signal over cells. Then during the modeling

step, a partition of the cell groups is generated as shown in heatmap, either by a GFL or a non-parametric method. Estimated coefficients of this gene cluster using GFL inform

the prior of hierarchical Bayesian model. Finally, airpart outputs estimates of allelic ratio for each gene and cell group, as well as s-value or adjusted P-value for AI and DAI

test, respectively. Multiple visualizations of input data, gene clustering and fitted parameters are available as functions within airpart software
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clustering step brings together genes with similar patterns of allelic
ratio. To derive per-gene allelic ratio estimates and credible intervals
within a gene cluster, a Bayesian BB GLM is used. This GLM can be
fit sharing prior information for all cells within a cell-type group
defined by the partition (‘grouped’) or one cell type at a time, ignor-
ing the partition (‘nogroup’). The case of ignoring the partition
allows for estimation of allelic ratios even if the input x is
continuous-valued. Let /g indicates a gene-specific dispersion par-
ameter, then we assume the following model:

Ygijmgi � BetaBinðmgi;p
0
gi;/gÞ;

where p0gi ¼ ð1þ expð�xT
gib0g þ ci

TbcÞÞ�1, and bc is the maximum a

posteriori estimate derived from apeglm (Zhu et al., 2019; Zitovsky
and Love, 2019) and used as offset in the model if covariates are
provided. The dispersion /g controls the variance of Ygi by

VarðYgiÞ ¼ mgip
0
gið1� p0giÞ 1þ mgi�1

/gþ1

h i
.

Shrinkage estimation is performed separately on the dispersion
parameter and coefficients representing cell-type allelic ratios. We
first describe shrinkage on the dispersion parameter. We assume the
logarithm of the dispersion estimate b/g follows a Normal
distribution,

logðb/gÞj/g � Nðlogð/gÞ;DÞ;

where D, the sampling variance, is assumed equal across all genes in

the cluster. We estimate this sampling variance with bD ¼ 1
G

P
g se2

g ,

where seg is the estimated standard error of the logarithm of the dis-

persion estimate logðb/gÞ. Both logðb/gÞ and seg are estimated using

the apeglm (Zhu et al., 2019) software. Although the dispersion par-
ameter is estimated per gene, the gene-wise models are linked by glo-
bal hyper-parameters, which are estimated from the entire gene
cluster at once. The specification of a cluster-specific prior is used a
simple means of sharing information between genes. We assume
that the dispersion parameter logð/gÞ follows a Normal distribution

logð/gÞ � Nðlogð/0Þ;AÞ:

logð/0Þ is estimated from the gene-wise MLEs,dlogð/0Þ ¼ 1
G

P
g logðb/gÞ, and the variance is estimated with

bA ¼ maxðs2
log / � bD;0Þ, where s2

log / ¼ 1
G�1

P
gðlogðb/gÞ � dlogð/0ÞÞ2.

In order to obtain the relative weighting of the gene-wise and global

variance estimators, B ¼ D
AþD is defined as a parameter to shrink dis-

persion estimates toward a middle value [roughly following Efron

and Morris (1975)]. Applying bB ¼ bDbAþbD, the final estimate for disper-

sion used in fitting coefficients is:

logðb/post

g Þ ¼ ð1� bBÞ logð/gÞ þ bB logð/0Þ:

A Cauchy distribution is used as the prior for bg, the coefficients
representing cell-type allelic ratios. Shrinkage estimation is per-
formed one group at a time, where a group is defined by the cell
types within a partition from the first step or alternatively, ignoring
groupings, meaning each cell type, temporal and spatial location is
estimated by itself. Without loss of generality, we describe the
grouped case. Let l define the center of the prior distribution for bg,
which will be a vector of length J if there are J cell-type groups in
this gene cluster. The GFL estimates bb are used as bl across the mul-
tiple genes within a cluster (or weighted means are used if non-para-
metric methods are used for defining the partition in the previous
step). For the estimation of per-gene ratios, we assume the coeffi-
cients follow a Cauchy distribution,

bg � Cauchyðl; SÞ;

where S is scaling parameter estimated as part of the apeglm method
(Zhu et al., 2019), and bl is plugged in as the center of the prior dis-
tribution. Maximum posterior estimates and credible intervals are
estimated from a BB likelihood using apeglm.

