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Abstract

Background: Guide Picker (https://www.deskgen.com/guide-picker/) serves as a meta tool for designing CRISPR
experiments by presenting ten different guide RNA scoring functions in one simple graphical interface. It allows
investigators to simultaneously visualize and sort through every guide targeting the protein-coding regions of any
mouse or human gene.

Results: Utilizing a multidimensional graphical display featuring two plots and four axes, Guide Picker can analyze
all guides while filtering based on four different criteria at a time. Guide Picker further facilitates the CRISPR design
process by using pre-computed scores for all guides, thereby offering rapid guide RNA generation and selection.

Conclusions: The ease-of-use of Guide Picker complements CRISPR itself, matching a powerful and modular
biological system with a flexible online web tool that can be used in a variety of genome editing experimental
contexts.
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Background
CRISPR (clustered regularly interspaced short palin-
dromic repeats) allows researchers to introduce site-
specific mutations in a variety of organisms [1, 2].
SpCas9 (an RNA-guided nuclease found in Streptococcus
pyogenes) is directed to target sites in the genome by a
chimeric single guide RNA (sgRNA) [1]. The sgRNA
forms a complex with Cas9 and binds to genomic DNA
according to a 20 bp protospacer sequence. The com-
plex then induces a double-stranded break (DSB) three
nucleotides upstream of the protospacer adjacent motif
(PAM). The cell usually repairs the DSB through the en-
dogenous non-homologous end joining (NHEJ) pathway
which often produces insertion/deletion (indel) and
potentially deleterious frameshift mutations [3]. Custom-
izing the 20 bp protospacer elements of the sgRNAs to
target within and across different genes allows re-
searchers to multiplex functional genomics experiments.

The PAM is essential for Cas9 binding. SpCas9 pri-
marily recognizes NGG PAMs [4]. Other PAMs, such as
NAG, are referred to as non-canonical and have much
lower rates of cleavage [4]. However, although NAG is
not as strong as NGG, SpCas9 may still cleave near
NAG PAMs. Therefore, NAG PAMs are relevant when
searching for off-target hits but are not desirable when
designing highly active guides [4]. SpCas9 also has toler-
ance for mismatches in the 20 bp protospacer element
and can still induce DSBs despite a lack of full comple-
mentarity [5]. In concert, variable PAM sequences and
mismatch tolerance can lead to off-target edits (often via
NHEJ) in unintended regions across the genome. These
characteristics should be considered when predicting
and analyzing off-target activity.
To ensure target specificity and guide activity, re-

searchers depend on intelligent guide RNA design tools
to predict guide RNA behavior [6]. Several algorithms
have already been released which use guide RNA se-
quences as predictors of both on- [7, 8] and off-target
[4, 8] activity based on sequence composition. Additional
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algorithms focus on GC content [9], homopolymers [10]
and other features. Existing online web tools frequently
offer one or combine a few design considerations, but
rarely aggregate all of these parameters in one place.
This forces investigators to spend time comparing
across multiple websites in order to guarantee optimal
guide RNA design.
To address these problems, we developed Guide

Picker. Guide Picker is a cloud-based tool that allows
the user to visualize guide RNA designs plotted accord-
ing to ten scoring functions using one simple graphical
interface. Guide Picker can compare on- and off-target
scores, as well as other parameters, for every guide RNA
targeting the protein-coding transcripts in a given mouse
or human gene. Filtering and selecting guides according
to different scores in one interface alleviates the labor
involved in testing designs across disparate guide RNA
design tools (Fig. 1). Once the user has generated suit-
able designs, the list of guide RNAs can be saved and
passed on for synthesis and experimental application.
Guide Picker is also unique because it is the only online

resource that allows guide design around all protein-
coding transcripts of a gene. Transcripts are identified
using Ensembl database annotations indicating known
coding DNA sequences. Some design tools limit guide de-
sign to a 250 nucleotide input sequence while others only
generate guides for a single transcript. By using all tran-
scripts for a given gene, Guide Picker can offer more guide
design options and help the user target as many transcript
variants as possible to ensure gene knockout.
Guide sequences are determined by performing an ex-

haustive search throughout all protein-coding regions of
the mouse or human genome based solely on available
NGG SpCas9 PAM sites. This is accomplished using in-
house Python scripts which, along with the scores, are
contained in a Python wrapper to facilitate automation.
This loading process occurs on a cloud-based web server
and not on the user’s computer.
In addition to pre-loading guide sequences, Guide

