
 1 

Dual exposure-by-polygenic score interactions highlight disparities across social groups in the 

proportion needed to benefit 

Sini Nagpal and Greg Gibson, 2024 

Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology 

Atlanta, GA 30302  sini.nagpal@gatech.edu   and greg.gibson@biology.gatech.edu  

 

Abstract 

 

The transferability of polygenic scores across population groups is a major concern with respect to the 

equitable clinical implementation of genomic medicine.  Since genetic associations are identified relative 

to the population mean, inevitably differences in disease or trait prevalence among social strata influence 

the relationship between PGS and risk. Here we quantify the magnitude of PGS-by-Exposure (PGSxE) 

interactions for seven human diseases (coronary artery disease, type 2 diabetes, obesity thresholded to body 

mass index and to waist-to-hip ratio, inflammatory bowel disease, chronic kidney disease, and asthma) and 

pairs of 75 exposures in the White-British subset of the UK Biobank study (n=408,801). Across 24,198 

PGSxE models, 746 (3.1%) were significant by two criteria, at least three-fold more than expected by 

chance under each criterion. Predictive accuracy is significantly improved in the high-risk exposures and 

by including interaction terms with effects as large as those documented for low transferability of PGS 

across ancestries.  The predominant mechanism for PGS×E interactions is shown to be amplification of 

genetic effects in the presence of adverse exposures such as low polyunsaturated fatty acids, mediators of 

obesity, and social determinants of ill health.  We introduce the notion of the proportion needed to benefit 

(PNB) which is the cumulative number needed to treat across the range of the PGS and show that typically 

this is halved in the 70th to 80th percentile.  These findings emphasize how individuals experiencing adverse 

exposures stand to preferentially benefit from interventions that may reduce risk, and highlight the need for 

more comprehensive sampling across socioeconomic groups in the performance of genome-wide 

association studies. 
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Introduction 

As the discovery power of genome-wide association studies has increased to the point where meaningful 

stratification of risk for complex disease can be contemplated, attention is beginning to turn toward issues 

surrounding clinical implementation of polygenic scores (PGS)1-5.  Two crucial concerns are the definition 

of appropriate thresholds, if any, guiding therapeutic intervention6,7; and ensuring that such thresholds are 

deployed equitably across population groups.  The lack of portability across continental ancestry groups 

has already been the focus of considerable research8,9, but equally important is ensuring that healthcare is 

provided equitably across socioeconomic strata10-12.  Since ancestry, ethnicity, and social determinants of 

health are inexorably linked, consideration of genetics in this context inevitably engages particularly vexing 

scientific and social issues. 

Limited studies have provided empirical evidence of PGSxE interactions across environmental 

exposures in biobank scale datasets13,14, and consequently the overall contribution of PGSxE to the genetic 

architecture of disease has not yet been quantified. While additive effects of environmental exposures can 

be sufficient to markedly alter the relationship between PGS and disease prevalence or therapeutic 

outcomes, it is also important to discern whether genotype-by-environment interactions are prevalent 

enough to affect clinical implementation.  Individual SNP-by-environment interactions are for the most part 

an order of magnitude smaller than main effects15-17, and consequently escape detection even in very large 

GWAS.  However, thousands of such interactions can collectively lead to PGS-by-environment interactions 

that do meaningfully modify PGS accuracy18,19.  Durvasula, et al.14 identified three categories of interaction, 

namely ones that increase the variance of effect sizes, ones that are correlated in direction of effect, and 

ones that induce PGS-exposure correlations14. Exposures may be cultural, behavioral, abiotic, biochemical, 

or other biological influences, such as sex which shows systematic amplification of  SNP effect sizes for 

cardiometabolic traits in females as demonstrated by Harpak and colleagues20. 

We have also drawn attention to a particular type of PGS-by-exposure interaction, (de)canalization, 

which results in enhanced or reduced magnitude of risk at the extremes of the polygenic score distribution13.  
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Analysis of ten diseases and 150 exposures in the UK Biobank showed that this effect is pervasive and 

shows characteristic patterns that are for example quite different for obesity as measured by body mass 

index or waste-to-hip ratio.  Under persistent stabilizing selection the genetic architecture may evolve to be 

buffered against genetic or environmental variation21,22, and the argument is that contemporary dietary and 

psychological exposures, for example, have disrupted this relationship23,24.  Disease promoting exposures 

both increase the overall prevalence and the impact of high genetic risk, such that PGS have different 

predictive power across environments, including socioeconomic strata. 

Here we systematically characterize the extent of PGS-by-exposure interactions for pairs of 

exposures in relation to seven disease classifications (type 2 diabetes and coronary disease, obesity 

(measured both as BMI and WHR), inflammatory bowel disease, chronic kidney disease, and asthma) in 

the UK Biobank25, the first four evaluated both as prevalent and 10-year incident cases. We identify specific 

key exposures exhibiting multiple interactions for each disease and show that there is a strong positive 

relationship between the excess disease variance explained due to interaction effects and amplification of 

SNP effect sizes. After using cross-validation to confirm the robustness of several interactions, we introduce 

the notion of the Proportion Needed to Benefit (PNB) as a metric for defining thresholds for clinical 

implementation.   We conclude with discussion of whether calibration of PGS amounts to correction factors 

that could lead to biases that exacerbate or mitigate health disparities. Our analyses make a strong case that 

the transferability of polygenic scores across socioeconomic and other exposure strata is often poor18, and 

generally results in bias against accurate risk assessment in higher risk populations. 

Results  

Impact of polygenic scores on disease is highly context-specific 

We begin by asking to what extent do combinations of environmental exposures modulate the disease risk 

vs PGS relationships? Leveraging the self-reported white-British subset of the UK Biobank data 

(n=408,801), we generated polygenic risk scores for seven common diseases, namely coronary artery 
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disease (CAD), type 2 diabetes (T2D), body mass index (BMI)- and waist-to-hip ratio (WHR)- thresholded 

obesity, inflammatory bowel disease (IBD), chronic kidney disease (CKD) and asthma (see Methods). The 

disease risk was evaluated as both prevalent cases (denoting all self-reported cases and/or ICD10 codes) as 

well as incident cases (denoting incidence within 10 years of recruitment based on ICD10 codes and date 

of first in-patient diagnosis). Supplementary Table S1 contains the list of UK Biobank fields, ICD10 codes 

for each disease, GWAS summary statistics used for PGS and number of SNPs after pruning and 

thresholding. We then compared disease risk as a function of PGS with respect to pairwise-combinations 

of 75 environmental exposures (approximately 75C2 combinations) categorized into diet, lifestyle, 

socioeconomic factors, early life factors, metabolite levels and physiological factors including sex 

(Supplementary Table S2). Each exposure was split into two groups, namely, low vs high-risk based on the 

mean values for quantitative exposures and answers provided in the UKB questionnaire for categorical 

exposures. Thus, a combination comprising of two exposures has four levels of risk: low-risk in both 

exposures (E00, lowest overall risk denoted by yellow curve), high-risk in both exposures (E11, highest 

overall risk denoted by purple curve), and high/low-risk in one of the exposures (E01 or E10, blue or red 

curves).  

Figure 1 depicts three scenarios showing the varied impact of PGS on the disease with respect to 

different combinations of environmental exposures. In each case, the x-axis is the percentile of PGS-CAD 

and the y-axis is the 10-year CAD incidence in the UK Biobank cohort. In the first case (Figure 1A), for 

the exposure pair 'fresh fruit intake along with number of days/weeks walked 10+ minutes’, no difference 

is observed with respect to four levels of environmental risk levels, i.e. low fruit intake and low physical 

activity, low fruit and high physical activity, high fruit and low physical activity and high fruit and high 

physical activity. In the second case (Figure 1B), we observed an additive impact of PGS with respect to 

clinical risk factors - triglyceride and cholesterol levels - as the curves depart, showing an incremental 2-

3% increase in CAD incidence with exposure risk levels along the PGS spectrum, such that the two 

exposures have comparable effects on CAD risk. At the top percentile of PGS-CAD, comparison of 
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individuals with high triglyceride levels and high cholesterol levels (purple curve, E11) implies an average 

offset of risk from 23% to 16% by reducing cholesterol levels (<6 mmol/L, orange curve E10) and further 

to 11% by additionally reducing their triglyceride levels (<1.7 mmol/L, yellow curve E00). We note that 

these curves establish an association and do not necessarily imply causality between exposures and disease 

risk, so the notion of offsetting risk by changing the exposure is hypothetical and should be considered 

illustrative only. The third case shows an increasingly large impact of sex and sex-adjusted testosterone 

levels on the CAD incidence where the deviations between high vs low-risk groups increases as the PGS 

increases (Figure 1C). Males with low testosterone levels (E11, purple curve) have the highest risk of CAD 

compared to females with high testosterone levels (E00, yellow curve) and the impact increases with the 

increase in PGS, such that the difference in incidence is 4.8% at the intermediate PGS and 19% in the top 

percentile of PGS.  

 

Figure 1: Varied impact of PGS-CAD on CAD incidence with respect to combinations of exposures. The curves show 
the relationship between incidence of CAD (%) vs percentile of PGS-CAD for combinations of exposures: (A) Fresh fruit 
intake and number of days walked 10+ minutes showing no effect with respect to high or low exposure risk levels, (B) 
Triglyceride and cholesterol levels showing a constant 2-3% shift with respect to different exposure risk levels, (C) Sex and 
sex-adjusted testosterone levels showing an increasingly large impact with respect to different exposure levels. Note that 
individuals taking cholesterol- or blood pressure-lowering medications were removed from all computations involving CAD 
risk. 
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Assessing the combinations of exposures has several advantages. Firstly, refinement of disease risk 

stratification with respect to pairs of exposures and genetic predisposition can be discerned. For example, 

in Figure 1C, males with low testosterone levels are uniformly at about 2-3% higher risk of CAD compared 

to males with high testosterone levels, irrespective of their PGS. Whereas, within females, high testosterone 

levels become protective only for women with high genetic predisposition to CAD (>75th percentile of 

PGS). Assessing the PGS-risk relationships in the overall population without environmental stratification 

or even with single exposures averages out the effects of the contributing factors which may play a 

significant role in explaining the variability in disease risk observed among individuals. Secondly, it allows 

evaluation of the competing effects of the exposures in terms of their genetic influences on disease risk 

while controlling for the other environment.  That is, we can ask whether two exposure effects are 

comparable, or one is more pronounced resulting in disproportionate increase in disease risk – and 

subsequently whether its influence might be offset by mitigating factors. For example, PGS has a larger 

impact on CAD with respect to sex (CAD risk at top percentile of PGS in males is 34.9%), compared to 

testosterone levels (risk at top percentile of PGS in low testosterone group is 29.0%). However, both factors 

modify the PGS-risk relationships such that high-risk in both the dimensions i.e. high genetic risk and high-

risk exposure, becomes synergistically worse (risk at top percentile of PGS in males with low testosterone 

is the highest, 37.3%) (Supplementary Figure S1). Thirdly, quantifying how both factors contribute towards 

explaining the variance in the disease allows for gain in predictive accuracy of PGS in high-risk exposures. 

The prediction R2 of PGS in males with low testosterone levels is 15.4% compared to 11.2% in females 

with high testosterone levels and 12.5% in the overall population without any environmental stratification 

(Supplementary Figure S1).  Despite the same PGS being evaluated against CAD risk for each of the three 

cases in Figure 1, the varying response across contexts underscores the complexity of interpreting these 

scores.   
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Assessment of interaction between polygenic risk and exposures 

We next asked whether the environmental effects are additive or whether certain combinations of exposures 

interact with PGS to exacerbate disease risk disproportionately thus modifying the PGS-risk relationships. 

