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Background: Recent studies showed that immune-checkpoint blockade (ICB) has significantly improved clinical 

outcomes of melanoma and lung cancer patients. However, only a small subset of patients can benefit from ICB. 

Deep learning has been successfully implemented in complementary clinical diagnosis. The aim of this study is 

to demonstrate the potential of deep learning to facilitate the prediction of anti-PD-1 response from H&E images 

directly. 

Methods: In this study, 190 H&E slides of melanoma were segmented into 256 ×256 tiles which were used as 

the training set for the convolutional neural network (CNN). Additional 54 melanoma and 55 lung cancer H&E 

slides were collected as independent testing sets. 

Findings: An AUC of 0.778(95% CI: 63.8%-90.5%) was achieved for 54 melanoma testing samples with 15(65.2%) 

responders and 23(74.2%) non-responders correctly classified. We also obtained an AUC of 0.645(95% CI: 49.4%- 

78.4%) for 55 lung cancer samples. 

Interpretation: To our knowledge, this is the first study of using deep learning to determine patients’ anti-PD-1 

response from H&E slides directly. Our CNN model achieved the state-of-the-art performance and has the potential 

to screen ICB beneficial patients in routine clinical practice. 
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Melanoma is one of the most aggressive cancer types originating

rom melanocytes and tend to metastasize early [1] . Unlike white pa-

ients, the subtypes of melanoma most common in Asian patients are

cral and mucosal, and they account for up to 58% of all melanoma

umors in that patient population [2] . With the development of cancer

reatment during the past decades, immune-checkpoint blockade (ICB)

uch as anti-PD1 and anti-CTLA4 had demonstrated considerable clin-

cal benefit for various types of cancer [3] . In the KEYNOTE-151 trial,

he safety and efficacy of pembrolizumab in Chinese patients were first

valuated with advanced melanoma that progressed following first-line

hemotherapy. The objective response rate (ORR) was very low, 16.7%

95% CI, 10% − 25.3%), with 15.8% for acral and 13.3% for mucosal

elanoma [4] . Furthermore, antitumor efficacy of ICB is also low in
∗ Corresponding author. 

E-mail address: K-yan08@163.com (Y. Kong). 
1 These authors contributed equally to this work. 

ttps://doi.org/10.1016/j.tranon.2020.100921 

eceived 23 April 2020; Received in revised form 4 August 2020; Accepted 5 August

936-5233/© 2020 The Authors. Published by Elsevier Inc. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ung cancer, which is observed in 20–30% of patients with non-small-

ell lung cancer (NSCLC), with most patients not response to ICB [5] . 

Past research has shown that tumor mutation burden (TMB), mi-

rosatellite instability (MSI) and PD-L1 expression may predict ICB re-

ponse in some cancer types [6–8] . However, no biomarker is currently

alidated to predict resistance or benefit derived from immunotherapy

ith clinically significant accuracy. Therefore, the need for effective im-

unotherapy biomarkers, especially for Asian melanoma patients, is ur-

ent. 

In recent years, it was found that histopathological images can be

sed to provide accurate prediction of several immunotherapy biomark-

rs. Jakob et al. evaluated H&E slides for 315 samples of STAD, 360

FPE samples of CRC and 378 snap-frozen samples of CRC from TCGA

o classify MSI versus microsatellite stability (MSS) patients. The AUCs

or MSI detection were 0.81, 0.84 and 0.77 respectively [9] . 
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Fig. 1. anti-PD-1 response prediction by H&E histology images. Training phase of the deep learning model. Left, Tumor regions were annotated by two pathologists 

with green polygon border. Tumor regions were segmented and color normalized for downstream analysis. The multi-scale LBP and AP algorithms were applied on 

gray-scaled tiles. Right, features were extracted by transfer learning using the Xception model and reduced features were fed into SVM for final classification. Testing 

phase uses the trained model from the training phase to predict clinical outcomes of unseen samples. 
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Xu et al. investigated a cohort of 253 patients with bladder cancer

rom TCGA. Their method achieves an accuracy of 73% and AUC of 0.75

n distinguishing high and low TMB patients [10] . 