Picker further speeds up the CRISPR design process by
pre-computing all scores for every guide RNA targeting
coding genomic regions in the mouse and human refer-
ence genomes. For any given scoring function and gene,
rendering all available guides takes fewer than five sec-
onds (even for large genes with ~3000 guides, such as
MUC4). Guide Picker displays all of these guides in an
easily manageable graphical format that can be adjusted
to improve visual accessibility.

Implementation
Materials and methods
The Guide Picker user interface (UI) is built on custom
in-house components developed using open source librar-
ies Vue.js (https://github.com/vuejs/vue), a JavaScript

framework, and a data visualization library, D3.js
(https://github.com/d3/d3). Interfacing with the open
source community assured maintainability and compatibil-
ity of the Guide Picker tool with most modern web
browsers. Using a powerful D3.js library enabled fast proto-
typing and development of the graphic component, as well
as access to its advanced data visualization algorithms such
as quadtree (https://github.com/d3/d3-quadtree) which is
used in the “Force Layout” mode to detect collisions
between data points (Fig. 3).
All Guide Picker scoring functions are based on previ-

ously published studies. Further, Guide Picker is free and
accessible to the academic community on http://deskgen.
com without restriction following sign-up. There is no
paid version of Guide Picker. Moreover, the source code
for Guide Picker at the time of publication is available in a
GitHub repository at https://github.com/DeskGen/open-
guide-picker under an open source MIT license. This
includes access to the pre-computed guide score database
associated with the tool.
Guide Picker uses the reference genomes for Mus

musculus (GRCm38) and Homo sapiens (GRCh38) pro-
vided by Ensembl. This is because the scoring functions
provided in the tool were developed with datasets from
mammalian models and depended on standard U6 deliv-
ery plasmid systems. Therefore, all algorithms displayed
by Guide Picker are constructed to make predictions
within that context [6]. Similarly, Guide Picker only uses
SpCas9 guide RNA design rules. We made this decision
because all guide RNA scoring algorithms to date were
written to accommodate this nuclease and not its
orthologs (e.g. NmCas9) which vary in PAM recognition,
specificity and more.

User interface
The number of relationships between guide RNA data
points can be explained by the formula np (where n is a
number of guides and p is a number of properties). The
multidimensionality of guide RNA data yields an unwieldy
number of variables for an investigator to navigate during
the guide RNA design process. It also presents a challenge
for creating a simple and efficient web tool UI. Guide
Picker arose as a solution to this problem.
A previously trialed UI (https://www.deskgen.com/

guidebook/advanced.html), where the user selected guides
by manually navigating inside genes with a sequence
browser, turned out to be an impractical, labor-intensive
solution. In parallel, an internally used algorithm-assisted
UI which presented the user with five top scoring guides
for a given gene limited user engagement and control. It
also stymied the user’s ability to cross-validate guides
across multiple parameter thresholds.
To achieve maximum clarity and usability for this tool,

a deliberate choice was made to adopt the minimalist
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design paradigm by reducing the subject to its principal
components. This philosophy yielded a simple yet effect-
ive scatter plot graphic. The scatter plot allowed users to
visualize and compare thousands of guides at once,
thereby providing an intuitive UI for selecting guides
that met specific scoring thresholds. It also offered more
control over design than the algorithm-assisted UI.