We evaluated two models, (i) logistic regression with an interaction term on raw, non-binned data; (ii) 

liability threshold disease risk modeling to assess expected risk at each PGS percentile under the additive 

expectation. First, we tested for a significant interaction term of PGS with exposure-pair (p < 0.05) in the 

logistic regression model on the raw, non-binned data:  

Y = PGS + E1 + E2 + PGSxE1 + PGSxE2 + PGSxE1xE2 + covariates,   

where Y is the case-control status of the disease (0/1), E1 is first exposure (0/1), E2 is the second exposure 

(0/1) and the covariates include age and five genetic PCs.  

Next, we asked if the observed disease risk per percentile-PGS with respect to high vs low-risk 

exposures follows an additive expectation or PGSxE interaction. We utilized the liability threshold model 

to evaluate disease risk per percentile of PGS given the environmental effects are additive13 (see Methods). 

Assuming the underlying risk distribution in the overall population has a mean (μ) zero and variance (σ) 1, 

the liability threshold (t) can be determined from the prevalence in the overall population. Then, the mean 

of the underlying liability distribution (μi) at each PGS percentile i, given the environmental effects are 

additive can be estimated:   

    μi = t – cdf-1(1 – Pi) = 𝑃𝐺𝑆i + E1 + E2 + ɛ                                                        (1) 

where, t is the liability threshold determined from the overall population prevalence, Pi is the observed 

prevalence at PGS percentile i, 𝑃𝐺𝑆i is the mean PGS at percentile i, E1 is the first exposure and E2 is the 

second exposure. Then, the expected prevalence (Pi`) at each PGS percentile i is computed (assuming the 

variance of the underlying liability distribution (σi) at each PGS percentile i is 1 under the null model) as:  

Pi` = 1 - cdf(N(μi,1), t)  
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We computed the deviations of disease risk at the extremes of the PGS (> or < +/-2 σ) between 

high-risk vs low-risk exposures because we expect the deviations at the extremes will usually be associated 

with PGSxE influences on risk throughout the distribution. The metric to compute it is denoted as delta13 

(see Methods). We identified significant interaction cases if the departure of deltaobserved from deltaadditive 

was greater than 2 standard deviation units. Across all 24,198 PGSхExposure models, 746 (3.1%) were 

significant by the above two criteria, at least three times more than expected by chance under each criterion 

(also Methods). Next, we evaluated the expected risk by including the interaction terms in the model i.e. 

μi = t – cdf-1(1 – Pi) = 𝑃𝐺𝑆i + E1 + E2 + 𝑃𝐺𝑆ixE1 + 𝑃𝐺𝑆ixE2 + 𝑃𝐺𝑆ixE1xE2 + c           (2) 

 and computed the excess disease variance due to interaction effects as the ratio of the sum of signed effects 

from the interaction model i.e. βPGS +  βPGSxE1 +  βPGSxE2 +  βPGSxE1xE2  (equation 2) relative to βPGS from the 

additive model (equation 1), following Darvusala and Price14.  

Figure 2 shows three scenarios of interaction effects established using the above models (i) Low 

omega-6 fatty acid (ω6FA) levels and past tobacco smoking interact with PGS-CAD to exacerbate incident 

CAD risk (Figure 2A), (ii) High glucose and low ω6FA levels interact with PGS-T2D to exacerbate incident 

T2D risk (Figure 2B), (iii) High glucose and low ω3FA levels interact with PGS-BMI to exacerbate incident 

obesity risk (Figure 2C). The middle panel shows the expected risk (grey dashed curves) if the 

environmental effects were additive (equation 1). The excess disease risk in the observed data compared to 

additive expectation is captured by including the interaction between PGS and environments in the model 

(equation 2), shown by grey dashed-curves in the third panel. The adjusted R2 (reported in figure 2) of the 

interaction model shows significant improvement over the adjusted R2 of the additive model. This confirms 

that these exposures interact with PGS to increase disease risk non-additively. These models were also 

validated on independent test sets showing consistent findings i.e. improvement in R2 of interaction models 

relative to additive models (Supplementary Figure S2).  Table 1 summarizes the departure of deviations at 

the extremes of PGS in the high vs low-risk exposure groups and excess disease variance due to interaction 

effects from the overall model for the above three cases.    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311065doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

Figure 2: Assessment of interactions between PGS and exposures. (A) Incidence of CAD vs percentile PGS-
CAD with respect to omega 6 fatty acids and past tobacco smoking, (B) Incidence of T2D vs percentile of PGS-
T2D with respect to glucose and omega 6 fatty acid levels, (C) Incidence of obesity vs percentile of PGS-BMI 
with respect to glucose and omega 3 fatty acid levels. The second panel in each case shows the expected risk if the 
environmental effects are additive as shown by the grey dashed curves obtained using liability threshold disease 
risk modeling, overlaid on the observed curves. The third panel shows the expected risk (grey dashed curves) under 
the interaction model. The adjusted R2 of the additive and interaction models are reported on the top of each panel.  
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Disease Exposure 

PGSextremes Model Overall Model 

Departure 
(sdu) 

Delta observed 
(E11-E00) 

Delta expected 
(E11-E00) 

Excess disease variance 
due to interaction effects 

CAD Omega-6 and 
past smoking 

2.947 0.156 0.067 +/- 0.043 1.185 

T2D Glucose and 
omega-6 

2.188 0.332 0.274 +/- 0.058 1.287 

Obesity Glucose and 
omega-3 

4.644 0.237 0.083 +/- 0.049 1.221 

Table1: PGSxE metrics for three cases: Coronary artery disease with respect to Omega-6 fatty acids and 
past smoking, type 2 diabetes with respect to glucose and omega-6 levels and obesity with respect to glucose 
and omega-3 fatty acid levels.  

Further, to ensure that the deviations in risk across PGS spectrum with respect to environmental 

exposures are not solely driven by prevalence/incidence differences or biased by PGS developed from 

GWAS of the overall population rather than exposure specific GWAS, we performed a series of sensitivity 

analyses described in the supplementary methods.  These confirmed that there is a considerable tradeoff 

between less biased estimation of allelic effects in exposure-specific populations and increased estimation 

variance due to smaller sample sizes26. By equilibrating sample sizes and disease prevalence, and generating 

permutations of random dichotomous traits, we also show that prevalence differences associated with high 

genetic risk reflect synergistic interactions between exposures and polygenic risk independent of the 

influence of overall elevated prevalence in certain exposures (Supplementary Figures S3, S4 and Methods). 

Pervasive polygenic risk-by-exposure interactions (PRSxE) across common diseases  

Across all disease-exposures, we find evidence of pervasive polygenic score-by-exposure interactions 

influencing common disease risk. Figure 3 shows the exposure pairs showing PGSxE for prevalent CAD 

(Figure 3A), incident CAD (Figure 3B), incident T2D (Figure 3C) and prevalent chronic kidney disease 

(Figure 3D) respectively and Supplementary Figure S5 shows the exposure pairs for the other diseases. 

These are established using the above-described models, namely comparison of (i) significant interaction 

term (p<0.05) of PGSxE regression on non-binned data, (ii) Departure of deltaobserved from deltaadditive greater 

than 2 standard deviation units, where delta is defined as the deviations of disease risk at the extremes of 
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PGS (> or < +/- 2 σ) between high vs low-risk exposure (see Methods). The width of the arc within each 

disease is proportional to deltaobserved i.e. deviation in disease risk at the extremes of PGS between high-risk 

vs low-risk exposure, while the number of linkages per node denote multiple interactions exhibited by the 

key or major exposures for each disease. 

Figure 3: Combinations of exposures showing significant PGSxE for common diseases (A) Prevalent coronary 
artery disease (CAD), (B) Incident CAD, (C) Incident type 2 diabetes (T2D), (D) Prevalent Chronic kidney disease 
(CKD). The width of the arc denotes the deltaobserved i.e. deviations of disease risk at the extremes of PGS between 
high- vs low-risk exposure and the number of linkages per node denote the multiple interactions exhibited by key or 
major exposures for each disease.  
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For CAD, the incident cases (6% incidence) and prevalent cases (11.7% prevalence) show high 

concordance in the significant exposure pairs showing interaction effects (Figure 3A and 3B). The key 

exposures exhibiting multiple interactions include sex, weekly beer intake, ω6FA and smoking which in 

combination with other exposures interact with PGS to exacerbate CAD risk. For example, PGS has a 

significantly larger impact on CAD risk in males with slow walking pace, a measure of physical fitness 

(incidence at PGStop = 30%) compared to females who walk briskly (incidence at PGStop = 7%) 

(Supplementary Figure S6A). However, brisk walking in males offsets this risk, rendering it comparable to 

the overall risk observed in females with slower walking pace (incidence at PGSmedian = 7%). Nevertheless, 

it is important to note that even with brisk walking, males exhibit elevated risk at higher PGS levels (> 75th 

percentile). Reduced levels of polyunsaturated fatty acids (PUFAs) such as ω6FAs, ω3FAs and 

docosahexaenoic acids (DHA) have particularly adverse effects on CAD risk27,28, especially in people with 

high weekly beer and cider intake, and this is accentuated at elevated PGS-CAD levels (Supplementary 

Figure S6B). The risk curves for prevalent CAD cases show similar findings but even higher deviations of 

disease risk between high vs low risk exposures (Supplementary Figure S7 and Table S3). 

Conversely, while clinical risk factors for CAD like cholesterol, LDL, HDL, triglycerides, and blood 

pressure are widely recognized, evidence demonstrates their additive effects when combined with polygenic 

risk scores (PGS)29-31. However, evaluating these risk factors within specific contexts unveils interaction 

effects with PGS, leading to elevated CAD risk which has clear implications for personalized medicine32,33. 

Thus, neither genetic risk nor other non-genetic risk factors such as clinical or environmental risk factors 

should be considered in isolation or modeled merely as additive contributions for disease risk evaluation.  

For example, high cholesterol has adverse effects on CAD risk particularly in smokers who have high 

genetic predisposition to CAD (Supplementary Figure S6C for incident CAD, S7C for prevalent CAD), as 

does low levels of HDL along with white bread intake compared to wholegrain or brown bread intake; and 

high systolic pressure in individuals whose jobs involve heavy physical work also exacerbates CAD risk 

along the PGS spectrum (Supplementary Figure S6D, S7D for prevalent CAD). 
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For incident T2D, the major exposures include glucose levels, ω6FA levels, sex-adjusted testosterone 

levels, sex, bread intake, alcohol frequency, smoking and body size at age 10 (Figure 3C). PGS-T2D 

imposes larger impact in individuals with reduced levels of PUFAs and high levels of glucose leading to 

elevated T2D risk as the PGS increases (Figure 2B).  High levels of glucose also have adverse effects on 

T2D risk in individuals who consume more bread (incidence at PGStop = 40%) compared to those who 

consume less bread (incidence at PGStop = 30%); whereas there is no effect of bread intake in individuals 

with low glucose levels (Supplementary Figure S8A).  Both high processed meat and beef intake have much 

more adverse effects on T2D in smokers compared to non-smokers at high PGS-T2D (Supplementary 

Figure S8B). With respect to testosterone levels, smokers with low testosterone levels are at a higher T2D 

risk compared to non-smokers with high testosterone levels (Supplementary Figure S8C)34. Early life 

factors such as having plumper body size at age 10 as well as high genetic predisposition to T2D imposes 

high T2D risk in males (incidence at PGStop = 40%) compared to females whose body size is plumper at 

age 10 (incidence at PGStop= 10%) or thinner (incidence at PGStop = 7%) (Supplementary Figure S8D).  