2.5 Inference
To assess AI across each cell type and each gene within a cluster, s-
values (Stephens, 2017) were calculated and provided, where thresh-
olding on this value provides control of the aggregate false sign rate
(the rate of incorrect signs of estimates within the reported set). For
deriving inference of DAI calling, a likelihood ratio test was per-
formed to compare a full model with a cell group indicator to a
reduced model with an intercept only, whose test statistics approxi-
mates a v2 random variable with J � 1 degree of freedom if there are
J cell-type groups in this gene cluster. We note that while the cred-
ible intervals, s-values and P-values calculated in this step reflect un-
certainty in estimation of the allelic ratio based on number of cells
and the range of the counts, as we fix the gene clustering and cell-
type partition from previous steps, uncertainty from those upstream
steps is not propagated to the inference provided by the hierarchical
model.

2.6 Simulation setup
In order to assess airpart’s performance, partitioning of cell types by
allelic ratio, and its accuracy of estimates of the allelic ratio itself,
we performed three sets of simulation tests and compared to another
statistical method for detecting heterogeneity of allelic ratio in
scATAC-seq, scDALI (Heinen et al., 2022). Various settings were
summarized in Supplementary Table S2. The allelic counts were
simulated from a BB distribution with constant dispersion parameter
/ for all genes, so we ignore the index g here. The total counts were
drawn from a Negative Binomial (NB) distribution. Half of the total
counts had a mean count of two while half of the total counts had a
higher mean count, ranging across different simulations among val-
ues of cnt 2 f5; 10;20g. In each case, the NB dispersion was set to
a¼5 (dispersion a defined such that VarðYÞ ¼ lþ al2). As airpart
combines allelic counts from multiple genes when finding the parti-
tion of cell types, having lower and higher total counts for each gene
is equivalent to a dataset with a mix of low and high count genes
within a gene cluster. The mean counts and BB dispersion values
(/ ¼ 20) were chosen based on estimated parameters over real
SMART-Seq2 scRNA-seq datasets (Larsson et al., 2019), as shown
in Supplementary Figure S1A. However, we observed that in earlier
datasets, such as Deng et al. (2014), as shown in Supplementary
Figure S1B, the allelic counts generated lower / estimates (more
variance). Thus, we also assessed simulations using / ¼ 3 to evalu-
ate method robustness when the data were substantially overdis-
persed relative to a Binomial model (the model used by the GFL in
airpart). As airpart relies on cells being annotated upstream of its
modeling steps, we additionally assessed modeling performance if
the cells were incorrectly annotated [incorrect t(i) where t is the
group] during clustering of sub-populations of cells by their total
count. We constructed two scenarios to evaluate the robustness of
partitioning and of allelic ratio estimation to cell annotation errors.
In one scenario, we manually flipped cell-type labels to induce a
fixed and uniform misclassification rate across all cell types. The
misclassification rates (1

I

P
i� I 1ftðiÞ6¼xig) were set to f0%; 5%; 10%g

in this case. In the other, we clustered cells by log scaled total count
with the specified cluster number of 10, allowing for random and
heterogeneous misclassification rates across true cell type, as shown
in Supplementary Figure S2. The misclassification rate was approxi-
mately equal to 5% using Gaussian Mixture Model (GMM) method
implemented in mclust (Scrucca et al., 2016) with the high mean
total count cnt¼7 for a subset of genes, and approximately equal to
10% using k-means implemented in scran (Lun et al., 2016) and
cnt¼10 for a subset of genes. The two different clustering methods
and varying the high total count parameter were used to help tune
the misclassification rate to the desired level; additionally GMM
clustering tended to give more uniform misclassification rate across
clusters, while k-means clustering was more likely to give heteroge-
neous misclassification rates, e.g. entire cell types mis-labeled.