Although it is possible to derive patients’ potential to benefit from

CB based on MSI or TMB status, as these biomarkers are only partially

ssociated with ICB response, using them as a surrogate for ICB response

rediction adds an intermediate step which decreases the prediction

ower of histopathological images and therefore constrains their clinical

pplications. Herein we investigated whether deep learning algorithms

an predict anti-PD-1 response directly from H&E images. 

In this study, we designed a systematic CNN model which can help

etermine the likelihood of responding to anti-PD-1 treatment for can-

er patients. We tested our model on more than 100 melanoma and lung

ancer samples. The model can be generalized to other tumors as well.

his work represents the first finding of using transfer learning to deter-

ine immunotherapy response on H&E slide samples. 

ethods 

tudy design and patient cohort 

We collected a total of 476 patient whole-slide images from

CGA-SKCM database, where 190 patients with top and bottom 20%

nterferon-gamma (INFG) scores were selected as our training data.

apping of tumor-infiltrating lymphocytes (TILs) was based on H&E

mages from 13 TCGA tumors ( n = 1896) [11] downloaded from GDC. 

From March 2016 and December 2017, fifty-four patients from

eking University Cancer Hospital, which were enrolled in four clinical

tudies of anti-PD-1 monoclonal antibody monotherapy for unresected

tage III or stage IV (AJCC Cancer Staging Manual 8th ed.) melanoma ad-
anced melanoma were chosen according to tumor response (responder

s. non-responders) . Responses were evaluated by investigators using

ECIST version 1.1. A non-small-cell lung cancer (NSCLC) cohort from

uangdong Province Cancer Hospital between July 15, 2019 and Octo-

er 16, 2019 was used as a second validation dataset ( n = 55 patients).

he responses were also evaluated by investigators using RECIST ver-

ion 1.1. All histology slides were annotated by two board-certificated

athologists. 

mage preprocessing and training of the model 

Histopathological images are large in size and hard to handle by neu-

al networks directly. Each image is split into small tiles with 256 ×256

ixels at 20 ×magnification using OpenSlidelibrary [12] . The tiles with

ow cell content information were dropped ( > 40% of the tiles are

ackground). Then color was normalized by the Macenko’s method

13] for each tile. Multi-textural features represented by 4 radius of

cales ( r = 2,4,6,8) LBPs [14] were transformed into 40-dimensional fea-

ure vectors. Affinity propagation (AP) algorithm [15] , which does not

equire a predefined number of clusters, was performed subsequently to

btain tens of center tiles. To convert these center tiles to informative

eatures, Xception [16] neural network with ImageNet pre-trained pa-

ameters is applied to extract 2048-dimensional feature vectors. The pa-

ameters in the neural network were fixed and the last fully connected

ayer was discarded. The feature vectors of center tiles were summed

p, weighted by their corresponding proportion of its cluster. We chose

rincipal component analysis (PCA) to further reduce the dimension of

xtracted features. The first 20 components are picked according to the

ercentage of variance explained by total selected components, and used

s the input for the final classifier ( Fig. 1 ). Using the reduced features
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Fig. 2. Prediction performance on the validation datasets (A) Area under the curves (AUC) of melanoma testing set ( n = 54). (B) Progression-free survival of patients 

separated by responders and non-responders in melanoma. (C) A waterfall plot of prediction probability score of melanoma samples. (D) AUC curves of lung cancer 

data set ( n = 55). (E) Difference in progression-free survival of lung patients in responders and non-responders. (F) A waterfall plot of prediction probability score of 

lung cancer patients. 
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f training samples, we train an SVM classifier with Gaussian kernel to

redict immunotherapy status. To evaluate the performance and avoid

ver-fitting, we performed 10-fold cross-validation in the training phase.

inally, n = 54 melanoma and n = 55 lung cancer patients were analyzed

ith the previously trained SVM model. 

omparison with TILs and other deep learning models 

To calculate the percentage of TILs on each image, we constructed a

ILs recognition deep learning model based on VGG-16 [17] . The slides

ere delineated into 100 ×100 non-overlapping tiles. The tiles were

olor normalized and used as training data for CNN model. We then

redicted each tile as a TILs or non-TILs tile. The percent of TILs in the

hole image was determined and used for calculation of AUC. 