Most of these interactions are also observed for prevalent type 2 diabetes (Supplementary Figure S5A). 

For incident and prevalent obesity defined by body mass index (Supplementary Figure S5D, F), the 

major exposures include walking pace, Townsend deprivation index, vitamin D levels and alcohol 

frequency, as well as the PUFAs ω6FA and DHA.  By contrast, for prevalent obesity defined by waist-to-

hip ratio(Supplementary Figure S5E), the major exposures include weekly beer consumption, systolic blood 

pressure, ω6FAs, sex adjusted testosterone levels, and pork/beef intake. Supplementary Figure S9 shows 

the examples of two combinations of exposures: (i) body size at age 10 and weekly beer intake, (ii) sex 

adjusted testosterone levels and bread intake which interact with PGS-BMI and PGS-WHR respectively to 

influence obesity risk.  In both cases, being plumper at age 10 along with high beer intake and having low 

testosterone levels along with high bread intake, risk for obesity is high, however the responses to the PGSs 

differ. Notably, there is exacerbation of obesity risk as the PGS-BMI increases (Supplementary Figure S9A, 

B), however for PGS-WHR, the overall difference in top vs bottom percentiles of PGS is small, there is 
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attenuation of obesity risk as the PGS increases.  This is observed (i) in individuals who consume more 

beer and have plumper body size at an early age compared to lean body size (Supplementary Figure S9C); 

and (ii) in individuals who consume more bread, and the curves tend to converge for low vs high 

testosterone levels (Supplementary Figure S9D). This apparent canalization of disease risk for WHR and 

decanalization for BMI possibly reflects the contrasting roles of polymorphisms for BMI acting in the 

central nervous system and influencing human eating behavior vs those for WHR acting on metabolic traits 

considered to have been under stabilizing selection throughout primate if not mammalian evolution13.  

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut arising due to 

dysregulated immune response to an environmental trigger in individuals with high polygenic load. The 

major exposures showing interaction effects include low hemoglobin levels, low cholesterol levels – LDL 

and triglycerides, white bread type, and systolic blood pressure. Supplementary Figure S5B and S10 shows 

notable examples of interactions of exposure pairs with PGS-IBD influencing IBD risk. Low LDL levels 

along with high triglycerides levels and high systolic blood pressure are associated with enhanced polygenic 

influences on the IBD risk (Supplementary Figure S10A, B). Evidence suggests that patients with IBD have 

impaired and altered lipid metabolism due to chronic inflammation and thus these factors may be the 

outcome of the disease rather than being causal35. Lower LDL levels may also be attributed to reduced diet 

and weight loss in IBD patients due to bowel symptoms. Studies have also demonstrated an elevated risk 

of cardiovascular outcomes in IBD patients despite low prevalence of cardiovascular risk factors such as 

cholesterol, termed as the CVD paradox36-38. Anemia is a particularly strong risk factor for individuals in 

the top tertile of polygenic risk, showing synergistic interaction with smoking status (Supplementary Figure 

S10C). Dietary factors such as preference for white bread over whole grain bread also exacerbates the 

polygenic influences on IBD risk (Supplementary Figure S10D), though we caution that cause and effect 

relationships are not clarified with this approach, and that for example reverse causation may be involved 

(IBD changes dietary preferences).  There were insufficient incident cases to compare meaningfully with 

prevalent IBD.    
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For prevalent CKD, the major exposures include calcium levels, vitamin D levels, omega-3 and 

omega-6 fatty acids, hemoglobin levels, fresh fruit intake, weekly beer and exposure to tobacco smoke 

(Figure 3D and Supplementary Table S3). PGS-eGFR has an inverse relationship with CKD risk. 

Intriguingly, within females, high calcium levels tend to exacerbate CKD risk compared to low calcium 

levels at high genetic risk of poor eGFR, whereas within males, there is no difference in CKD risk with 

respect to high vs low calcium levels (Supplementary Figure S11A). High tea intake imposes higher risk 

for CKD at low PGS-eGFR, however elevated levels of ω3FAs do not offset that risk (Supplementary 

Figure S11B). On the other hand, reduced levels of ω6FAs along with high glucose levels tend to exacerbate 

CKD risk with about 3-4-fold increased risk at the low PGS-eGFR, compared to high levels of ω6FA and 

low glucose (Supplementary Figure S11C).  Consideration of socioeconomic status as measured by 

Townsend deprivation index reveals a surprising result that higher alcohol intake appears to be protective 

against CKD39, with no discernible difference in CKD risk between high vs low socioeconomic deprivation. 

However, reduced alcohol intake has adverse effects with about 2% higher CKD risk in the high Townsend 

deprivation group along the PGS spectrum (Supplementary Figure S11D). 

For Asthma, we found fewer interactions and more additive connections of the dietary or lifestyle 

factors with PGS. The major exposures include hemoglobin levels, type of working environment such as 

jobs involved heavy physical work or standing, and exposure to tobacco smoke. For example, PGS has a 

higher impact on asthma for individuals with high exposure to tobacco smoke at home and high triglyceride 

levels; on the other hand, females with low income show an overall higher risk than males with low income 

levels, however notably at high PGS-asthma, the high-income group in both males and females has an 

elevated asthma risk possibly pointing towards pollution levels or industrialization in high income or urban 

areas, or to ascertainment biases such as access to healthcare (Supplementary Figure S12A, B). 

Supplementary Table 3 contains the metrics of the PGSxE models across significant exposures for 

each disease i.e., departure at PGSextremes, deltaobserved, deltaexpected as well as the excess disease variance due 

to interaction effects from the overall model. Overall, we noted consensus between significant major 
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exposures interacting with PGS identified for both prevalent vs incident disease cases.  While the issue of 

PGS portability across ancestries has been a major focus in the literature, these results highlight the need to 

identify social determinants of health or contexts where PGSs and the interactions between these factors 

impose a larger impact on disease risk and thus could be more informative in terms of their clinical utility 

to ameliorate health disparities.  

Gain in prediction accuracy in high-risk environments 

We next asked whether the predictive accuracy of PGS (R2, denoting the variance explained by a PGS for 

disease) varies in stratified high vs low-risk exposures as well as in composite exposure models that include 

the interaction between PGS and environments. We assessed the predictive accuracy of three models: (i) 

Low-risk exposures (E00): Disease ~ PGS + covariates; (ii) High-risk exposure (E11): Disease ~ PGS + 

covariates; (iii) Composite model with interaction: PGS + E1 + E2 + PGSxE1 + PGSxE2 and PGSxE1xE2 + 

covariates. The covariates included age and five genetic principal components.  

Figure 4 shows the average R2 (measured on raw, un-binned data i.e. per individual rather than per 

percentile, hence lower than the R2 measures in earlier figures showing R2 from liability threshold disease 

risk modeling) across combinations of major exposures for each disease for the three models. In each panel, 

the dashed line indicates R2 for PGS in the overall population (without any environmental stratification or 

interaction effects). Overall, there is a gain in predictive accuracy in the poor or high-risk exposures 

compared to low-risk exposures and in many cases a further gain for the composite exposure model 

indicating that interaction effects between PGS and combination of exposures improves the variance 

explained for the disease risk. Notably, the PGS accuracy in the low-risk exposure is almost always lower 

than that observed in the overall population.  Thus, disease promoting exposures both increase the overall 

prevalence and the impact of high genetic risk, such that PGS have different predictive power across 

environments, including socioeconomic strata. For incident CAD (Figure 4A and Supplementary Figure 

13A for prevalent CAD), the R2 for males (in combination with other risk exposures) is 1.4-fold higher than 

that in females (average R2: males 0.148, females 0.103), and marginal improvement of 1.48-fold for the  
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composite model with interaction term (average R2: 0.155). Glucose shows a larger impact for incident 

T2D, with 1.7-fold higher R2 in individuals with high glucose levels (R2=0.135) compared to those with 

low glucose levels (R2 = 0.081) and 2.2-fold for the composite model with interaction effects (R2=0.18) 

(Figure 4B and Supplementary Figure S13B for prevalent T2D). Similarly, slow walking pace almost 

doubles the predictive accuracy of PGS-BMI on incident obesity risk (R2 = 0.098) compared to brisk walk 

(R2 = 0.053) and the composite interaction model shows a further gain of 3.6-fold (R2 = 0.194) (Figure 4C), 

Figure 4: Gain in PGS prediction accuracy in high-risk exposures and composite exposure model including 
the interaction effects. The average R2 across significant exposure-pairs is shown for major exposures across 
each disease: (A) Incident coronary artery disease (CAD), (B) Incident type 2 diabetes (T2D), (C) Incident obesity 
with PGS-BMI, (D) Prevalent Chronic kidney disease (CKD).   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311065doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

confirming the evidence of strong interaction effects established between physical activity and PGS-

BMI13,40-43. For both alcohol intake frequency and Townsend deprivation index, the gain in predictive 

accuracy of PGS-BMI for obesity risk in high-risk exposures is ~1.5 fold and greater than 2-fold in the 

composite model compared to low-risk exposures. Obesity defined by BMI threshold > 30 yields similar 

results (Supplementary Figure S13C), whereas for obesity defined by WHR > 0.9 (Supplementary Figure 

S13D), the average R2 values were much lower than BMI and similar in high vs low-risk exposures. 

However, with the interaction term, weekly beer, DHA and systolic blood pressure showed almost 3-fold 

gain while testosterone levels and lamb intake showed a 2-fold gain in R2. For prevalent CKD (Figure 4D), 

reduced levels ω6FA levels, hemoglobin levels, calcium and glucose show a gain in predictive accuracy, 

while there is marginal improvement in the composite interaction model indicating weaker interaction 

effects for CKD. For prevalent IBD (Supplementary Figure S13E), intriguingly, the gain in predictive 

accuracy is even greater than 2-fold in low levels of LDL, high levels of triglycerides and high systolic 

blood pressure compared to their corresponding low-risk exposures, although the absolute R2 values are 

lower compared to other diseases. However, we observed weak evidence of interaction effects for IBD, 

with reduced average R2 in the composite exposure model with interaction effects. Similarly, the average 

R2 values for asthma were much lower compared to other diseases (Supplementary Figure S13F). 