In the first set of simulations, the adjusted Rand index (ARI
2 ½�1; 1�) was used to assess airpart’s accuracy of the cell-type parti-
tions with respect to the true partition by allelic ratio. The number
of genes within a gene cluster was varied across g 2 f5;10;20g. ARI
of one means a perfect partition, and an ARI of zero is no better

2776 W.Mu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac212#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac212#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac212#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac212#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac212#supplementary-data


than random guessing. Each cell type was simulated to have 40 cells,
and 10 cell types were simulated (400 cells in total) with true allelic
ratio given by f0:95; 0:9; 0:85;0:85; 0:7;0:7;0:65; 0:6; 0:5; 0:5g,
thus with a true partition of seven groups of unique allelic ratios.
The whole simulation was repeated 200 times for each combination
of simulation parameters: high total count (cnt), number of genes
(n) and dispersion value (/).

In the second set of simulations aiming for evaluating allelic ratio
estimation accuracy, 400 genes were simulated such that all have the
same pattern of DAI. The number of cells per cell type was varied
from 40 to 100. Root Mean Square Error (RMSE) was used to
evaluate performance. Here, we additionally assessed the effect of
using the partition to aid in estimation accuracy, by comparing per-
formance with and without this cell-type grouping step. The version
of the estimation method without the grouping step was denoted
as airpart.nogroup. We defined a simulation parameter
d 2 f0:05; 0:1; 0:2; 0:3g, and at each d, allelic ratios according to
f0:3;0:3;0:3þ d; 0:3þ d; 0:3þ 2d; 0:3þ 2d;0:3þ d;0:3þ dg were
simulated following a U-shaped pattern, where d controlled the ex-
tent of the rise and fall in allelic ratio. For this simulation, the cell-
type indicator x was provided as a matrix with one-hot encoding to
airpart and scDALI. We used scDALI with a radial basis function
kernel to allow for cells with similar x value to have similar fitted al-
lelic ratio, which in this case allows for estimation of CTS allelic
ratios.

Lastly, in the third set of simulations for significance testing of
DAI, genes were simulated without DAI (all six cell types with 0.5
ratio) and with DAI f0:5; 0:5; 0:6; 0:6; 0:7; 0:7g with 40 and 100
cells per cell type. For airpart, a likelihood ratio test was performed
to compare a full model with a cell-type indicator to a reduced
model with an intercept only. scDALI was run with scDALI-Het to
calculate score test statistics. We adjusted allelic heterogeneity P-val-
ues for both methods using the Benjamini–Hochberg (BH)
(Benjamini and Hochberg, 1995) procedure with a cutoff of 0.05.

2.7 Allelic datasets
We applied airpart to two single-cell RNA-seq datasets: Larsson
et al. (2019) and Deng et al. (2014); and two bulk RNA-seq data-
sets: Gutierrez-Arcelus et al. (2020) and Combs and Fraser (2018).
From those datasets, Larsson et al. (2019) contains 224 mouse em-
bryo stem cells (C57BL/6�CAST/EiJ) and 188 mouse embryo fibro-
blasts (CAST/EiJ � C57BL/6J) grouped across states of cell cycle
(G1, S, G2M), as identified by the authors. Deng et al. (2014)
includes 286 pre-implantation mouse embryo cells composed of 10
cell types from an F1 cross of female CAST/EiJ and male C57BL/
6J(B6) mice. Cells were sampled along a time course from the zygote
and early two-cell stages through the late-blastocyst stage of devel-
opment. Maternal allelic ratios were estimated for the two scRNA-
seq datasets.