Six other deep learning models were evaluated to compare the

rediction accuracies. AUCs for all models were calculated on the

elanoma dataset only. The area under curve (AUC) was calculated by

cikit-learn in Python. Confidence intervals (CIs) at 95% intervals were

stimated by 1000 iterations using the bootstrap method. 

esults 

The ROC curves of testing melanoma and lung cancer datasets are

hown in Fig. 2 . An AUC of 0.778(95% CI: 63.8% − 90.5%) for 54

elanoma testing samples with 15(65.2%) responders and 23(74.2%)

on-responders correctly classified ( Fig. 2 A, C). According to our predic-

ion results, responder group experienced much longer progression-free
urvival (log-rank test, p = 0.06) compared to the non-responder group

 Fig. 2 B) indicating histology images coupled with deep learning is an

ffective ICB biomarker. 

We also obtained an AUC of 0.645(95% CI: 49.4% − 78.4%) on the

ung cancer dataset, which suggests that the deep learning model can be

eneralized to other cancers ( Fig. 2 D, F). We observed that progression-

ree survival of responders was significantly extended compared to that

f non-responders ( Fig. 2 E). It is worth to note that histopathology im-

ges from lung cancer patients are core-needle biopsy samples rather

han surgery samples as in our training set. This may explain the slightly

ompromised performance of our model. 

The AUC of using TILs for predicting anti-PD-1 response was only

.58 in the melanoma dataset. This demonstrated the superiority of

ur deep learning model compared to conventional immune checkpoint

iomarkers. Examples of lymphocyte infiltration in responders and non-

esponders are illustrated in Fig. 3 . These results were consistent with T

ell staining using IHC in these patients. 

Besides, Pearson correlation value was calculated between TMB val-

es from WES and predicted scores from CNN model for n = 141 TCGA

KCM samples. The correlation value is 0.05, which suggested that CNN-

ased model is a completely independent biomarker than molecular-

erived signatures such as TMB (supplementary Fig. A). 

iscussion 

Immunotherapy has changed the landscape of oncology but deter-

ining patients who may benefit from the ICBs has remained a serious
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Fig. 3. Examples of TILs from whole slide images of responder and non-responder. Left, a responder example with TILs labeled as red points and tissue regions 

colored in blue on the masked figure. Right, a non-responder example with TILs labeled as red points and tissue regions colored in blue on the masked figure. 

Intermediate, randomly selected regions from each slide. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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hallenge. Current biomarkers are not sufficiently effective to identify

atients who may respond to ICBs. For example, 50% of colorectal can-

ers (CRCs) with MSI will ultimately progress. Past research shows that

igh tumor mutation burden was correlated anti-PD-1 response with ad-

anced melanomas in the Caucasian population. However, tumor muta-

ion burden is low for acral and mucosal melanomas [23] . 

Based on the prediction results of TILs, some patients with melanoma

redicted as high density TILs (9.2% TILs in tumor region) are actually

on-responders, on the other hand, responders with low density TILs

0.2% TILs in tumor region) exist as well. This reflects the limitation of

ILs as a predictive biomarker, due to the complexity nature of the tu-

or microenvironment. Consequently, an effective biomarker is needed

or melanoma and lung cancer patients. 

Furthermore, we found that AUCs for Resnet-50, Inception-V3, VGG-

9, Nasnet, Desnet and Mobilenet [18-22] are much lower than our

roposed CNN model, corresponding AUCs ranging from 0.55 to 0.71

supplementary Fig. B). 