The fold change in predictive accuracy observed here is comparable to that observed between 

between Europeans vs East Asians and Africans8,44, highlighting that the issue of portability must not only 

be considered with respect to ancestries but also across socioeconomic groups18,45 and environmental factors 

which modify genetic influences on health outcomes. It also highlights important factors for each disease 

that need to be considered while evaluating risk using PGSs. The difference in predictive accuracies is 

consistent with the difference in SNP-heritability (SNP-h2) across these exposures (Supplementary Figure 

S14) indicating there is an increase in genetic variance in disease promoting exposures, possibly leading to 

an excess number of disease cases or elevated risk in the poor environments as observed in PGS-risk 

relationships.  
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PGSxE and its relationship with amplification 

Given the pervasive evidence of PGSxE and gain in predictive accuracy of PGS observed in high-risk 

environments, we next sought to evaluate the mechanism of PGSxE by estimating the genetic effect sizes 

in the high vs low-risk exposures for major exposures identified for each disease. The exposure-specific 

genetic effects were computed for SNPs that were used for PGS construction (Supplementary Table S1), 

adjusting for age and genetic PCs.  We next used multivariate adaptive shrinkage (MASH)46 to examine the 

mixture of covariance relationships (correlation and difference in magnitude) of SNP effect sizes along 

with their estimation noise20, between high-risk exposures (E11) vs low-risk exposures (E00).  Across all 

exposure pairs, we observed that the exposure-specific genetic effects were almost perfectly correlated but 

systematically higher in magnitude in high-risk exposures with high predictive accuracies compared to low-

risk exposures. This is consistent with the mechanism of amplification (rather than uncorrelated effects) 

explaining GxE i.e. systematic differences in numerous genetic effects, recognized by previous 

studies14,18,20,47. The amplification of genetic effects parallels the increase in variance of genetic effect sizes 

in the high-risk exposures compared to low-risk exposures consistent with the elevation of SNP-h2 

supporting PGSxE effects. For example, for CAD, the majority of the genetic effects are nearly perfectly 

correlated but up to 2x higher in magnitude for smokers with reduced levels of ω6FAs compared to non-

smokers with higher levels of ω6FAs (Supplementary Figure S14A).  Further the SNP-h2 is also 8% higher 

in smokers with reduced levels of ω6FA compared to low-risk exposure (Supplementary Figure S14B). 

Thus, the genetic effects may be highly correlated across exposures but amplified in the high-risk 

environment leading to an increased genetic variance (SNP-h2). 

Across the major exposure-disease combinations showing PGSxE, we find evidence of extensive 

amplification of genetic effects in the high-risk exposures. We computed the net amplification effect20 as 

the percentage of genetic effects with magnitude higher in high-risk exposure (E11) compared to low-risk 

exposure (E00) i.e. H > L minus percentage of genetic effects with magnitude higher in the low-risk exposure 

compared to high-risk exposure i.e. H<L for each exposure-pair. Figure 5 shows a strong positive 
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correlation between the net amplification effect with the excess disease variance due to interaction effects 

from PGSxE models for prevalent CAD (r=0.63, p=4.8e-12, Figure 5A) and incident CAD (r=0.61, p=5.4e-

10, Figure 5B). The significant positive correlation is consistent across all diseases (Supplementary Figure 

S15):  prevalent T2D (r=0.47, p=0.002), incident T2D (r=0.67, p=.002), incident obesity (r=0.32, p=0.005), 

obesity-BMI (r=0.48, p=0.002), obesity-WHR (r=0.7, p=7e-06), prevalent IBD (r=0.59, p=0.045). 

For CAD (Figure 5), sex interactions show the highest net amplification where genetic influences on 

CAD tend to be more pronounced in males than females along with other contributing factors such as low 

income, slow walk pace, low DHA and testosterone levels. This is true of both prevalent and incident 

disease, and beer consumption is also generically amplifying.  In contrast, the genetic influences of reduced 

levels of ω6FAs are typically more pronounced in prevalent than incident CAD, with the exception of 

reduced ω6FA with high triglycerides where there is apparent suppression of genetic effects despite the 

high variance explained due to interaction effects.   Interestingly, systolic blood pressure only appears to 

amplify genetic influences on incident disease.  For type 2 diabetes, high glucose levels have amplified 

genetic effects along with contributing factors such as reduced ω6FA levels, high cholesterol, alcohol, and 

bread intake, but the magnitude of the amplification is typically greater for incident disease whereas the 

Figure 5: PGSxE shows a positive relationship with amplification of genetic effects. The x-axis denotes the net 
amplification effect (%) computed as the percentage of genetic effects with H (E11) > L (E00) minus percentage of 
genetic effects with H (E11) < L (E00). The y-axis denotes the excess disease variance due to interaction effects 
computed from the liability threshold disease risk modeling.   
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variance due to interaction effects (degree of decanalization13) is greater for prevalent disease 

(Supplementary Figure S15A,B).  Omega 6 fatty acids only promote amplification for prevalent diabetes, 

implying that their influence is across the lifespan.  Incident obesity is notable for relative suppression of 

genetic effects for adults who self-reported as being plump as children, which exemplifies a trend for 

canalization to associate with reduced effect sizes overall.  Interactions with walk-pace contribute to the 

incidence of obesity apparently with little impact on effect sizes of variants contributing to the PGS 

(Supplementary Figure S15E). Low Townsend deprivation index, low testosterone levels and low vitamin 

D levels also show high amplification but moderate interaction effects. Obesity defined by BMI and by 

WHR show very different patterns of amplification Supplementary Figure S15D, F), although in both cases 

the significant positive relationship between amplification and variance due to interaction effects is 

maintained. Supplementary Table S4 contains the net amplification effect (%) for significant exposures 

across diseases.  

Consideration of PGSxE to assess the Proportion Needed to Benefit (PNB) 

One of the major barriers preventing the adoption of PGSs is challenges surrounding its clinical 

implementation.  PGSs offer a significant value in risk stratification rather than overall prediction or 

diagnosis. Thus, PGS-based approaches may offer clinical utility in screening strategies, which when 

integrated with environmental and clinical risk factors enhance the ability to identify individuals on whom 

preventative interventions would be most impactful4,48.  With pervasive evidence of PGSxE interactions 

influencing disease risk, risk thresholds can be identified to maximize the proportion of population that 

might benefit from lifestyle changes, while optimizing the risk reduction as well as response to 

interventions6,7. Here we introduce the notion of the Proportion Needed to Benefit (PNB) as a metric for 

defining thresholds for clinical implementation. Building on the number needed to treat (NNT)6,7,49 concept, 

the proportion needed to benefit is a measure of how many people need to reduce their high-risk exposure 

(modifiable diet or lifestyle in many cases) in order to benefit one person at increments along the polygenic 

score percentile range. It is computed as the inverse of the difference between area under the risk-PGS 
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curve for high-risk exposure (E11) minus low-risk exposure (E00) at different PGS thresholds, scaled by the 

proportion of population sampled at each threshold.  

Figure 6: Proportion needed to benefit as a function of PGS thresholds in the high-risk modifiable 
exposure. In each case, the scale below the risk-PGS curves denotes the proportion needed to benefit (PNB) 
from high (E11) to low-risk (E00) exposure at increasing PGS thresholds for (A) Incident coronary artery 
disease (CAD), (B) Incident type 2 diabetes (T2D), (C) Incident obesity (D) Prevalent chronic kidney disease 
(CKD).  
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Figure 6 shows four examples of risk-PGS curves with respect to modifiable exposures along the 

scale denoting the PNB at PGS thresholds from left to right, PGS > 0 (overall population, without 

consideration of genetics), PGS percentile >10, PGS percentile >20 and so on. For example, with increasing 

PGS thresholds, the incidence of CAD increases in both high-risk exposure (E11) i.e. smokers who consume 

white bread as well as low-risk exposure (E00) i.e. non-smokers who consume wholegrain or brown bread 

(Figure 6A). However, targeting the entire population for lifestyle intervention without the consideration 

of genetic risk (i.e. PGS percentile >0) yields proportion needed to benefit as 20 implying 1 in 20 i.e. 5% 

of 40368 individuals (3863 CAD cases) who are in the high-risk exposure would benefit by reducing their 

CAD risk.   Whereas, targeting the top 20% of the population based on their genetic risk (PGS percentile > 

80) doubles the gain in benefit, yielding a PNB of 9 implying that 1 in 9 i.e. 11% of a smaller proportion of 

population (n=4037, CAD cases = 108) may benefit. On the face of it (see Discussion below), individuals 

in the high genetic risk and high-risk exposure (smokers consuming white bread) may reduce their CAD 

risk from 20% to as low as non-smokers who consume wholegrain bread (CAD incidence 9%) by switching 

their lifestyle. Consequently, the precision or positive predictive value increases with increasing PGS 

thresholds in both high and low-risk exposure but is 2-fold higher in the high-risk exposure (Supplementary 

Table S5), highlighting the effectiveness of targeting a smaller proportion of population stratified by both 

PGS and environmental risk to maximize the benefit from interventions.  Similarly, Natarajan et al50 

identified a high genetic risk group who benefitted from statin therapy with an NNT of 28, compared with 

77 for the entire trial participants. Importantly as well, the negative predictive values are higher in the low-

risk exposure and decreases with increasing PGS thresholds (Supplementary table S5) suggesting that 

unnecessary interventions could be avoided in the lower genetic risk groups6.  

Similarly, 25% (1 in 4) individuals with high PGS-T2D (>75th percentile) can in theory reduce their 

T2D risk by switching to a diet with lower blood glucose and elevated Docosahexaenoic acid (DHA) levels 

(Figure 6B). For obesity (Figure 6C), reducing glucose and increasing ω3FAs through diet may reduce 

obesity risk for 1 in 25 individuals (4%) in the entire population but at high genetic risk, PGS > 80th 
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percentile, 1 in 9 individuals (11%) may benefit. For CKD (Figure 6D), there is an inverse relationship 

between PGS-eGFR. Thus, in the overall population, PGS < 100th percentile, 1 in 75 (13%) individuals may 

benefit by reducing calcium levels and increasing coffee intake, whereas at PGS < 20th percentile, 1 in 33 

(30%) individuals may benefit. Across all significant exposures vs diseases, the relative gain in benefit of 

50% was attained at PGS thresholds in the 70th-80th percentile. Overall, these results highlight the need to 

advance towards exposure-informed clinical implementation of PGSs and identify social strata or 

environments where PGSs impose greater impact on the disease.  

Discussion  

Our investigations highlight the pervasive context-dependency of polygenic scores.  The findings have 

implications from understanding the malleability of genetic architectures across environments, to 

implementation of PGS in personalized medicine, particularly in relation to promotion of equity in 

healthcare.  Much has been written, appropriately, about the non-transferability of PGS across ancestry 

groups10, due mostly to drift in allele frequencies and linkage disequilibrium.  However, the magnitude of 

PGS-by-exposure interactions places this discussion in the broader context of transferability of scores 

across populations with very different social determinants of health18. 

To illustrate this, consider the case of chronic kidney disease (CKD).  This high-mortality condition 

has attracted consequential debate over the use of so-called race correction factors to adjust for differences 

in prevalence between Blacks and non-Blacks51.  Most initial diagnosis is by way of screening for serum 

creatinine, high levels of which are a biomarker for low estimated glomerular filtration rate and hence 

impaired kidney function.  Since adult African Americans on average have twenty percent higher serum 

creatinine, for reasons that may or may not relate to kidney function, they are correspondingly more likely 

to be diagnosed with CKD52.  Proponents of adjustment for this difference argue that statistical corrections 

are commonplace in medical assessment, and that it reduces expensive over-diagnosis in Black populations 

while promoting access to potentially limited dialysis for non-Blacks53.  Opponents have successfully 

argued for cessation of the practice in the US on the basis that it is racist and stigmatizing and potentially 
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leads to under-diagnosis.  Millions of lives are affected by policy, and while our analyses do not bare 

directly on the question (since they were restricted to the White British subset of the UK Biobank cohort to 

avoid such complications), they place it in the broader context of health equity in at least four ways. 

(i) There are dozens of combinations of exposures that identify subsets of a quarter of the 

population whose risk for CKD is more than double that of the remainder, a difference that 

dwarfs that attributed to race.  Some of the exposures are lifestyle-related and some are 

biochemical, and most are correlated with ancestry and ethnicity.  This observation alone raises 

questions about screening and interpretation of kidney disease across socioeconomic, and 

other, groups. 