Gutierrez-Arcelus et al. (2020) stimulated memory CD4þ T-cells
from 24 genotyped individuals of European ancestry with anti-CD3/
CD28 beads and characterized the dynamics of AI events at 0, 2, 4,
8, 12, 24, 48 and 72 h after stimulation. Combs and Fraser (2018)
performed RNA-seq of five hybrid Drosophila melanogaster �
Drosophila simulans embryos sliced along their anterior–posterior
axis to identify genes with spatially varying AI. Results applying air-
part and scDALI to Combs and Fraser (2018) dataset are provided

as Supplementary Results. The cell population annotations for all
datasets were provided with the data. These annotations were used
as known cell types/states/spatial position for analysis. The number
of cells in Table 1 represents the size of each dataset after prepro-
cessing (see Section 1.2 for details).

To assess whether gene clusters with specific differential AI pat-
tern detected by airpart were enriched for functional categories or
were correlated with enhancer activity, we performed downstream
functional analysis. Gene Ontology (GO) term (The Gene Ontology
Consortium, 2020) enrichment was calculated using the goseq pack-
age (Young et al., 2010) with the UCSC mm9 gene lengths database.
Larsson et al. (2019) also provided H3K27ac ChIP-seq samples for
one of the parental lines (B6) for mouse embryonic stem cells
(mESCs) and fibroblasts. H3K27ac peaks were selected with fold en-
richment >15. ChIP-seq was only available for the B6 strain, so we
assessed whether the genes with AI toward one allele were more
closely associated with enhancer activity in that cell type compared
to the other cell type using a Fisher’s exact test.

3 Results

3.1 Simulation
We evaluated airpart across a variety of simulation datasets, and in
comparison to a newly developed method for detecting heteroge-
neous AI, scDALI (Heinen et al., 2022). The simulated total counts
distribution mimicked real scRNA-seq counts distribution
(Supplementary Fig. S1C), and airpart clustered together genes for
which the allelic ratio trend was similar (Supplementary Fig. S1D).
On the simulated dataset with 10 cell types of different allelic ratio,
as described in Section 2.6, the GFL with Binomial likelihood tended
to have higher ARI than other variants when the number of genes
within a gene cluster (G) was small (Fig. 2A). The higher ARI indi-
cates that a method was more accurate at partitioning the cell types
according to their true underlying allelic ratio. In addition, the GFL
with Binomial likelihood had highest tolerance against uniform cell-
type misclassfication errors (Supplementary Fig. S3). This aligned
with previous work showing that modeling the allelic ratio using
count distributions can increase power (Sun, 2012). The heteroge-
neous misclassification rate of �10% in some cases led to all cells of
one cell type being misclassified, which further could result in the

Table 1. Single-cell (sc) and bulk RNA-seq datasets used for

evaluation

Source ObservationsStates/contexts Tissue type

Larsson et al. (sc) 367 4 Mouse F1 embryos

Deng et al. (sc) 228 10 Mouse F1 embryos

Gutierrez-Arcelus et al. 199a 8 Mem. CD4þ T-cells

Combs et al. 126b 19 Fly F1 embryos

aTime point replicates from 24 donors.
bSlices from five embryos.

Fig. 2. Performance comparison of airpart variants and scDALI on simulation data-

sets. (A) Boxplot of partition accuracy among three variants of airpart. y-axis is ARI

among 200 iterations. cnt, the higher mean count; n, number of genes within a gene

cluster. (B) Boxplot of RMSE per gene for estimation of the allelic ratio for n¼ 40

cells among 400 iterations. Each gene has an underlying U-shape pattern described