However, any gains in clarity over previous UI itera-
tions and peer web tools were outweighed by a reduc-
tion in data depth. The two-dimensional x/y view did
not present a comprehensive method for selecting opti-
mal guides. Also, a number of relationships between
data points C(n, k) (where n is the number of properties
and k is the number of axes) produced an unworkable

Fig. 1 Visualizing and Filtering Guides. a Guide sequences can be selected as a group or individually based on user preference. Selecting the
guide RNA sequence marker from the left-hand plot will highlight the same guides on the right-hand plot in red. b Users can filter guide RNA
sequences in the left-hand plot to minimize the population in the right-hand plot. This can be done by clicking and dragging the filtering tool
on the x- and/or y-axis. Unselected guides will fade out on the left-hand side and disappear altogether on the right. Selected guides will be
stored in the “Selected Guides” table for further analysis
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UI. To compensate for this loss of dimensionality, we
drew two scatter plots side-by-side, each displaying dif-
ferent properties for the same set of guides. The axis
values of these two plots were user-selected guide design
parameters. This improved readability while maintaining
a robust level of customizable dimensionality.
We also chose to round score values to the nearest in-

teger. Although floating numbers would provide a more
continuous distribution of values, they are harder for
users to read and compare. A decimal point is also likely
to be statistically insignificant for choosing an optimal
guide. Therefore, we decided to round score values as is
consistent with other guide RNA design web tools [4, 8].
Due to the volume of guide RNA data and our deci-

sion to round score values to the nearest integer, highly
dense overlapping regions became common in the scat-
terplots. In order to explore these dense regions more
easily, we implemented a “Force Layout” view and “Fish-
eye” lensing (advanced Guide Picker features) to allow
users to visualize overlapping guides or guides in close
proximity to one another (Fig. 3). In concert, displaying
all guides for a gene side-by-side across two plots accord-
ing to four variable guide RNA scores offers unprece-
dented ease and control over guide design.

Results
How to use Guide Picker
Input
The user first selects the genome of interest from the
“Genome” drop-down menu: either Homo sapiens
(GRCh38) or Mus musculus (GRCm38). The user then
inputs the gene name into the “Gene” entry field. The
system will search for the Ensembl gene name and list it
in a drop-down menu. Once the gene is selected, the
user clicks “Proceed” to be taken to the main Guide
Picker interface (Fig. 2a).

Design
In the main interface, side-by-side plots populate with
black data points. Each point represents an individual
guide RNA targeting the coding regions of the selected
gene using NGG PAM sites. Guides can be selected by
clicking data points directly or by Shift-clicking and
dragging the crosshair. Selected guides will change color
to red. Right-clicking will open a menu to select either
Fisheye or Force Layout view (Fig. 3). Axes can be dragged
to filter guides based on score thresholds. Drop-down
menus below each plot can be used to reassign x- and y-
axes to various scoring functions (Fig. 2b).

Scoring parameters The scatterplots on Guide Picker
depict every guide RNA available to target within the
coding regions of the specified gene. Guide RNAs are or-
ganized by the x and y plot scoring variables determined

by drop-downs underneath each scatterplot. Most scor-
ing functions are continuous (from 0 to 100), but some
are either stepped (0,10 … 90,100) or binary (0 or 100,
true or false).

Percent peptide score The percent peptide score (PPS)
refers to the guide position within the protein-coding
portion of the entire gene. In Guide Picker, protein-
coding exons for each transcript are concatenated to-
gether from the ATG/AUG codon to the STOP codon
and multiple transcripts are overlaid to produce one the-
oretical master coding DNA sequence (MCDS) per gene
(Fig. 4a). The base pair values for this sequence are nor-
malized from 0 to 100, 5′–3′ to provide percentage pro-
gression through the MCDS. Guides with a PPS of <50%
target toward the 5′ half of the MCDS, while guides with
a >50% PPS target the 3′ half.

Transcript representation Representation refers to the
proportion of the gene’s protein-coding transcripts a
given guide RNA design can target. The stepped axis
levels represent the percentage of targeted transcripts
versus the total transcripts for that gene. This value is
useful for designing guides against highly represented
(consensus) exons. A graphical representation of how
Transcript Representation is computed can be found in
Fig. 4b. Plotting PPS against Transcript Representation
in Guide Picker can be useful to determine the location
of highly conserved transcripts in the context of the
MCDS (Fig. 4c).