(ii) The accuracy of PGS is meaningfully greater in the high-risk exposure groups, in so far as 

much more of the variance in disease is explained by the PGS in high exposure environments.  

This finding is consistent across all diseases and relates to the amplification of genetic effects 

in individuals with environmental exposures that promote disease.  Yet the vast majority of 

GWAS are performed in relatively affluent urban settings.  While the signals seem to replicate 

well across populations, their cumulative effects on the PGS may not, which argues strongly 

for more inclusivity in genetic studies across the full range of social strata. 

(iii)  The effect of exposures on the prevalence-PGS risk curve varies widely, often exhibiting 

synergistic amplification of the risk for individuals with high genetic and exposure risk.  We 

have previously described this phenomenon as decanalization13.  For CKD it is for example 

notable that prevalence only increases in for individuals in the top quartile of genetic risk for 

people with high tea intake (Supplementary Figure S11B).  BMI shows more decanalization 

than WHR and interacts with somewhat different exposures, likely reflecting differences in 

long-term stabilizing selection on cognitive and metabolic aspects of weight gain13. In any case, 

the PGS is only one part of the equation for risk evaluation.  Adjustment of population 
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differences in PGS for example by centering the score1,2 do little to adjust for environmental 

impacts and may be as inappropriate as race correction factors. 

(iv) The consequences for personalized genomic medicine cannot be understated.  While much 

focus is on positive prediction, we also note the implications for negative predictive values 

which are statistically higher in the low genetic risk subsets of low exposure-risk populations, 

often exceeding numbers needed to treat over 100.  On the other hand, reduced negative 

prediction for those experiencing poor social determinants of health represents another 

potential issue for health equity. 

Some of these conclusions are affected by a major limitation of this study, which is that we are for 

the most part unable to assess the causality of specific exposures.  There are many possible explanations 

for genotype-by-environment interactions, some mechanistic and some statistical biases, including the 

common instance of genotype-environment correlations54: it is quite possible for PGS to be on average 

higher or lower in different socioeconomic groups because of historical legacies, for example. The high 

correspondence between prevalence and incidence relationships with environment is consistent with 

causality, but those estimates are confounded (a third or more of prevalent cases are also incident) and there 

may be other explanations.  For example, some measures that we call exposures, particularly those related 

to exercise and diet, may represent rapid behavioral responses to the onset of disease.  Furthermore, even 

if an exposure is causal, it may not be modifiable, if the damage due to the exposure is not reversible.  While 

we identify dozens of possible lifestyle interventions that on the face of it would halve the prevalence of 

conditions as diverse as CKD, diabetes, and inflammatory bowel disease, it is not clear that they would be 

effective even if people heeded the epidemiological evidence.  Methods such as Mendelian randomization 

may shed light on causality, but the complex covariance of so many of the exposures considered here urges 

caution in interpreting such studies.   

Nevertheless, we would argue that a key implication of our findings is that exposures need to be 

considered when implementing PGS in settings where the intervention is expensive, has limited availability, 
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or may be associated with detrimental side-effects.  While PGS are sold as a key to personalized medicine, 

the fact is that the major benefits accrue at the population level: interventions with NNT between 5 and 10 

benefit a small fraction of individuals but reduce incidence overall with great consequence.  Considering 

cardiometabolic diseases, there is little argument for stratifying administration of drugs like statins and 

metformin by genetic risk, but there would likely be benefit to doing so for new generation drugs such as 

GLP-1 agonists55,56.  For those, the proportion needed to benefit set by cutoffs of the PGS is critically a 

function of the exposure, with individuals who have high genetic risk differing in their likelihood or 

response by as much as five-fold or more.  Assessment of the utility of exposure-informed clinical 

implementation of PGS to target expensive and limited therapies to those most likely to benefit need to be 

evaluated in a clinical trial framework. 

Finally, a further limitation of our research is that most of the interactions have not been validated.  

We are replicating key results in the All-of-Us57 study but note first that the UK and US cohorts are 

demographically very different, and second that the self-reported exposure measurements in the two studies 

are not the same.  Exact replication is not to be expected given these considerations as well as the pleiotropic 

nature of exposures that generally also have a high (but variable) correlation structure.  Yet the overall 

pattern of context-dependence certainly is a general phenomenon, and it is in our view important that this 

perspective be prominent when the potential of polygenic risk evaluation is communicated to patients and 

to the general public.   

Methods 

Study population 

The UK Biobank (UKB) is a large population-based cohort consisting of ~500,000 individuals, recruited 

between 2006 and 2010 at 22 assessment centers spread across the UK25. The participants aged 40–69 at 

recruitment, completed baseline questionnaires about lifestyle, physical measures, medical history, and 

general health, as well as providing biological samples (blood, urine, and saliva) for genetic, proteomic, 
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metabonomic analyses, and biomarker identification. In addition, the UKB has also generated data fields to 

indicate the first occurrence of a set of diagnostic codes for a wide range of health outcomes across self-

report, primary care, hospital inpatient data, and death data, all mapped to a three-digit code of International 

Classification of Disease (ICD-10). In this study, we downloaded the genotype and phenotype from the 

UKB under application number 17984. The imputed genotype data (named v3) released in May 2017 for 

∼ 96 million markers was downloaded. After selecting bi-allelic variants with imputation score > 0.9, minor 

allele frequency >1%, Hardy–Weinberg equilibrium P > 10−10 and <5% missing rate, a total of 8,063,507 

SNPs was available for analysis. For the inclusion criteria of the participants, we selected a total of 408,801 

self-reported White British individuals, (QC parameter ‘in.white.British.ancestry.subset’ == 1 as provided 

by the UKB), which were of similar genetic ancestry based on the principal component analysis of the 

genotype data and passed the sample QC filters25. Further, we utilized the first five principal components 

provided in the genotype QC data of UKB to account for population structure within this set of individuals 

in our statistical models. We excluded individuals who had withdrawn from the UKB by the time of the 

analyses and only included individuals for whom trait and environmental exposure values were reported.   

Phenotype data 

The phenotype data was extracted for seven diseases and traits – coronary artery disease (CAD), type 2 

diabetes, chronic kidney disease, obesity (relative to body mass index (BMI) and waist-to-hip ratio (WHR)), 

inflammatory bowel disease (IBD) and asthma. The prevalent cases included both self-reported and ICD10 

codes. Whereas the incident cases included only ICD10 codes where date of first in-patient diagnosis-

ICD10 was within the 10 years of recruitment in UKB i.e. year of first in-patient diagnosis minus year of 

recruitment >=1 and <= 10 years. For thresholded obesity, BMI >= 30 and WHR >= 0.9 was used. 

Supplementary Table S1 contains the complete list of UKB field IDs, ICD10 codes used, exclusion criteria, 

prevalence and incidence for each disease and trait. 

Environmental exposures 
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We utilized 75 environmental exposures categorized into diet, lifestyle, socioeconomic factors, early life 

factors, metabolite levels and physiological factors including sex (Supplementary Table S2). For each 

exposure, baseline measurements were taken. Each exposure was then split into two groups, namely high 

vs low based on the mean values of quantitative exposures and answers provided in the UKB questionnaire 

for categorical exposures. Individuals with missing phenotypic values, or who answered “Do not know” or 

“Prefer not to answer” were excluded. For sex, individuals whose genetically assigned sex (field ID: 22001) 

matched to the self-reported sex (field ID: 31) were included. For blood biochemistry biomarkers – 

cholesterol (field ID: 30690), triglycerides (field ID: 30870), LDL (field ID: 30780), HDL (field ID: 30760), 

diastolic blood pressure (field ID: 4079) and systolic blood pressure (field ID: 4080), we excluded 

individuals taking cholesterol-lowering or blood pressure medications (field IDs: 6153, 6177). Both 

testosterone levels (field ID: 30850) and hemoglobin levels (field ID: 30020) were adjusted by sex before 

generating high vs low groups for these exposures.  

To assess PGSxE across combinations of exposures, we generated pairwise combinations of these 

exposures (approximately n=75C2 combinations). Thus, a combination comprising of two exposures has 

four levels of risk, namely low-risk in both exposures (E00, lowest overall prevalence denoted by yellow 

curve), high-risk in both exposures (E11, highest overall prevalence denoted by purple curve), and high/low-

risk in one of the exposures (E01 or E10) (Supplementary Table S2). For consistency, high-risk in all cases 

was defined simply as the environment with the elevated risk overall and is not taken to imply that one or 

the other exposure is intrinsically high-risk. In some cases, notably alcohol consumption, this definition 

results in the same exposure being high- or low-risk for different conditions. Exposures with small sample 

size where four levels of risk were not attained were excluded. 

Computation of polygenic scores  

Supplementary Table S1 provides the references of the independent European-based GWAS summary 

statistics used for each disease and trait and the number of SNPs after pruning used for the computation of 

polygenic score (PGS) on the UKB cohort. First, we subset SNPs with p < 0.001 from each GWAS 
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summary statistic file and then performed LD pruning using ‘--indep-pairwise’ function in PLINK58 to filter 

out variants with LD R2 > 0.2 within a 1000 kb window.  The ‘–score’ function in PLINK was used to 

obtain the weighted sum of the genotypes by log of odds ratios for diseases and effect sizes for traits to 

generate PGSs on the UKB cohort. We further also validated our results using a genome-wide PGS 

constructed using a Bayesian-based approach of estimating posterior SNP effect sizes under continuous 

shrinkage, PRS-CS59.  

Assessment of polygenic score by environmental interactions (PGSxE) 

To assess PGSxE interactions, we evaluated two models – (i) logistic regression with an interaction term 

on raw, non-binned data; (ii) liability threshold disease risk modeling to assess expected risk at each PGS 

percentile under additive expectation. First, we tested for a significant interaction term of PGS with 

exposure-pair (p < 0.05) in the logistic regression model on the raw, non-binned data:  

Y = PGS + E1 + E2 + PGSxE1 + PGSxE2 + PGSxE1xE2 + covariates,   

where Y is the case-control status of the disease (0/1), E1 is first exposure (0/1), E2 is the second exposure 

(0/1) and the covariates include age and five genetic PCs. Of the total 24,198 models assessed across all 

diseases, 5469 (22.6%) exposure-pairs showed significant interaction term (PRS xE1xE2) at p-value < 0.05, 

i.e. up to 4.5-fold more than expected by chance.  

Next, we asked if the observed disease risk per percentile-PGS with respect to exposures follows 

an additive expectation or PGSxE interaction. We compared the shapes of risk-PGS curves, given that the 

underlying PGS have similar distributions across environmental risk levels. The prevalence/incidence of 

disease vs percentile of PGS curves with respect to combinations of environmental exposures were 

generated, each combination consisting of four levels by mean prevalence in each, namely, E00 (low-risk, 

lowest prevalence), E01, E10, E11 (high-risk, highest prevalence). Exposure-pairs with smaller sample size 

leading to zero prevalence in the lowest ten PGS percentile bins per group were removed. We utilized our 

recently developed liability threshold modeling approach13 to model expected disease risk 
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(prevalence/incidence) given the mean PGS at each percentile under the additive expectation (null model 

without PGSxE). Assuming the underlying risk distribution of overall population has a mean (μ) zero and 

variance (σ) 1, the liability threshold (t) can be determined from the prevalence in the overall population. 