in the Section 2.6. (C) Boxplot demonstrating airpart without cell-type grouping

step and scDALI performance on each cell type at DAI¼0.2. The highlighted dots

inside the boxes represent the simulated allelic ratios
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grouping step not achieving perfect recovery of the partitions
(Supplementary Fig. S4). As all approaches could reach similar ac-
curacy when G was larger than 25, we compared the computation
time at that setting. The non-parametric method (airpart.np) was
around 10 times faster than airpart.bin (Supplementary Fig. S5) and
took 40s when G¼500. We noticed that airpart.np could become
overly sensitive to differences in allelic ratio when G was very large
(� 350), such that when cell-type annotation was misclassified, this
resulted in a decrease in ARI in particular relative to the GFL with
Binomial likelihood which maintained perfect ARI (Supplementary
Fig. S3). To consider robustness of airpart with respect to measure-
ment error of an underlying expected allelic rate, we simulated
counts with higher dispersion (/ ¼ 3). In these simulations, the ARI
of all methods was generally lower especially for smaller number of
genes, where the non-parametric approach outperformed the GFL
alternatives (Supplementary Fig. S6).

We compared the allelic ratio estimation accuracy of airpart
with or without grouping step to scDALI across different scales of
DAI. airpart.bin had smaller RMSE than scDALI for allelic differ-
ence � 0:2 while performing comparably for allelic difference of
0.1, and slightly worse for allelic difference of 0.05 (Fig. 2B). In this
simulation, we assessed one gene at a time, so airpart did not benefit
from aggregating signal across multiple genes. All three variants of
airpart with partition step (Binomial likelihood, Gaussian likelihood
and non-parametric approach) showed distinct decreasing RMSE
with increasing allelic ratio difference, while airpart.nogroup (with-
out cell-type partitioning) and scDALI had relatively constant
RMSE. airpart variants with partition step benefited in this simula-
tion from its approach toward discrete groupings of cell types, as the
simulated data consisted of eight cell types falling in three groups by
their true allelic ratio; as the allelic ratio increased, the correct parti-
tion was easier to identify, which led to the decrease in RMSE for
those three method variants. In order to understand why scDALI
tended to have slightly larger RMSE than airpart.nogroup, we
examined the estimates themselves over the cell-type variable (x);
scDALI’s estimates tended to shrink toward 0.5 at the extremes on
this simulation (Fig. 2C). In the simulations with misclassified cells,
scDALI had higher RMSE with increasing misclassification rate,
while sharing information across cell types helped the airpart
approaches to be less affected by the insertion of misclassified cells
(Supplementary Fig. S7). From this simulation, we inferred that
when the true model is one of discrete allelic ratios shared across a
partition of the cell types, grouping cell types with similar allelic
ratio increases observation size and may therefore aid in estimation.

We performed simulation with more cells per cell type (n¼100
compared to n¼40 in previous simulations) to confirm that esti-
mates would have reduced error with more observations. Both air-
part and scDALI had lower RMSE when n¼100 (Supplementary
Fig. S8A). airpart.bin additionally had better performance relative
to scDALI for DAI ¼ 0:1, compared to the n¼40 simulation. When
considering credible interval coverage, airpart.nogroup had the
highest empirical coverage (the average number of times the credible
intervals contained the true value) almost always achieving 95%, al-
though other airpart variants and scDALI performed as well when
DAI > 0.1 (Supplementary Fig. S8B and C). Again note that airpart
partitioned cell-type group per gene under this set up, so it did not
benefit borrowing information from other genes with similar allelic
pattern.

In the simulation assessing the rate of DAI calling when n¼40,
airpart.nogroup and scDALI both had the highest specificity of
around 97% compared to other airpart variants (airpart.bin had
93.75%). But all methods had similar sensitivity of around 98.00%
(Supplementary Table S3). For n¼100, airpart.bin had the highest
specificity of 98.25%, likely due to its increasing accuracy in deter-
mining the partition of cell types (Supplementary Table S4). scDALI
and other variants’ specificity did not change substantially as n
increased to 100, but all methods had 100% sensitivity at this sam-
ple size. aipart.gau and airpart.np had lower specificity in this global
test of DAI (89.5% and 88.0% at n¼40, and 85.25% and 88.25%
at n¼100), which was expected as these variants often detected too
many groups in the partition analysis for less overdispersed data,

with lower ARI relative to airpart.bin (Fig. 2A). Overall, airpart.bin,
airpart.nogroup and scDALI recovered most DAI while not falsely
calling too many genes as DAI. We expect airpart would have
improved performance when adding a gene clustering step, such that
it can borrow information about cell-type partitioning and allelic
ratio estimation across genes.