Specificity score (Hsu 2013) The Hsu 2013 score pre-
dicts the specificity of the guide RNA. Off-target sites
are evaluated based on genomic similarity to the guide
RNA sequence. This evaluation takes into account mis-
match number, position and density [4]. It is important
to note that while Hsu 2013 evaluates mismatch position
and nucleotide number, it does not consider nucleotide
identity (ATGC) [8].
Hsu 2013 considers both canonical NGG and non-

canonical NAG PAM sites for SpCas9 [4]. This informa-
tion is accumulated into a continuous score from 0 to
100. A higher score indicates the guide is less likely to
direct SpCas9 to cut at unintended (off-target) sites in
the genome. A score of over 50 means the guide has no
exact matches elsewhere in the genome, and a score of
100 represents maximum specificity.

On-target activity score (Doench 2014) The Doench
2014 on-target activity score predicts the ability of the
guide RNA to knock out the target gene [7]. This score
was developed based on a large-scale CRISPR experiment
using 1841 guide RNAs saturating nine genes [7]. The
group investigated position-based nucleotide composition
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for guide RNAs with high versus low activity and con-
structed a scoring algorithm according to desirable/un-
desirable sequence traits [7]. A score of 100 represents the
highest predicted activity based on nucleotide sequence.

On-target activity (Doench 2016 full and positionless)
Like the Doench 2014 score, the Doench 2016 on-target
activity score also predicts the ability of the guide RNA
to knock out the target gene [8]. This score is an im-
provement on Doench 2014 because it ranks data from
multiple large-scale CRISPR experiments and combines
their information to build a new algorithm with a more
generalizable model [8]. Once again, the group investigated
the nucleotide composition of the guide RNAs and com-
pared this data to activity [8]. A score of 100 represents the
highest predicted guide RNA activity based on nucleotide
sequence. Guide Picker uses the latest version of the

Doench algorithm available through the Azimuth GitHub
(https://github.com/MicrosoftResearch/Azimuth).
Doench 2016 comes in two forms: Full and Positionless.

The Doench 2016 Full score is adjusted based on the tar-
get location in the coding DNA sequence while the
Doench 2016 Positionless score does not. This adjustment
is based on the percent peptide score (PPS) which repre-
sents the progression through the CDS of that gene.
The reason to consider accounting for position in the

CDS is that some studies have suggested that targeting
in the 3′ end of the gene is less likely to lead to gene
knockout [8], possibly due to nonsense-mediated decay
[11]. Therefore, Doench 2016 Full scores tend to be lower
near the 3′ end of the gene. Conversely, Positionless does
not penalize for targeting in the last third of the CDS.

GC content Extreme GC content (low or high) can lead
to poor or depleted guide RNA activity. The percentage of

a

b

c

Fig. 2 Guide Picker Workflow. a First, an Ensembl gene name is provided from either the mouse or human reference genome. b Then, the guide
RNAs populate the left- and right-hand plots, organized on axes according to the scores selected in the corresponding dropdown menus.
Guides are filtered and selected based on these parameters. c Finally, a list of guide sequences are output and can be saved or sent to
an oligo synthesis provider
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GC content refers specifically to the guide RNA pro-
tospacer element (not including the PAM). A recent
study concluded that a range of 30–70% GC content
yields optimal guide RNA activity [9]. GC content is
implemented in Guide Picker as a continuous score
of 0–100%.

Homopolymer score Four or more consecutive re-
peated nucleotides (homopolymers) in the guide RNA
sequence have been shown to be detrimental to guide
RNA activity [10]. The homopolymer score in Guide
Picker (“No Homopolymer”) yields a binary true/false
output. A score of 100 means the guide RNA does not
contain a consecutive 4+ nucleotide homopolymer (de-
sirable) and a score of zero means it does contain a 4+
nucleotide homopolymer (undesirable).