Then, the mean of the underlying liability distribution (μi) at each PGS percentile i, given the environmental 

effects are additive can be estimated:   

    μi = t – cdf-1(1 – Pi) = 𝑃𝐺𝑆i + E1 + E2 + ɛ                                                        (1) 

where, t is liability threshold determined from the overall population prevalence, Pi is the observed 

prevalence at PGS percentile i, 𝑃𝐺𝑆 is the mean PGS at percentile i, E1 is the first exposure (0/1) and E2 is 

the second exposure (0/1). Then, the expected prevalence (Pi`) at each PGS percentile i is computed as 

(assuming the variance of the underlying liability distribution (σi) at each PGS percentile i is 1 under the 

null model):  

Pi` = 1 - cdf(N(μi,1), t)  

We performed 50 such iterations where ui was sampled from a distribution with variance equivalent to the 

residual error of the fitted model from equation (1). Similarly, the expected prevalence at each PGS 

percentile i can be computed by estimating the ui for the interaction model (including the PGSxE interaction 

terms) as:  

μi = t – cdf-1(1 – Pi) = 𝑃𝐺𝑆i + E1 + E2 + 𝑃𝐺𝑆ixE1 + 𝑃𝐺𝑆ixE2 + 𝑃𝐺𝑆ixE1xE2 + ɛ           (2) 

The expected disease risk at each PGS percentile under additive vs interaction models are depicted by grey 

dashed-curves and overlaid on the observed curves as illustrated in Figure 2 and Supplementary Figure S2 

showing independent replication. We expect that deviations at the extremes will usually be associated with 

PGS×E influences on risk throughout the distribution. So, we computed the deviations of disease risk at the 

extremes of PGS (> or < +/-2 σ) between high vs low-risk exposures, denoted as delta13, in the observed 

and expected risk-PGS curves:  
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Delta (Δ) = Right tail deviation – Left tail deviation, where: 

Right tail deviation = E[Risk|PGS > 2σ]High-risk Env - E[Risk|PGS > 2σ]Low-risk Env   

Left tail deviation = E[Risk|PGS < -2σ]High-risk Env - E[Risk|PGS < -2σ]Low-risk Env   

Then, the departure of Deltaobserved from Deltaadditive was computed as:  

  Departure = !"#$%	'()"*+",	–	!"#$%	%,,.$.+"
	/!(!"#$%	%,,.$.+")				2345	467899	4::	3;<89=739	

  

Combinations of exposures showing significant PGSxE were then identified if the departure of Deltaobserved 

from Deltaadditive was greater than 2 standard deviation units (sdu), illustrated in the chord diagrams (Figure 

3 and Supplementary Figure S5). Of the 24,198 models evaluated across all diseases, 3742 (15.46%) 

exhibited a departure value exceeding 2 sdu, 3.1-fold more than expected by chance. Finally, we considered 

exposure-pairs that were deemed significant by both aforementioned models, resulting in a total of 746 

models, which represents 3.1% of the total models assessed. 

We further also estimated the excess disease variance explained by interaction effects from the 

overall liability threshold disease risk modeling i.e. variance explained by model including interactions 

terms (equation (2)) over additive model that does not include interaction term (equation (1)):  

Excess disease variance due to interaction =  >?@A
BBBBBB	C		>?@ABBBBBBDEF	C		>?@ABBBBBBDEG	C		>?@ABBBBBBDEFDEG

>?@ABBBBBB  

Supplementary Table 3 contains the metrics of the PGSxE models across significant exposures for each 

disease i.e., departure at PGSextremes, deltaobserved, deltaexpected as well as the excess disease variance due to 

interaction effects from the overall model.  

Exposure-specific PGS analysis 

To ensure that the deviations in risk across the PGS spectrum with respect to environmental exposures are 

not solely driven by prevalence/incidence differences or biased by PGS developed from GWAS of the 

overall population rather than exposure specific GWAS, we performed a series of sensitivity analyses. We 
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considered sex as an exposure, owing to its large sample size, to construct exposure specific PGS 

(PGSExposure-specific) for CAD in the UK Biobank. By splitting the males and females into 70% for GWAS 

(males: n=94,208, females: n=106,849) and 30% for PGS (males: n=62,805, females: n=71,244), matching 

the prevalence of CAD to the overall prevalence of males (16.5%) and females in the population (7.44%), 

we generated 10 such permutation sets. The GWAS models were adjusted for age and five genetic principal 

components. The exposure-specific log of odds ratio was divided by the standard error per variant to 

account for estimation noise and then used to construct exposure-specific PGS using the –score function in 

PLINK58.  As a negative control, we also constructed exposure-specific PGS for randomly partitioned 

exposure groups (PGSExposure-specific (random partition)), E1rand and E2rand, keeping the sample size and prevalence 

the same as that in males and females. We then compared the exposure-specific estimates of effect sizes 

and PGS with the estimates from the overall population vs random environment. Specifically, spearman 

rank correlation was computed to evaluate if genetic effect sizes or PGS in specific exposures show higher 

or lesser correlation with estimates from the overall population to evaluate context-dependency. The 

spearman rank correlation also indicates whether the rank order of individuals is preserved when using 

PGSOverall vs PGSExposure-specific. Further, we also compared the shapes of risk-PGS curves with respect to males 

vs females using PGSOverall, PGSExposure-specific (exposure specific PGS constructed using exposure specific 

genetic effects in males and females separately) and PGSExposure-specific (random partition) for the randomly 

partitioned environment.  Specifically, the deviations in CAD risk at median and top percentile of PGS 

were evaluated.  

Supplementary Figure S3 illustrates this analysis. Notably, for both effect sizes (Supplementary 

Figure S3A) and PGSs (Supplementary Figure S3B), the correlation of exposure-specific estimates vs 

estimates from the overall population were higher for males (spearman rank rhobeta = 0.78 +/- 0.001, rhoPRS 

= 0.9 +/- 0.0008) compared to females (rhobeta = 0.64 +/- 0.0023, rhoPRS = 0.73 +/- 0.0025), indicating 

context-dependency. The prevalence-PGS curves generated with PGSOverall (Supplementary Figure S3C) 

yielded higher prevalence in the top percentile for both males and females (males: 61.12% +/- 0.75, females: 
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28.62% +/- 0.37) indicating higher predictive ability of PGSOverall to distinguish CAD cases vs controls than 

PGSexpspec (males: 52.75% +/- 0.44, females: 19.8% +/- 0.37, Supplementary Figure S3D). However, the 

deviations between prevalence-PGS curves with respect to males vs females was observed to be slightly 

higher when using PGSExposure-specific than PGSOverall, suggesting that the deviations of risk between exposures 

is slightly more conservative with PGSOverall than PGSExposure-specific. Whereas for the random environment 

partition, the correlations of genetic effect sizes (Supplementary Figure S3A) and PGS (Supplementary 

Figure S3B) between exposure-specific estimates vs estimates from overall population were similar for 

E1rand and E2rand and intermediate between those of males and females (E1rand: rhobeta = 0.76 +/- 0.0018, rhoPRS 

=  0.86 +/- 0.0016; E2rand: rhobeta = 0.7 +/- 0.0019, rhoPRS =  0.8 +/- 0.0013). The prevalence in the top 

percentile for random environment was the lower than that of males for E1rand and higher than that of females 

for E2rand, (E1rand: 48.75% +/- 0.44, E2rand: 24.38% +/- 0.32), thus smaller deviations of disease risk with 

respect to random environment partitions (Supplementary Figure S3E).    

The estimation of the expected deviation between environments is complicated for case-control 

traits because under the threshold liability model, odds ratios are a function of prevalence. Thus, to evaluate 

if the deviations in disease risk is not solely driven by CAD prevalence difference between males and 

females, we also estimated the exposure specific genetic effects and PGSExposure-specific, keeping the sample 

size and prevalence of males and females equivalent to prevalence of CAD in the overall population of 

11.7% and repeated the same analyses. Supplementary Figure S4 illustrates the analyses with prevalence-

matched exposure groups.  

Predictive accuracy of PGS models 

We evaluated the predictive accuracy of PGS by estimating the Nagelkerke R2 from the logistic regression 

of four models:  

(i) Overall population, no environmental stratification: Disease ~ PGS + covariates; 

(ii) In low-risk exposures (E00): Disease ~ PGS + covariates;  
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(iii) In high-risk exposure (E11): Disease ~ PGS + covariates;  

(iv) Composite exposure model with interaction: Disease ~ PGS + E1 + E2 + PGSxE1 + PGSxE2 

and PGSxE1xE2 + covariates. 

The covariates included age and five genetic principal components. The R2 was estimated using the ‘lrm’ 

function of ‘rms’ package in R (http://cran.r-project.org/web/packages/rms/). Across major exposures 

exhibiting multiple interactions for each disease, the average R2 value was computed across its 

combinations as shown in Figure 4 and Supplementary Figure S13. 

Amplification of genetic effects  

We estimated the genetic effect sizes in high (E11) vs low-risk (E00) exposures for major exposures and its 

combinations identified for each disease. The exposure-specific genetic effects were estimated by running 

GWAS in the UKB for a subset of independent SNPs that were used for PGS construction for each disease 

(Supplementary Table S1), adjusting for age and genetic principal components. We next used multivariate 

adaptive shrinkage (mash)47 to examine the mixture of covariance relationships (correlation and difference 

in magnitude) of SNP effect sizes along with their estimation noise (standard error), between high-risk 

exposures (H: E11) vs low-risk exposures (L: E00). Mash learns from the data by estimating mixture 

proportions of various pre-defined covariance matrices representing different patterns of effects. It assigns 

weights to covariance matrices using maximum likelihood, assigning low weight to matrices that capture 

fewer patterns and high weight to those which capture more patterns. We utilized the 66 pre-defined 

covariance matrices from Zhu, et al20 used to study the amplification of genetic effects. These included 

correlation values of -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1 and variance (denoting the difference in 

magnitude of effect sizes) being equal in both high-risk (H i.e. E11) and low-risk (L i.e. E00) exposure, L-

specific or higher in low-risk exposure i.e. L 1.5x, L 2x, L3x and H-specific or higher in high-risk exposure 

i.e. H 1.5x, H 2x, H 3x. The remainder weight is assigned to the no-effect matrix. Essentially, mash 

quantifies the proportion of SNPs that follow each specific pattern of magnitude and correlation between 

high vs low-risk exposures. Supplementary Figure S14 illustrates the amplification of genetic effects in past 
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smokers with low omega 6 fatty acids compared to non-smokers with high omega 6 levels.  The majority 

of the genetic effect sizes are well correlated between high vs low-risk exposures (weight assigned to 

covariance matrix with correlation of 1) of which 39.36% are equal in magnitude, 55.07% are 2x higher in 

high-risk exposure and 2.32% are 3x higher in high-risk exposure i.e. past smokers with reduced omega 6 

levels. 3.25% SNPs are assigned correlation of 0.5 and are 2x higher in high-risk exposure, while a small 

proportion 0.0006% SNPs show no correlation but are specific to low-risk exposure. The net amplification 

effect is computed as the percentage of variants with genetic effect sizes higher in the high-risk exposure 

compared to low-risk exposure (H > L) minus percentage of variants with genetic effect sizes higher in 

low-risk exposure compared to high-risk exposure (L < H). The net amplification of genetic effects in past 

smokers with reduced omega-6 levels for CAD is 60.62% H>L (Supplementary Figure S14A). Thus, the 

genetic effect sizes between high vs low-risk exposure are very highly correlated but amplified in magnitude 

in the high-risk exposure. This finding is consistent across the majority of exposure combinations showing 

PGSxE effects, as shown in Figure 5 and Supplementary Figure S15. This implies that amplification (rather 

than uncorrelated effects) is the mechanism of PGSxE leading to differences in genetic variance between 

exposures and thus excess disease risk in high-risk exposure. SNP-heritability was also computed in low 

and high-risk exposures to compare the difference in genetic variance using BOLT-REML60.  