In summary, we recognize that airpart and scDALI have subtly
different inference goals, with airpart predominantly focused on
characterizing the allelic ratio patterns that result from discrete
groups of cell types sharing a common regulatory context (e.g. ex-
pression of transcription factors and accessibility of CRE). On the
other hand, scDALI is more suitable for detecting various types of
heterogeneous AI including continuous gradients of AI in cells
across measured or inferred dimensions.

3.2 Mouse ES cells and fibroblasts
For assessing airpart on real allelic datasets, we first examined two
single-cell RNA-seq datasets consisting of mouse embryo cells (Deng
et al., 2014; Larsson et al., 2019). Both datasets were mouse F1
non-reciprocal crosses in which we observed clusters with AI toward
the maternal allele, likely from imprinting in mature cells or genome
activation for early cell stages. A complete graph was applied to
both datasets, allowing any developmental time point coefficients to
be fused with another. In both cases, airpart partitioned the cell
stages as expected according to developmental time, e.g. consecutive
and related time periods being fused together, such as early, mid and
late-blastocyst.

airpart was first applied to the Larsson et al. (2019) dataset con-
sisting of four cell states including three cell cycle states of primary
mouse fibroblast (G1, S and G2M) and mESCs. After QC filtering,
2481 genes remained and five gene clusters were detected. Four of
the five clusters, comprising 412 genes in total, showed evidence of
DAI by their airpart partitions (Supplementary Fig. S9A and
Supplementary Table S5). One cluster of 128 genes partitioned the
cell states such that all cell cycles of fibroblast were grouped to-
gether and apart from the mESC (Fig. 3A and Supplementary Fig.
S9C). In this cluster, the fibroblast group had mean estimated allelic
ratio around 0.45 and the mESC had AI with a ratio of around 0.70
toward the maternal allele. We estimated the AI in both mESC and
fibroblast and calculated 95% credible intervals (Fig. 3B). With an
s-value threshold of 0.005 (Section 2.4), all 128 genes demonstrated

Fig. 3. Evaluation of airpart on two scRNA-seq experiments. (A) Violin plot of esti-

mated allelic ratio on Larsson’s dataset with n indicating the number of cells. Color

represents different partition groups. (B) Forest plot for Larsson’s dataset, showing

top 40 genes with smallest s-value. Dotted line denotes allelic ratio¼0.5 (C) Step

plot and heatmap of results for Deng’s dataset. This gene cluster partitioned cell

types into five groups denoted by highlighted dots in the step plot. (D–G) Selected

genes displaying airpart fitted model on Gutierrez-Arcelus’s data: (D) decreasing

trend, (E) increasing trend, (F) up-down pattern and (G) down-up pattern
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AI in mESCs and 85 genes out of 128 demonstrated AI in fibro-
blasts, which was roughly consistent with credible intervals not
overlapping an allelic ratio of 0.5. To check whether this cluster had
any functional association with stem cell maintenance, gene set en-
richment analysis was performed. The most significant GO term
was ‘response to leukemia inhibitory factor (LIF)’ [GO: 1990823,
odds ratio¼4.90, adj. P ¼ 0:136 (BH)], where Lif is a cytokine
involved in embryonic stem cell self-renewal (Hirai et al., 2011).