Uracil triplets (UUU) score The presence of a TTT
DNA sequence (UUU in the RNA product) is detrimen-
tal to guide RNA activity because it is a terminator se-
quence for RNA Pol III transcription [12]. Like the
homopolymer score, the uracil triplet score in Guide
Picker (“No UUU”) is binary. A score of 100 means the
guide RNA does not contain any TTT sequences (desir-
able) and a score of zero means it does contain at least
one TTT sequence (undesirable).

Microhomology score The microhomology score pre-
dicts the likelihood of creating an out-of-frame mutation
via NHEJ-mediated repair [13]. Regions of microhomol-
ogy close to the cut site can facilitate indel formation,
The higher the score, the more likely the guide RNA is
to produce a frameshift-causing indel (desirable for
knockout experiments).

Fig. 3 Advanced Guide Picker Tools. By right-clicking on the plots in Guide Picker, the user can access advanced visualization options to more easily view
and select guides. a The “Fisheye” tool allows users to repurpose their mouse as a magnifying glass, giving them the ability to more easily select specific
guides of interest. b The “Force Layout” tool allows users to spread the overlapping guide RNA markers apart to see and select them more clearly
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Output
Once the guide RNA designs have been filtered and se-
lected, the Guide Picker-generated list can be saved for later
use. The “Export & Save” button will download a .CSV re-
port on all selected guides and store guide information in
the My Projects tool (https://www.deskgen.com/my-pro-
jects/) at DESKGEN.com. The list is also text-
selectable and can be copy-pasted by the user into a
separate document (Fig. 2c).

Score comparisons
Guide Picker can be used to compare scoring functions
across all guides targeting a single gene’s MCDS. This
can illuminate trends and biases in scoring functions.
The visualizations in Fig. 5 were performed using the

human Mucin 4 (MUC4) gene as an example. Due to
the size of MUC4, it has more guides than many other
genes and therefore demonstrates these parameter rela-
tionships more clearly.
The two plots in Fig. 5a illustrate how Guide Picker

can be used to visualize key features of well-known scor-
ing functions. The plot on the left compares the Doench
2016 Positionless on-target score with PPS, representing
the location within the MCDS. Of note, there is no clear
bias from Doench 2016 Positionless against guide scores
at any position.
The plot on the right of Fig. 5a shows the same guides,

but the y-axis displays Doench 2016 Full instead of Posi-
tionless. The downward trend toward a PPS of 100, or
the 3′ end of the MCDS, demonstrates the bias of the

a

c

b

Fig. 4 Percent Peptide and Transcript Representation. a The Guide Picker tool uses percent peptide as an indicator of location within the master
coding DNA sequence (MCDS) of a gene. A score lower than 50% means the guide RNA targets closer to the 5′ end of the MCDS, while a score
greater than 50% means the guide RNA targets toward the 3′ end of the gene. b Transcript representation refers to the number of gene transcripts
this guide RNA can target with the same gRNA sequence. c Plotting percent peptide and transcript representation together reveals consensus exons
throughout the MCDS of a given gene. In this example, most consensus exons appear toward the 3′ end of the gene. Data shown for the human
(GRCh38) FAM3B gene. Introns are not drawn to scale
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Doench 2016 Full score. Doench 2016 Full operates
under the assumption that guides targeting the 3′ end of
the gene are less likely to induce gene knockout.
The difference between Full and Positionless is also

made apparent in Fig. 5b. Correlating Doench 2016 Full
and Positionless shows strong co-localization for many
of the guide scores. However, some guides score much
higher with Doench 2016 Positionless than they do with
Full. Based on the relationships shown in Fig. 5a, it fol-
lows that the cluster of non-correlated guides would be
located toward the 3′ end of the gene. We demonstrated
this point by highlighting the non-correlated guide clus-
ter in red in the plot on the left, which in turn showed
the same guides with much lower Full scores toward
100% PPS on the right-hand plot.
Comparing Doench 2016 Full and Positionless in this

way helps the user elucidate the difference between
these two scores. Practically speaking, some investigators
may want to avoid targeting the 3′ end of the gene and
therefore will want to use Doench 2016 Full. Others may
not rely on generalizations about the 5′ or 3′ end of the
gene and instead will want to target 3′ proximal func-
tional domains where appropriate in order to ensure
gene knockout [14].
Guide Picker can also be used to demonstrate distribu-