Supplementary Table S4 contains the net amplification effect (%) across significant exposures showing 

PGSxE and diseases.       

Proportion needed to benefit  

Building on the idea of the number needed to treat (NNT)6,7,49, the proportion needed to benefit is defined 

as a measure of how many people must alter their behavior (based on modifiable exposures such as diet or 

lifestyle) in order to benefit one person. It is computed as the inverse of the difference between area under 

risk-PGS curves (AUC) for the high-risk exposure (E11) minus that for the low-risk exposure (E00) at 

different PGS thresholds, scaled by the proportion of population sampled at each threshold.  
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Proportion needed to benefit = F
HIJ	K.LM*.)NEO+	–	HIJ	P'Q*.)NEO+

 x	Proportion	of	population	sampled 

We computed the PNB in the overall population i.e. PGS percentile > 0 (overall population, without 

consideration of genetics) and increasing PGS thresholds i.e. PGS percentile > 10, PGS percentile > 20 and 

so on, up to PGS percentile > 80 (top 20% of the population) and PGS percentile > 90 (top 10% of the 

population). The gain in benefit was computed as the ratio of proportion of the population who might benefit 

from lifestyle intervention at a given PGS threshold over the proportion of the overall population who would 

benefit without consideration of genetics (i.e. PGS percentile > 0). Further, we also computed the precision 

(positive predictive values), negative predictive values, sensitivity and specificity at each PGS threshold in 

high vs low risk exposures. The definitions for computing these metrics are provided in Supplementary 

Table S5 illustrating an example of proportion needed to benefit for a modifiable exposure, bread type and 

smoking status with respect to CAD risk and increasing PGS thresholds. 

Data Availability  

UK Biobank individual-level genotype and phenotype data are available through application at 

http://www.ukbiobank.ac.uk. The results to explore risk curves across all exposures and diseases will be 

made available through an R shiny application upon publication. 

Code Availability  

Code will be available upon publication. 

Acknowledgments 

We thank Arbel Harpak, Alison Motsinger-Reif, and Raghav Tandon for their insightful discussions and 

feedback. We thank the study participants of the UK Biobank. This work was supported by a grant from 

the U.S. National Institutes of Health to G.G. (R01-DK119991). Analyses using the UK Biobank Resource 

were performed under Institutional Review Board–approved application number 17984. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311065doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

REFERENCES 

1. Lewis, A.C.F. et al. Managing differential performance of polygenic risk scores across groups: Real-
world experience of the eMERGE Network. Am J Hum Genet 111, 999-1005 (2024). 

2. Lennon, N.J. et al. Selection, optimization and validation of ten chronic disease polygenic risk 
scores for clinical implementation in diverse US populations. Nature Medicine 30, 480-487 (2024). 

3. Jermy, B. et al. A unified framework for estimating country-specific cumulative incidence for 18 
diseases stratified by polygenic risk. Nature Communications 15, 5007 (2024). 

4. Xiang, R. et al. Recent advances in polygenic scores: translation, equitability, methods and FAIR 
tools. Genome Medicine 16, 33 (2024). 

5. Samani, N.J. et al. Polygenic risk score adds to a clinical risk score in the prediction of 
cardiovascular disease in a clinical setting. European Heart Journal, ehae342 (2024). 

6. Gibson, G. Going to the negative: genomics for optimized medical prescription. Nat Rev Genet 20, 
1-2 (2019). 

7. Gibson, G. On the utilization of polygenic risk scores for therapeutic targeting. PLoS Genet 15, 
e1008060 (2019). 

8. Martin, A.R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. 
Nat Genet 51, 584-591 (2019). 

9. Wang, Y., Tsuo, K., Kanai, M., Neale, B.M. & Martin, A.R. Challenges and Opportunities for 
Developing More Generalizable Polygenic Risk Scores. Annu Rev Biomed Data Sci 5, 293-320 
(2022). 

10. Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global 
populations. Nature Reviews Genetics 25, 8-25 (2024). 

11. Wang, Y. et al. Aspiring toward equitable benefits from genomic advances to individuals of 
ancestrally diverse backgrounds. Am J Hum Genet 111, 809-824 (2024). 

12. Madden, E.B. et al. Advancing genomics to improve health equity. Nat Genet 56, 752-757 (2024). 
13. Nagpal, S., Tandon, R. & Gibson, G. Canalization of the Polygenic Risk for Common Diseases and 

Traits in the UK Biobank Cohort. Mol Biol Evol 39(2022). 
14. Durvasula, A. & Price, A.L. Distinct explanations underlie gene-environment interactions in the UK 

Biobank. medRxiv (2024). 
15. Herrera-Luis, E., Benke, K., Volk, H., Ladd-Acosta, C. & Wojcik, G.L. Gene-environment interactions 

in human health. Nat Rev Genet (2024). 
16. Virolainen, S.J., VonHandorf, A., Viel, K., Weirauch, M.T. & Kottyan, L.C. Gene-environment 

interactions and their impact on human health. Genes Immun 24, 1-11 (2023). 
17. Marderstein, A.R. et al. Leveraging phenotypic variability to identify genetic interactions in human 

phenotypes. Am J Hum Genet 108, 49-67 (2021). 
18. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. Elife 

9(2020). 
19. Hui, D. et al. Risk factors affecting polygenic score performance across diverse cohorts. (Cold 

Spring Harbor Laboratory, 2023). 
20. Zhu, C. et al. Amplification is the primary mode of gene-by-sex interaction in complex human 

traits. Cell Genom 3, 100297 (2023). 
21. Hermisson, J., Hansen, T.F. & Wagner, G.P. Epistasis in polygenic traits and the evolution of genetic 

architecture under stabilizing selection. Am Nat 161, 708-34 (2003). 
22. Wagner, G.P., Booth, G. & Bagheri-Chaichian, H. A Population Genetic Theory of Canalization. 

Evolution 51, 329-347 (1997). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311065doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

23. Gibson, G. & Lacek, K.A. Canalization and Robustness in Human Genetics and Disease. Annu Rev 
Genet 54, 189-211 (2020). 

24. Gibson, G. Decanalization and the origin of complex disease. Nature Reviews Genetics 10, 134-
140 (2009). 

25. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 
203-209 (2018). 

26. Weine, E., Smith, S.P., Knowlton, R.K. & Harpak, A. Tradeoffs in Modeling Context Dependency in 
Complex Trait Genetics. bioRxiv (2024). 

27. Astore, C. & Gibson, G. Integrative polygenic analysis of the protective effects of fatty acid 
metabolism on disease as modified by obesity. Front Nutr 10, 1308622 (2023). 

28. Borges, M.C. et al. Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: 
analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 
UK Biobank participants. BMC Med 20, 210 (2022). 

29. Inouye, M. et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: 
Implications for Primary Prevention. J Am Coll Cardiol 72, 1883-1893 (2018). 

30. Isgut, M., Sun, J., Quyyumi, A.A. & Gibson, G. Highly elevated polygenic risk scores are better 
predictors of myocardial infarction risk early in life than later. Genome Med 13, 13 (2021). 

31. Fahed, A.C. & Natarajan, P. Clinical applications of polygenic risk score for coronary artery disease 
through the life course. Atherosclerosis 386, 117356 (2023). 

32. Truong, B. et al. Modification of coronary artery disease clinical risk factors by coronary artery 
disease polygenic risk score. Med 5, 459-468 e3 (2024). 

33. Ye, Y. et al. Interactions Between Enhanced Polygenic Risk Scores and Lifestyle for Cardiovascular 
Disease, Diabetes, and Lipid Levels. Circ Genom Precis Med 14, e003128 (2021). 

34. Leinonen, J.T. et al. Genetic analyses implicate complex links between adult testosterone levels 
and health and disease. Commun Med (Lond) 3, 4 (2023). 

35. Chen, H. et al. Association of serum lipids with inflammatory bowel disease: a systematic review 
and meta-analysis. Front Med (Lausanne) 10, 1198988 (2023). 

36. Bai, L. et al. Computational drug repositioning of atorvastatin for ulcerative colitis. J Am Med 
Inform Assoc 28, 2325-2335 (2021). 

37. Bigeh, A., Sanchez, A., Maestas, C. & Gulati, M. Inflammatory bowel disease and the risk for 
cardiovascular disease: Does all inflammation lead to heart disease? Trends Cardiovasc Med 30, 
463-469 (2020). 

38. Sleutjes, J.A.M. et al. Cardiovascular risk profiles in patients with inflammatory bowel disease 
differ from matched controls from the general population. Eur J Prev Cardiol 30, 1615-1622 
(2023). 

39. Hu, E.A. et al. Alcohol Consumption and Incident Kidney Disease: Results From the Atherosclerosis 
Risk in Communities Study. J Ren Nutr 30, 22-30 (2020). 

40. Brittain, E.L. et al. Physical Activity and Incident Obesity Across the Spectrum of Genetic Risk for 
Obesity. JAMA Netw Open 7, e243821 (2024). 

41. Thompson, M.D., Pirkle, C.M., Youkhana, F. & Wu, Y.Y. Gene-obesogenic environment 
interactions on body mass indices for older black and white men and women from the Health and 
Retirement Study. Int J Obes (Lond) 44, 1893-1905 (2020). 

42. Tyrrell, J. et al. Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol 
46, 559-575 (2017). 

43. Nagpal, S., Gibson, G. & Marigorta, U.M. Pervasive Modulation of Obesity Risk by the Environment 
and Genomic Background. Genes (Basel) 9(2018). 

44. Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 
618, 774-781 (2023). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311065doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

45. Hou, K., Xu, Z., Ding, Y., Harpak, A. & Pasaniuc, B. Calibrated prediction intervals for polygenic 
scores across diverse contexts. medRxiv (2023). 

46. Urbut, S.M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating 
and testing effects in genomic studies with multiple conditions. Nat Genet 51, 187-195 (2019). 

47. Tucker-Drob, E.M., Briley, D.A. & Harden, K.P. Genetic and Environmental Influences on Cognition 
Across Development and Context. Curr Dir Psychol Sci 22, 349-355 (2013). 

48. Khera, A.V. et al. Genome-wide polygenic scores for common diseases identify individuals with 
risk equivalent to monogenic mutations. Nature Genetics 50, 1219-1224 (2018). 

49. Cook, R.J. & Sackett, D.L. The number needed to treat: a clinically useful measure of treatment 
effect. BMJ 310, 452-4 (1995). 

50. Natarajan, P. et al. Polygenic Risk Score Identifies Subgroup With Higher Burden of Atherosclerosis 
and Greater Relative Benefit From Statin Therapy in the Primary Prevention Setting. Circulation 
135, 2091-2101 (2017). 

51. Williams, P. Retaining Race in Chronic Kidney Disease Diagnosis and Treatment. Cureus 15, e45054 
(2023). 

52. Hsu, J., Johansen, K.L., Hsu, C.Y., Kaysen, G.A. & Chertow, G.M. Higher serum creatinine 
concentrations in black patients with chronic kidney disease: beyond nutritional status and body 
composition. Clin J Am Soc Nephrol 3, 992-7 (2008). 