To assess whether the 128 gene cluster with DAI had an associ-
ation with enhancer activity, an enrichment analysis was performed
using H3K27ac peaks exclusively measured in the B6 strain in both
cell types. While the enhancer activity signal was therefore not an al-
lelic signal, we hypothesized that genes which favor the B6 (mater-
nal) allele in mESC may tend to overlap with H3K27ac peaks in B6
in mESC. For the 128 gene cluster with DAI toward maternal allele
in mESC, we found that genes in the cluster were more often associ-
ated with enhancer activity in mESC compared to fibroblast (signifi-
cance assessed by Fisher’s exact test P¼0.0002).

airpart was additionally applied to the Deng et al. (2014) dataset
consisting of 228 pre-implantation mouse embryo cells passing our
QC steps, from an F1 cross of CAST/EiJ � C57BL/6J mice. A total
of 10 cell types were annotated from the zygote and early two-cell
stages through the late-blastocyst stage of development. Allelic ratio
was defined as maternal [CAST/(B6þCAST)] and 4679 genes
passed our gene QC steps. All genes revealed DAI patterns as
expected due to genome activation from zygote onward to the
blastocyst stages. In order to focus on DAI after zygote or early two-
cell stages, we performed clustering of genes and partitioning of cell
stages with those cell stages removed. A total of 13 out of 16 gene
clusters, consisting of 3019 genes in total, showed DAI pattern after
removing these cell stages (Supplementary Table S6). One gene clus-
ter showed a decreasing allelic ratio pattern along developmental
time. We demonstrated benefits of airpart modeling, estimating each
gene’s allelic ratio leveraging the gene cluster’s GFL coefficients as a
prior mean (Fig. 3C). The corresponding violin plot of allelic ratios
is shown in Supplementary Figure S9C. The estimated allelic ratio
around 0.3 in early/mid/late blast stage was an exception (for most
gene clusters, blastocyst cells showed near to balanced AE). This
cluster of 65 genes had significant enrichment for GO terms, such as
‘cell development’ [GO: 0006139, odds ratio¼2.02, adj. P ¼
0:0017 (BH)] and ‘cell differentiation’ [GO: 0030154, odds
ratio¼1.29, adj. P ¼ 0:0233 (BH)].

3.3 Dynamic AI during T-cell activation
We applied airpart to an RNA-seq dataset of stimulated memory
CD4þ T-cells of eight discrete time points (Gutierrez-Arcelus et al.,
2020). To do so, we created a graph C with edges only between con-
secutive time points, restricting the fusion of coefficients in the GFL.
Among the 43 most temporal-varying genes as described in
Supplementary Section 1.2, most of them were enriched within auto-
immune loci, as reported by the original study authors. Examples in-
clude F11R, a ligand for integrin alpha-L/beta-2 involved in
memory T-cell and HLA-DQB1, a member of the HLA complex.
We ignored the allelic complexity of the HLA genes in this analysis
and grouped the alleles together into two, based upon the SNP with
the largest total count. We chose to reduce to diploid allelic counts
in each individual based on a single SNP since HLA typing and
across-donor inference of more than two alleles was out of the scope
of this study. This approach was used for method demonstration
only. airpart partitioning of the time series by allelic ratio revealed
four types of patterns (decreasing, increasing, up-peak and down-
peak) as shown in Figure 3(D–G), respectively (step-plots for all 40
genes provided in Supplementary Fig. S12). As in the original study,
we also observed the dominant allele could switch over the time
course, or bi-allelically expressed genes could switch to dominant by
one or the other allele. While the original paper used logistic regres-
sion with polynomial terms for time within each individual, we
recovered similar DAI trends for many autoimmune genes, such as
GNLY and DDX11. Overall, airpart successfully captured the DAI
patterns seen across T-cell activation.

In summary, when applied to scRNA-seq and bulk RNA-seq
datasets, airpart was able to identify relevant partitions of cell types
or samples, with gene clusters significantly enriched for biologically
meaningful gene sets and CTS enhancer activity. Results applying
airpart and scDALI to a dataset of spatial transcriptomic fly cross
embryos [Combs and Fraser (2018)] are provided in Supplementary
Section 2.1, where airpart with basis matrix was used to estimate
smooth fitted ratios for genes with spatially varying AI induced by
continuous gradients of regulatory proteins.