tions for various scores by plotting parameters against
themselves. In Fig. 5c, we compared Doench 2014 (left)
and Doench 2016 Positionless (right) because they both
avoid taking target location within the MCDS into ac-
count. Here we show that Doench 2014 tends to give
guides a much lower score than Doench 2016 Posi-
tionless on average. We do so by highlighting about
1400 guides on the Doench 2014 plot which have

lower Doench 2014 scores. With the Doench 2016
Positionless score, the distribution trends toward the
middle of the plot. This is accentuated using the
Force Layout feature (Fig. 5d).

Discussion
Guide Picker can be used to design both gene knockout
and tiling experiments using SpCas9. For gene knockout,
the scoring parameters can be set to maximize guide ef-
ficiency. Ideally, this means selecting guides with a high
Doench 2016 score, a high Hsu 2013 score, no homopol-
ymers or uracil triplets, high transcript representation
and a high microhomology score. Location in the MCDS
(as indicated by the percent peptide score) will vary
depending on the experiment.
Guide Picker can also be used to interrogate specific

regions of a gene in what is known as a CRISPR tiling
experiment. In principle, this involves systematically de-
signing guides that target along the MCDS to determine
regional essentiality in protein function [15]. This can be
done efficiently with the Guide Picker interface (Fig. 6).
First, guides are displayed in a PPS versus Doench

2016 Positionless on-target score plot. This is displayed
in Fig. 6a using the human serotonin receptor 2A gene,
HTR2A, as an example. We use Positionless in this ex-
ample because we do not want to introduce scoring bias
against guides targeting the 3′ end of the gene; 3′ re-
gions may still be functional or essential. The guides can
then be filtered according to a Doench 2016 Positionless
threshold (e.g. 50) (Fig. 6b). The “Filtered Guides” list
is now restricted to designs that target along the
whole MCDS and that have a higher likelihood of on-
target activity.

Fig. 5 Score Comparisons. Each screenshots depict side-by-side plots containing all guides targeting the MCDS of MUC4. a–b Plotting Doench
2016 Full and Positionless against percent peptide reveals a scoring bias against guides targeting the 3′ end of the MCDS in Doench 2016 Full.
c Guide Picker can also be used to illustrate score distribution patterns for different scores. In these plots, Doench 2016 Positionless guide scores
cluster toward the <50 end of the plot while Full guide scores tend to cluster around 50. d This is demonstrated even more clearly using
Force Layout mode
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All guides above this threshold are then brought over
to the right-hand plot and further narrowed down
according to, for example, a relatively high Hsu 2013
off-target score (68, which is >50 and means they have
no exact matches elsewhere in the genome) and a GC
content range of 30–70% [9] (Fig. 6c). The final guide
selection can be highlighted on the right to verify that
they still target along the full length of the MCDS (as ev-
idenced by a broad range of PPS values on the left-hand
plot) (Fig. 6d).
In this example, the user now has 55 guides with con-

vincing GC content, on-target scores and off-target
scores that will direct SpCas9 across the entirety of the
MCDS of HTR2A. These guide sequences can then be
checked in the Knockout or Knockin tools (https://
www.deskgen.com/guidebook/) or a comparable genome
browser to determine their exact location in the tran-
script(s) or MCDS. From there, the user can execute the
experiment using a small-scale library generated with
the list from Guide Picker to elucidate the essentiality of
each protein-coding region.

Conclusions
Guide Picker is the newest addition to the DESKGEN [16]
(http://www.deskgen.com) cloud platform. It brings to-
gether ten literature-based guide RNA scoring parameters

and functions. It is unique to other design tools because it
can simultaneously visualize all guides for a given gene ac-
cording to four pre-computed guide RNA design parame-
ters at a time. The tool can be used to support various
experimental applications by accelerating and improving
the guide design process. As new scores are published, the
tool will be updated to accommodate, utilize and compare
the latest algorithms.
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