53. Ku, E., McCulloch, C.E., Adey, D.B., Li, L. & Johansen, K.L. Racial Disparities in Eligibility for 
Preemptive Waitlisting for Kidney Transplantation and Modification of eGFR Thresholds to 
Equalize Waitlist Time. J Am Soc Nephrol 32, 677-685 (2021). 

54. Westerman, K.E. & Sofer, T. Many roads to a gene-environment interaction. Am J Hum Genet 111, 
626-635 (2024). 

55. Kosiborod, M.N. et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction 
and Obesity. N Engl J Med 389, 1069-1084 (2023). 

56. Perkovic, V. et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 
Diabetes. N Engl J Med (2024). 

57. Bick, A.G. et al. Genomic data in the All of Us Research Program. Nature 627, 340-346 (2024). 
58. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage 

analyses. Am J Hum Genet 81, 559-75 (2007). 
59. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C.A. & Smoller, J.W. Polygenic prediction via Bayesian regression 

and continuous shrinkage priors. Nature Communications 10, 1776 (2019). 
60. Loh, P.R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases 

using fast variance-components analysis. Nat Genet 47, 1385-92 (2015). 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311065doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

Supplementary Material 

 

 

Supplementary Figure S1: Incidence of CAD vs percentile of PGS curves for (A) Overall population 
(without any environmental stratification) has CAD incidence 6.04%, incidence at 50th percentile of PGS 
is 5.36% whereas incidence in the top percentile of PGS is 24.88%. The predictive accuracy of PGS, R2 is 
12.5%. (B) Stratified by sex: Males have an overall incidence of 8.59%, incidence at 50th percentile of 
PGS is 6.42% whereas incidence in the top percentile of PGS is 34.33%. The predictive accuracy of PGS, 
R2 is 15.1%. Females have an overall incidence 3.92%, incidence at 50th percentile of PGS is 3.21% whereas 
incidence in the top percentile of PGS is 16.84%. The predictive accuracy of PGS, R2 is 10.4%.  (C) 
Stratified by sex-adjusted testosterone levels: Low testosterone group has an overall incidence of 6.89%, 
incidence at 50th percentile of PGS is 5.71% whereas incidence in the top percentile of PGS is 28.97%. The 
predictive accuracy of PGS, R2 is 13%. High testosterone group has an overall incidence 5.8%, incidence 
at 50th percentile of PGS is 4.52% whereas incidence in the top percentile of PGS is 26.06%. The predictive 
accuracy of PGS, R2 is 12.6%. (D) Stratified by combination of exposures – sex and sex-adjusted 
testosterone levels: Males with low testosterone levels (E11: purple curve) have an overall incidence of 
9.87%, incidence at 50th percentile of PGS is 10.59% whereas incidence in the top percentile of PGS is 
37.28%. The predictive accuracy of PGS, R2 is 15.4%. Females with high testosterone levels (E00: yellow 
curve) have an overall incidence 3.57%, incidence at 50th percentile of PGS is 2.89% whereas incidence in 
the top percentile of PGS is 16.18%. The predictive accuracy of PGS, R2 is 11.2%.   
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 Supplementary Figure S2: Assessment of interactions between PGS and exposures shown 
on 70% training set (left) and 30% independent test set (right). (A) Incidence of CAD vs 
percentile PGS-CAD with respect to omega 6 fatty acids and past tobacco smoking, (B) Incidence 
of T2D vs percentile of PGS-T2D with respect to glucose and omega 6 fatty acid levels, (C) 
Incidence of obesity vs percentile of PGS-BMI with respect to glucose and omega 3 fatty acid 
levels. The second panel in each case shows the expected risk if the environmental effects are 
additive as shown by the grey dashed curves obtained using liability threshold disease risk 
modeling, overlaid on the observed curves. The third panel shows the expected risk (grey dashed 
curves) under the interaction model.  
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Supplementary Figure S3: Exposure specific GWAS and PGS analyses considering sex as an 
exposure vs CAD. 10 permutation sets were generated, where 70% samples were retained for GWAS 
and 30% for PGS, and prevalence of CAD in males is 16.5% and females is 7.44% equivalent to that 
observed in the population. (A) Spearman rank correlation of effect size between estimates from overall 
population and exposure specific estimates.  (B) Spearman rank correlation of PGS between estimates from 
overall population and exposure specific estimates (C) Prevalence of CAD vs percentile PGS-CAD with 
respect to males vs females, where PGS is computed from GWAS of overall population (PGSoverall). (D) 
Prevalence of CAD vs percentile PGS-CAD with respect to males vs females, where PGS is computed from 
exposure specific GWAS in males and females respectively (PGSExposure-specific). (E) Prevalence of CAD vs 
percentile PGS-CAD with respect to males vs females, where PGS is computed from exposure specific 
GWAS in the randomly partitioned environments (PGSExposure-specific (random partition)). 
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Supplementary Figure S4: Prevalence & sample size matched exposure specific GWAS and PGS 
analyses considering sex as an exposure vs CAD. 10 permutation sets were generated, where 70% 
samples were retained for GWAS and 30% for PGS. The prevalence of CAD in males and females is 
equivalent to that in the overall prevalence i.e. 11.7%. (A) Spearman rank correlation of effect sizes 
between estimates from overall population and exposure specific estimates.  (B) Spearman rank correlation 
of PGS between estimates from overall population and exposure specific estimates (C) Prevalence of CAD 
vs percentile PGS-CAD with respect to males vs females, where PGS is computed from GWAS of overall 
population (PGSoverall). (D) Prevalence of CAD vs percentile PGS-CAD with respect to males vs females, 
where PGS is computed from exposure specific GWAS in males and females respectively (PGSExposure-

specific). (E) Prevalence of CAD vs percentile PGS-CAD with respect to males vs females, where PGS is 
computed from exposure specific GWAS in the randomly partitioned environments (PGSExposure-specific (random 

partition)). 
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Supplementary Figure S5: Combinations of exposures showing significant PGSxE for common 
diseases (A) Prevalent type 2 diabetes (T2D), (B) Prevalence inflammatory bowel disease (IBD), (C) 
Prevalent Asthma, (D) Incident obesity assessed with respect to PGS-BMI, (E) Incident obesity assessed 
with respect to PGS-WHR, (F) Thresholded obesity – BMI, (G) Thresholded obesity – waist-to-hip ratio 
(WHR). The width of the arc denotes the deltaobserved i.e. deviations of disease risk at the extremes of PGS 
between high- vs low-risk exposure and the number of linkages per node denote the multiple interactions 
exhibited by key or major exposures for each disease. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311065doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

 

Supplementary Figure S6: Notable PGSxE cases for incident CAD. The curves show incidence of CAD 
vs percentile PGS-CAD with respect to combinations of environmental exposures: (A) Sex and walk pace, 
(B) Omega 6 fatty acid levels and average weekly beer or cider intake, (C) Cholesterol levels and current 
tobacco smoking, (D) Systolic blood pressure and jobs involved heavy physical work.  
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Supplementary Figure S7: Notable PGSxE cases for prevalent CAD. The curves show prevalence of 
CAD vs percentile PGS-CAD with respect to combinations of environmental exposures: (A) Sex and walk 
pace, (B) Omega 6 fatty acid levels and average weekly beer or cider intake, (C) Cholesterol levels and 
current tobacco smoking, (D) Systolic blood pressure and jobs involved heavy physical work.  
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Supplementary Figure S8: Notable PGSxE cases for incident T2D. The curves show incidence of T2D 
vs percentile PGS-T2D with respect to combinations of environmental exposures: (A) Glucose levels and 
bread intake (B) Smoking status and beef intake, (C) Sex adjusted testosterone levels and smoking status, 
(D) Sex and body size at age 10. 
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Supplementary Figure S9: Notable cases of incident obesity vs PGS-BMI and prevalent obesity vs 
PGS-WHR with respect to (A, C) body size at age 10 and average weekly beer or cider intake, (B, D) 
sex-adjusted testosterone levels and bread intake, respectively. 
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Supplementary Figure S10: Notable PGSxE cases for prevalent IBD. The curves show prevalence of 
IBD vs percentile PGS-IBD with respect to combinations of environmental exposures: (A) LDL and 
triglyceride levels (B) Systolic blood pressure and LDL levels, (C) Sex adjusted hemoglobin concentration 
and past tobacco smoking status, (D) Bread type as white or wholegrain/brown and duration of walks. 
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Supplementary Figure S11: Notable PGSxE cases for prevalent CKD. The curves show prevalence of 
CKD vs percentile PGS-CKD with respect to combinations of environmental exposures: (A) Sex and 
calcium levels (B) omega 3 fatty acid levels and tea intake, (C) Glucose and omega 6 fatty acid levels, (D) 
Townsend deprivation index and alcohol intake frequency. 
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Supplementary Figure S12: Notable PGSxE cases for prevalent Asthma. The curves show prevalence 
of Asthma vs percentile PGS-Asthma with respect to combinations of environmental exposures: (A) 
Triglyceride levels and exposure to tobacco smoke at home (B) Sex and average total household income 
before tax. 
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Supplementary Figure S13: Gain in PGS prediction accuracy in high-risk exposures and composite 
exposure model including the interaction effects. The average R2 across significant exposure-pairs is 
shown for major exposures across each disease: (A) Prevalent CAD, (B) Prevalent T2D, (C) Thresholded 
Obesity-BMI,  (D) Thresholded Obesity-WHR, (E) IBD, (F) Asthma. 
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Supplementary Figure S14: Amplification and SNP-heritability assessed for 4599 CAD SNPs with 
respect to omega 6 fatty acid levels and past tobacco smoking status. (A) Amplification of genetic 
effects in the high-risk exposure (H) i.e.  low omega-6 fatty acid levels and past smoker compared to low-
risk exposure (L) i.e. high omega-6 levels and non-smoker. The x-axis denotes the magnitude, whether 
H>L or L>H and the y-axis denotes the correlation values. (B) SNP-h2 computed using BOLT-REML in 
high- and low-risk exposures.  
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Supplementary Figure S15: PGSxE shows a positive relationship with amplification of genetic effects. 
The x-axis denotes the net amplification effect computed as the percentage of genetic effects with H (E11) 
> L (E00) minus percentage of genetic effect with H (E11) < L (E00). The y-axis denotes the excess disease 
variance due to interaction effects computed from the liability threshold disease risk modeling. Shown 
exposure pairs for (A) Prevalent T2D, (B) Incident T2D, (C) Prevalent IBD, (D) Thresholded Obesity-
BMI, (E) Incident obesity, (F) Thresholded Obesity-WHR. 
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Supplementary Table Legends 

Table S1: Disease: List of diseases/trait, ICD10 codes and self-reported UKB fields, exclusion criteria, 
prevalence, incidence, GWAS reference for PGS construction and number of SNPs used for PGS. 

Table S2: Environmental exposures: (A) All exposures (n=75), criteria for high vs low groups and sample 
size; (B) Pairwise exposures with four environmental risk levels and samples size in each group. 

Table S3: PGSxE metrics across significant pairwise exposures for all diseases (prevalent and incident) – 
deltaobserved, deltaadditive, departureextremes, overall additive R2, overall interaction R2 and excess disease 
variance due to interaction effects.  

Table S4: Net amplification effect i.e. % of variants with H>L minus % of variants with H<L for exposures-
pairs showing significant PGSxE across diseases. H denotes high-risk exposure (E11) and L denotes low-
risk exposure (E00). 

Table S5: Illustration of proportion needed to benefit (PNB) for a modifiable exposure, bread type and 
smoking status with respect to CAD risk and increasing PGS thresholds. 
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