4 Discussion

An understanding of how individual genes may be regulated across
context or condition helps to elucidate molecular mechanisms
underlying complex phenotypes or diseases. Context-specific AE
enables isolation of cis-acting genetic regulation of transcription,
and the study of AE is a good complement to differential gene ex-
pression studies, where a multitude of factors may influence differ-
ences in total expression across condition. Single-cell RNA-seq of F1
crosses enables measurement of context-specific AE, where the cell
type or cell stage can be taken as the context that influences cis-gen-
etic regulation. Spatially resolved or time course allelic datasets offer
another such example. Context-specific or conditional allele-specific
expression datasets can detect AI with fewer samples than context-
specific quantitative trait locus studies (Findley et al., 2021), al-
though measurement of allele-specific expression in a sample
requires presence of heterozygous variation in the transcribed re-
gion, which may not occur for all transcripts or for all genes depend-
ing on the population under study. With the advent of large-scale
systematic assays for interrogating variants and regulatory elements,
such as CRISPR-Cas9 and massively parallel reporter assays, there
are now increasing opportunities to re-use context-specific allelic
datasets, which can help point to the key cell types or cell states for
validation.

To assist with analysis of such datasets, we developed airpart, a
statistical framework for identifying genes and cell types or cell
stages with similar DAI signal. airpart provides discrete grouping of
cell types, providing interpretability to the fitted models. The groups
provided by the partition step can help to generate hypotheses of
CTS cis-regulatory mechanisms. For example, cell types within the
same group may share a common mechanism of cis-regulation, such
as a common set of expressed transcription factors and active regu-
latory elements harboring genetic variation. Taken together, our
simulation results suggest that airpart.bin (using a Binomial likeli-
hood) had good performance across a variety of number of cells and
genes, including when cells are misclassified, and can be used for ac-
curate cell-type grouping when the counts are not highly overdis-
persed, as was observed in more recent SMART-Seq datasets. When
the aim is allelic ratio estimation or overall DAI hypothesis testing,
airpart.np or airpart.nogroup may be preferred for faster computa-
tion time and comparable accuracy to airpart.bin. As scRNA-seq
data often have low counts for some genes of interest, and as the
experiments used for AE in single cell (SMART-Seq2 or SMART-
Seq3) often have a relatively small number of cells per donor, we
simulated I¼400 cells (40 cells per cell type � 10 cell types) to be
comparable, and employed gene clustering and a partitioning of cell
types in order to increase power. Aside from using clustering to de-
tect meaningful subsets of genes by AI, it is also possible to provide
pathways or other gene sets known a priori for airpart to partition.
In this way, airpart stabilizes gene-level estimation by borrowing in-
formation about the similarity of cell types from other genes that
have similar AE patterns.

airpart can be applied to a variety of problems, as it leverages a
GFL framework (Devriendt et al., 2021) where a graph specifying
the connectivity of the cell types is provided, helpful for scenarios,
such as time course experiments or for prohibiting fusing across dif-
ferent cell lineages. Another point of flexibility is airpart’s use of a
design matrix within the GLM [Equation (2)] wherein additional
covariates can be provided that may also have effects on the allelic
ratio. This was used here in the analysis of the time course RNA-seq
dataset to adjust for individual effects, and may be helpful for multi-
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individual single-cell sequencing studies. Furthermore, airpart.-
nogroup can accept a design matrix representing natural cubic
splines. airpart therefore offers fast estimation of smooth functions
of the allelic ratio over a continuous variable, making use of a hier-
archical model to stabilize the over-dispersion parameter
(Supplementary Section 2.1). Though airpart predominantly focuses
on characterizing the allelic ratio patterns that result from discrete
groups of cell types under shared regulatory contexts, airpart can in
this way be used to model continuous gradients of cis-regulatory
effects on cells or samples.

Data availability

airpart is implemented as an R/Bioconductor package available at:
https://bioconductor.org/packages/airpart. All of the R code and
data used in this article for evaluating methods on simulated and
real RNA-seq datasets are available at the following repository:
https://github.com/Wancen/airpartpaper.
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