Deep learning has been developed for decades, and has outperformed

uman in many image classification tasks, for example, predicting clin-

cal grade and stage [24] on several cancer types and gene mutations

n non-small cell lung cancer [25] . However, due to lack of enough

raining data, CNN has limited prediction power. Sample size is truly

mportant for deep learning models to avoid overfitting. With a small

raining dataset, the model could achieve good AUC score on the train-

ng data but poor generalization ability to testing data. For our method,

e selected 190 SKCM patients with top and bottom 20% interferon-

amma expression values from the TCGA dataset as our training cohort.

e further used principal component analysis (PCA) to reduce over-

tting. In this finding, we combined traditional textual features with

eep-learning extracted features by transfer learning with pre-trained

eep model from ImageNet. 4 radius of scales ( r = 2, 4, 6, 8) LBPs were

ransformed to extract information in border regions. 
In this study, the training data labels were inferred from INFG lev-

ls. INFG secreted by immune cells in the tumor microenvironment

auses growth arrest, up-regulates MHC class I expression, contributes

o the recruitment of effector cells, causes T-reg fragility and coordinates

he process of innate and adaptive antitumor response. Meanwhile, the

ame INFG signaling compromises antitumor immunity and activates

D-1 activity. INFG induces the expression of PD-L1 through increas-

ng STAT1 signaling and decreasing STAT3 activation. In some studies,

trong correlation between INFG and ICB response was reported [26] .

n a study of NSCLC and UC, INFG signature is associated with TMB sig-

ature [27] . Since the genetic biomarker TMB has been shown to cor-

elated with microsatellite instability, INFG may also correlates to MSI

tatus [28] . 

In our study, the training data was downloaded from TCGA, which

ontains mostly European ancestry with cutaneous melanoma while the

esting data we collected contains Asian patients with melanoma sub-

ypes dominant in mucosal and acral melanoma. However, the pro-

osed model demonstrates good generalization ability in our evaluation.

revious studies have also demonstrated that interferon-gamma asso-

iated gene expression levels play a very similar role in determining

esponse to ICB therapies in both western and Asian melanoma popula-

ions, which also supports the idea of generalizing the model to differ-

nt populations of patients [29] . In the future, it would be interesting to

urther exam the applicability of the developed model to other cancer

ypes. 

Most established biomarkers such as INF-gamma, TIDE [30] and IM-

RES [31] require NGS sequencing which is time consuming and ex-

ensive. To our knowledge, our deep learning model represents the first

nding of using H&E images to determine whether certain patients could

enefit from anti-PD-1 immunotherapy. Our method is robust to patient

amples from different cancer centers in melanoma and also has the po-

ential to predict immunotherapy response in other cancer types. 
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imitations 

Despite the superior prediction performance obtained by our

ethod, further studies will be needed to confirm the robustness of our

achine learning model and its generalization ability. Considering that

here is no immunotherapy response data available on TCGA, in this

tudy, the clinical outcomes in the training dataset were inferred from

FNG scores, where patients with top and bottom 20% INFG values were

onsidered responders and non-responders. The effectiveness of this ap-

roach was validated on 54 melanoma patients from BMS (AUC = 0.82).

e are planning to add more training data from future clinical studies to

nsure the extraction of key textural features, and help to optimize and

tabilize our prediction model, such that it can eventually be used to per-

orm patient screening in routine clinical practice for immuno-oncology

reatments. 

Further, many recent studies have shown that intratumoural hetero-

eneity also palys an important role in shaping anti-tumor immune re-

ponses [32] . Tumors with high heterogeneity might escape from the

mmune surveillance because of the outgrowth of sub-clones. Therefore,

n our future work, we would apply the proposed model on tissues from

ifferent tumor sites to understand the distributions and variation of

ILs at different tumor sites, which would further improve the predic-

ion of the response to immunotherapies. 

onclusion 

In summary, our study suggests that deep-learning based model may

etermine which patients could respond to ICB simply from routine H&E

lides. We also discussed the limitations of our current deep-learning

ased model. Conclusively, deep learning could ultimately enable effi-

ient identification of patients who may most likely benefit from im-

unotherapies, such as anti-PD-1, in a time-sensitive and cost-effective

ay. 
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